The Effects of Inter-Limb Asymmetry on Change of Direction Performance: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Systematic Literature Search
2.2. Selection Criteria/Study Eligibility
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Study Identification and Selection
3.2. Study Quality
3.3. Study Characteristics
3.4. Inter-Limb Asymmetries and COD Tests
3.5. Associations between Asymmetry and COD
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb Asymmetries: Understanding How to Calculate Differences From Bilateral and Unilateral Tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Keeley, D.W.; Plummer, H.A.; Oliver, G.D. Predicting asymmetrical lower extremity strength deficits in college-aged men and women using common horizontal and vertical power field tests: A possible screening mechanism. J. Strength Cond. Res. 2011, 25, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Ball, K. Loading and performance of the support leg in kicking. J. Sci. Med. Sport 2013, 16, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.A. Kinematic comparison of the preferred and non-preferred foot punt kick. J. Sport Sci. 2011, 29, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Cochrane, J.L.; Newton, R.U. Leg mass characteristics of accurate and inaccurate kickers--an Australian football perspective. J. Sport Sci. 2013, 31, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sport Sci. Med. 2014, 13, 157–165. [Google Scholar]
- Hart, N.H.; Spiteri, T.; Lockie, R.G.; Nimphius, S.; Newton, R.U. Detecting deficits in change of direction performance using the preplanned multidirectional Australian football league agility test. J. Strength Cond. Res. 2014, 28, 3552–3556. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Weber, J.; Spiteri, T.; Rantalainen, T.; Dobbin, M.; Newton, R.U. Musculoskeletal Asymmetry in Football Athletes: A Product of Limb Function over Time. Med. Sci. Sport Exerc. 2016, 48, 1379–1387. [Google Scholar] [CrossRef]
- Flanagan, S.P.; Salem, G.J. Bilateral differences in the net joint torques during the squat exercise. J. Strength Cond. Res. 2007, 21, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Sato, K.; Alexander, R.; Chiang, C.-Y.; Stone, M.H. Isometric force production symmetry and jumping performance in collegiate athletes. J. Trainol. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hart, N.; Nimphius, S.; Wilkie, J.; Newton, R. Reliability and Validity of Unilateral and Bilateral Isometric Strength Measures Using a Customised, Portable Apparatus. 2012. Available online: https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1235&context=ecuworks2012 (accessed on 2 September 2022).
- Silva, J.R.L.C.; Detanico, D.; Pupo, J.D.; Freitas, C.d.l.R. Bilateral asymmetry of knee and ankle isokinetic torque in soccer players u20 category. Rev. Bras. De Cineantropometria Desempenho Hum. 2015, 17, 195–204. [Google Scholar]
- Dickin, C.D.; Too, D. Effects of movement velocity and maximal concentric and eccentric actions on the bilateral deficit. Res. Q. Exerc. Sport 2006, 77, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Jarvis, P.; Chavda, S.; Read, P. Considerations for Selecting Field-Based Strength and Power Fitness Tests to Measure Asymmetries. J. Strength Cond. Res. 2017, 31, 2635–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sport Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, S.D.; Noyes, F.R.; Mangine, R.E.; McCloskey, J.W.; Hartman, W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin. Orthop. Relat. Res. 1990, 255, 204–214. [Google Scholar] [CrossRef]
- Rohman, E.; Steubs, J.T.; Tompkins, M. Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: Implications for Limb Symmetry Index measures. Am. J. Sport Med. 2015, 43, 1391–1398. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sport Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sport Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Yap, C.W.; Brown, L.E. Development of Speed, Agility, and Quickness for the Female Soccer Athlete. Strength Cond. J. 2000, 22, 9. [Google Scholar] [CrossRef]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of Direction Deficit: A More Isolated Measure of Change of Direction Performance Than Total 505 Time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sport Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Brashill, C.; Abbott, W.; Read, P.; Lake, J.; Turner, A. Jumping Asymmetries Are Associated With Speed, Change of Direction Speed, and Jump Performance in Elite Academy Soccer Players. J. Strength Cond. Res. 2021, 35, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Madruga-Parera, M.; Bishop, C.; Read, P.; Lake, J.; Brazier, J.; Romero-Rodriguez, D. Jumping-based Asymmetries are Negatively Associated with Jump, Change of Direction, and Repeated Sprint Performance, but not Linear Speed, in Adolescent Handball Athletes. J. Hum. Kinet. 2020, 71, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Perez-Higueras Rubio, M.; Gullon, I.L.; Maloney, S.; Balsalobre-Fernandez, C. Jump and Change of Direction Speed Asymmetry Using Smartphone Apps: Between-Session Consistency and Associations With Physical Performance. J. Strength Cond. Res. 2020, 36, 927–934. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in Isometric Force-Time Characteristics Are Not Detrimental to Change of Direction Speed. J. Strength Cond. Res. 2018, 32, 520–527. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Brazier, J.; Jarvis, P.; Chavda, S.; Bromley, T.; Turner, A. Effects of Interlimb Asymmetries on Acceleration and Change of Direction Speed: A Between-Sport Comparison of Professional Soccer and Cricket Athletes. J. Strength Cond. Res. 2021, 35, 2095–2101. [Google Scholar] [CrossRef]
- Maloney, S.J.; Richards, J.; Nixon, D.G.; Harvey, L.J.; Fletcher, I.M. Do stiffness and asymmetries predict change of direction performance? J. Sport Sci. 2017, 35, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Fort-Vanmeerhaeghe, A.; Montalvo, A.M.; Sitjà-Rabert, M.; Kiefer, A.W.; Myer, G.D. Neuromuscular asymmetries in the lower limbs of elite female youth basketball players and the application of the skillful limb model of comparison. Phys. Sport 2015, 16, 317–323. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- Bujalance-Moreno, P.; Latorre-Román, P.; García-Pinillos, F. A systematic review on small-sided games in football players: Acute and chronic adaptations. J. Sport Sci. 2019, 37, 921–949. [Google Scholar] [CrossRef]
- Fox, J.L.; Stanton, R.; Sargent, C.; Wintour, S.A.; Scanlan, A.T. The Association Between Training Load and Performance in Team Sports: A Systematic Review. Sport Med. 2018, 48, 2743–2774. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive Strength Index and its Associations with Measures of Physical and Sports Performance: A Systematic Review with Meta-Analysis. Sport. Med. 2022, 52, 301–330. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Beato, M.; Schena, F. Correlation between quadriceps and hamstrings inter-limb strength asymmetry with change of direction and sprint in U21 elite soccer-players. Hum. Mov. Sci. 2018, 59, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beltran-Valls, M.R.; Skok, O.G.; Romero-Rodríguez, D. Interlimb Asymmetries in Youth Tennis Players: Relationships With Performance. J. Strength Cond. Res. 2020, 34, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Madruga-Parera, M.; Bishop, C.; Beato, M.; Fort-Vanmeerhaeghe, A.; Gonzalo-Skok, O.; Romero-Rodríguez, D. Relationship Between Interlimb Asymmetries and Speed and Change of Direction Speed in Youth Handball Players. J. Strength Cond. Res. 2021, 35, 3482–3490. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Bromley, T.; Brazier, J.; Jarvis, P.; Chavda, S.; Turner, A. The Association Between Interlimb Asymmetry and Athletic Performance Tasks: A Season-Long Study in Elite Academy Soccer Players. J. Strength Cond. Res. 2022, 36, 787–795. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Giordanelli, M.D.; Malloy, P.J.; Geiser, C.F. Biomechanical Determinants of the Reactive Strength Index During Drop Jumps. Int. J. Sport Physiol. Perform. 2018, 13, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sport Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [Green Version]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle: A model to study naturally occurring neuromuscular fatigue. Sport Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Flanagan, E.P. The role of elastic energy in activities with high force and power requirements: A brief review. J. Strength Cond. Res. 2008, 22, 1705–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sport Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef]
- Rouissi, M.; Chtara, M.; Owen, A.; Chaalali, A.; Chaouachi, A.; Gabbett, T.; Chamari, K. Effect of leg dominance on change of direction ability amongst young elite soccer players. J. Sport Sci. 2016, 34, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.M.; Garrison, J.C.; Kerrigan, D.C.; Palmieri-Smith, R.; Ingersoll, C.D. Gender differences in gluteus medius muscle activity exist in soccer players performing a forward jump. Res. Sport Med. 2007, 15, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Avela, J.; Komi, P.V. Changes in muscle activity with increasing running speed. J. Sport 2005, 23, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Farrow, D. A Review of Agility: Practical Applications for Strength and Conditioning. Strength Cond. J. 2006, 28, 24. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Dos’ Santos. [26] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Bishop et al. [23] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Coratella et al. [34] | 1 | 1 | 1 | 1 | 0 | 1 | ? | 1 | 1 | 1 | 8 |
Maloney et al. [28] | 1 | 1 | 1 | 1 | 0 | 1 | ? | 1 | 1 | 1 | 8 |
Bishop et al. [27] | 1 | 1 | 1 | 1 | 1 | 0 | ? | 1 | 1 | 1 | 8 |
Madruga-Parera et al. [35] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Madruga-Parera et al. [24] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Fort-Vanmeerhaeghe. [29] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Madruga-Parera et al. [36] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Lockie et al. [37] | 1 | 1 | 1 | 1 | 0 | 1 | ? | 1 | 1 | 1 | 8 |
Bishop et al. [38] | 1 | 1 | 1 | 0 | 0 | 0 | ? | 1 | 1 | 1 | 6 |
Bishop et al. [25] | 1 | 1 | 1 | 1 | 0 | 0 | ? | 1 | 1 | 1 | 7 |
Study | Participants | Asymmetry Tests | ASI | COD Tests | Correlations |
---|---|---|---|---|---|
Dos’ Santos. [26] | N = 20 Male, Teamsport players (soccer, rugby and cricket) Age: yr 21 ± 1.9 Height: m 1.77 ± 0.04 Mass: kg 78.7 ± 8.9 | Isometric mid-thigh pull test: Relative peak force: N/kg D: 35.3 ± 4.6 ND: 33.2 ± 4.25 Impulse during 200 ms: N×s D: 279.8 ± 34.2 ND: 251.3 ± 4.9 Impulse during 300 ms: N×s D: 497.7 ± 60.7 ND: 431.6 ± 79.4 | ASI = (D-ND)/D × 100 Relative peak force ASI: 6.6 Impulse during 200 ms ASI: 12.2 Impulse during 300 ms ASI: 12.9 | Modified 505 test: s D: 2.69 ± 0.14 ND: 2.79 ± 0.14 ASI: −4.46 | Modified 505 ASI VS relative peak force ASI: r = −0.03, p = 1.000 VS Impulse during 200 ms ASI: r = −0.11, p = 1.000 VS Impulse during 300 ms ASI: r = −0.25, p = 0.380 |
Bishop et al. [23] | N = 51 Male, Soccer players Under 23, N = 21, Height: cm 180.2 ± 6.5, Mass: kg 76.9 ± 8.5 Under 18, N = 14, Height: cm 181.6 ± 8.6, Mass: kg 76.4 ± 7.4 Under 16, N =16, Height: cm 174.8 ± 11.1, Mass: kg 66.1 ± 11.0 | CMJ:cm Under 23: Left: 24.88 ± 3.18 Right: 24.31 ± 2.83 Under 18 Left: 24.08 ± 3.25 Right: 24.07 ± 2.54 Under-16 Left: cm 22.30 ± 3.71 Right: cm 21.80 ± 3.97 | ASI = 100/(maximum value) × (minimum value) × −1 +100 | 505: s Under 23 Left: 2.46 ± 0.06 Right: 2.46 ± 0.08 Under 18 Left: 2.50 ± 0.07 Right: s 2.49 ± 0.08 Under 16: Left: 2.48 ± 0.08 Right: 2.51 ± 0.07 | Under 23 CMJ ASI VS 505 Left: r = 0.61, p < 0.01 CMJ ASI VS 505 Right: r = 0.71, p < 0.01 Under 18 CMJ ASI VS 505 Left: r = 0.13, p > 0.05 CMJ ASI VS 505 Right: r = 0.15, p > 0.05 Under 16 CMJ ASI VS 505 Left: r = 0.63, p < 0.01 CMJ ASI VS 505 Right: r = 0.85, p < 0.01 |
Coratella et al. [34] | N = 27 Male, Elite soccer players Age: yr 18–21 Height: m 1.81 ± 0.05 Mass: kg 73.7 ± 7.0 | Isokinetic peak force: N×m/kg Strong side: low-velocity quadriceps: con: 3.46 ± 0.38 ecc: 4.12 ± 0.63 low-velocity hamstring: con: 1.95 ± 0.25 ecc: 2.42 ± 0.43 high-velocity quadriceps: con: 1.77 ± 0.18 ecc: 3.59 ± 0.57 high-velocity hamstring: con: 1.06 ± 0.22 ecc: 2.26 ± 0.44 Weak side: low-velocity quadriceps: con: 3.14 ± 0.35 ecc: 3.71 ± 0.73 low-velocity hamstring: con: 1.75 ± 0.23 ecc: 2.17 ± 0.49 high-velocity quadriceps: con: 1.63 ± 0.16 ecc: 3.46 ± 0.64 high-velocity hamstring: con: 1.05 ± 0.22 ecc: 2.19 ± 0.46 | ASI = (strong side − eak side)/strong side × 100 quadriceps con peak force ASI: low-velocity: 9.0 ± 6.5 high-velocity: 7.8 ± 5.0 quadriceps ecc peak force ASI: low-velocity: 9.7 ± 7.5 high-velocity: 9.0 ± 7.3 hamstring con peak force ASI: low-velocity: 9.6 ± 6.6 high-velocity: 10.7 ± 6.0 hamstring ecc peak force ASI: low-velocity: 10.5 ± 8.2 high-velocity: 11.7 ± 9.4 | 20 m shuttle: s 7.56 ± 0.29 T-test: s 8.73 ± 0.49 | 20 m shuttle VS quadriceps con peak force ASI: low-velocity: r = 0.123, p = 0.371 high-velocity: r = 0.120, p = 0.317 20 m shuttle VS quadriceps ecc peak force ASI: low-velocity: r = 0.426, p = 0.038 high-velocity: r = 0.404, p = 0.041 T-test VS quadriceps con peak force ASI: low-velocity: r = 0.284, p = 0.178 high-velocity: r = 0.301, p = 0.105 T-test VS quadriceps ecc peak force ASI: low-velocity: r = 0.259, p = 0.311 high-velocity: r = 0.433, p = 0.031 20 m shuttle VS hamstrings con peak force ASI: low-velocity: r = 0.126, p = 0.325 high-velocity: r = 0.066, p = 0.603 20 m shuttle VS hamstrings ecc peak force: low-velocity: r = 0.251, p = 0.299 high-velocity: r = 0.416, p = 0.037 T-test VS quadriceps con peak force ASI: low-velocity: r = 0.190, p = 0.354 high-velocity: r = 0.614, p < 0.001 T-test VS quadriceps ecc peak force: low-velocity: r = 0.394, p = 0.041 high-velocity: r = 0.397, p = 0.040 |
Maloney et al. [28] | N = 18 Male, Healthy men Age: yr 22 ± 4 Height: m 1.80 ± 0.08 Mass: kg 81.7 ± 14.9 | DJ: m Fast group: 0.12 ± 0.05 Slow group: 0.11 ± 0.03 | ASI = (Left-Right)/average (Left-Right) × 100 DJ ASI: fast group: 2.4 ± 3.9 slow group: 7.2 ± 3.8 | Double 90° cuts: s Fast group: 5.18 ± 0.18 Slow group: 5.64 ± 0.14 | Double 90° cuts VS DJ ASI r = 0.598, p = 0.009 |
Bishop et al. [27] | N = 41 Soccer players, N = 18 Age: yr 23.00 ± 4.27 Height: m 1.82 ± 0.06 Mass: kg 78.72 ± 7.76 Cricket players, N = 23 Age: yr 20.57 ± 1.73 Height: m 1.83 ± 0.08 Mass: kg 80.23 ± 9.91 | CMJ: m Soccer players: Left: 0.18 ± 0.04 Right: 0.18 ± 0.04 Cricket players: Left: 0.19 ± 0.03 Right: 0.18 ± 0.03 DJ: cm Soccer players: Left: 22.39 ± 4.02 Right: 22.82 ± 3.83 Cricket players: Left: 18.47 ± 4.45 Right: 18.48 ± 4.06 | ASI = 100/(maximum value) × (minimum value) × −1 +100 CMJ ASI: Soccer players: 11.14 Cricket players: 9.57 DJ ASI: Soccer players: 6.51 Cricket players: 11.49 | 505: s Soccer players: Left: 2.27 ± 0.07 Right: 2.26 ± 0.06 Cricket players: Left: 2.21 ± 0.10 Right: 2.22 ± 0.12 | Soccer players: CMJ ASI VS 505 Left: r = −0.23, p > 0.05 Right: r = 0.14, p > 0.05 DJ ASI VS 505 Left: r = 0.39, p > 0.05 Right: r = 0.29, p > 0.05 Cricket players: CMJ ASI VS 505 Left: r = 0.03, p > 0.05 Right: r = 0.07, p > 0.05 DJ ASI VS 505 Left: r = 0.56, p < 0.05 Right: r = 0.59, p < 0.05 |
Madruga-Parera et al. [35] | N = 22; Boys: N = 10, Girls: N = 12, Elite tennis players Age: yr 16.3 ± 1.4 Height: m 1.73 ± 0.1 Mass: kg 62.6 ± 9.7 | CMJ: cm D: 14.66 ± 3.48 ND: 12.43 ± 3.06 SLJ: cm D: 160.83 ± 25.84 ND: 153.92 ± 23.38 LJ: cm D: 150.16 ± 22.98 ND: 140.09 ± 21.99 | ASI = (D-ND)/D × 100 CMJ ASI: 15.03 ± 6.91 SLJ ASI: 4.14 ± 3.72 LJ ASI: 6.63 ± 5.30 | 2-time 180° COD: s D: 5.19 ± 0.22 ND: 5.29 ± 0.27 | CMJ ASI VS 2-time 180° COD D: r = 0.01, p > 0.05 ND: r = 0.05, p > 0.05 SLJ ASI VS 2-time 180° COD D: r = 0.02, p > 0.05 ND: r = 0.02, p > 0.05 LJ ASI VS 2-time 180° COD: D: r = 0.07, p > 0.05 ND: r = 0.06, p > 0.05 |
Madruga-Parera et al. [24] | N = 42 Male, Handball players Age: yr 16.0 ± 1.3 Height: cm 174.1 ± 7.3 Mass: kg 70.5 ± 13.3 | CMJ: cm D: 15.7 ± 3.6 Nd: 13.9 ± 3.6 LJ: cm D: 140.7 ± 20.5 ND: 129.2 ± 21.5 SLJ: cm D: 143.2 ± 25.3 ND: 134.0 ± 24.3 | ASI = 100/(maximum value) × (minimum value) × −1 +100 CMJ ASI: 11.2 ± 8.4 LJ ASI: 8.3 ± 7.5 SLJ ASI: 6.4 ± 4.6 | COD speed: s D: 5.3 ± 0.5 ND: 5.4 ± 0.5 V-cut test: s 7.3 ± 0.6 | COD speed: D VS CMJ ASI: r = 0.09, p > 0.05 D VS LJ ASI: r = 0.31, p < 0.05 D VS SLJ ASI: r = 0.03, p > 0.05 ND VS CMJ ASI: r = 0.11, p > 0.05 ND VS LJ ASI: r = 0.29, p > 0.05 ND VS SLJ ASI: r = 0.01, p > 0.05 V-cut test: VS CMJ ASI: r = 0.07, p > 0.05 VS LJ ASI: r = 0.32, p < 0.05 VS SLJ ASI: r < 0.01, p > 0.05 |
Fort-Vanmeerhaeghe. [29] | N = 29 Female, Elite basketball players Age: yr 15.66 ± 1.34 Height: m 1.82 ± 0.07 Mass: kg 69.69 ± 10.18 | CMJ: m D: 0.16 ± 0.03 ND: 0.13 ± 0.02 SLJ: m D: 1.61 ± 0.11 ND: 1.55 ± 0.11 LJ: m D: 1.50 ± 0.09 ND: 1.45 ± 0.09 | ASI = (D − ND) / ND ×100 CMJ ASI: 14.11 ± 8.62 SLJ ASI: 3.86 ± 2.49 LJ ASI: 3.33 ± 2.49 | 180° COD: s D: 2.81 ± 0.16 ND: 2.85 ± 0.16 s | 180° COD VS CMJ ASI: r = 0.036, p > 0.05 180° COD VS SLJ ASI: r = 0.194, p > 0.05 180° COD VS LJ ASI: r = −0.096, p > 0.05 |
Madruga-Parera et al. [36] | N = 26 Male, Handball players, Age: yr 16.2 ± 0.9 Height: m 1.76 ± 0.60 Mass: kg 78.2 ± 12.4 | CMJ: cm D: 19.05 ± 6 3.78 ND: 17.39 ± 3.65 SLJ: cm D:168.77 ± 24.12 ND:162.58 ± 23.5 LJ: cm D: 150.32 ± 22.86 ND:141.10 ± 20.76 | ASI= 100 / (maximum value) × (minimum value) × −1 +100 CMJ ASI: 8.76 ± 4.80 SLJ ASI: 3.66 ± 2.55 LJ ASI: 5.97 ± 5.05 | 90° COD speed: s D: 4.41 ± 0.29 ND: 4.57 ± 0.28 90° COD-D: s D: 1.28 ± 0.18 ND:1.44 ± 0.20 180° COD speed: s D: 4.91 ± 0.27 ND: 5.02 ± 0.31 180° COD-D: s D: 1.78 ± 0.14 ND: 1.88 ± 0.18 | CMJ ASI VS 90° COD speed D: r = −0.06, p > 0.05 ND:r = −0.16, p > 0.05 LJ ASI VS 90° COD speed D: r = 0.21, p > 0.05 ND: r = 0.29, p > 0.05 SLJ ASI VS 90° COD speed D: r = 0.16, p > 0.05 ND: r = 0.21, p > 0.05 CMJ ASI VS 180° COD speed D: r = 0.18, p > 0.05 ND: r = 0.21, p > 0.05 LJ ASI VS 180° COD speed D: r = 0.28, p > 0.05 ND: r = 0.39, p > 0.05 SLJ ASI VS 180° COD speed D: r = 0.28, p > 0.05 ND: r = 0.17, p > 0.05 |
Lockie et al. [37] | N = 30 Male, Team-sport athletes Age: yr 22.60 ± 3.86 Height: m 1.80 ± 0.07 Mass: kg 79.03 ± 12.26 | CMJ: m Left: 0.39 ± 0.08 Right: 0.40 ± 0.07 SLJ: m Left: 2.05 ± 0.19 Right: 2.03 ± 0.17 LJ: m Left: 1.86 ± 0.19 Right: 1.82 ± 0.21 | ASI: CMJ ASI: 10.4 ± 10.8 SLJ ASI: 3.3 ± 3.0 LJ ASI: 5.1 ± 3.9 | 505: s Left: 2.398 ± 0.093 Right: 2.397 ± 0.110 T-test: s Left: 6.281 ± 0.082 Right: 6.285 ± 0.368 | CMJ ASI vs 505: Left: r = 0.073, p = 0.701 Right: r = 0.083, p = 0.664 CMJ ASI VS T-test Left: r = 0.124, p = 0.514 Right: r = 0.061, p = 0.747 SLJ ASI VS 505 Left: r = 0.027, p = 0.889 Right: r = 0.036, p = 0.849 SLJ ASI VS T-test Left: r = 0.060, p = 0.755 Right: r = 0.000, p = 0.999 LJ ASI VS 505 Left: r = 0.189, p = 0.316 Right: r = 0.176, p = 0.352 LJ ASI VS T-test Left: r = 0.029, p = 0.878 Right: r = −0.081, p = 0.672 |
Bishop et al. [38] | N = 18 Male, Elite academy soccer players Age: yr 19.0 ± 2.2 Height: m 1.80 ± 0.07 Mass: kg 73.3 ± 9.0 | CMJ: m Left: Preseason: 0.17 ± 0.04 Midseason: 0.15 ± 0.03 Endseason: 0.17 ± 0.03 Right: Preseason: 0.17 ± 0.03 Midseason: 0.15 ± 0.02 Endseason: 0.17 ± 0.02 DJ: cm Left: Preseason: 21.0 ± 4.0 Midseason: 20.5 ± 5.0 Endseason: 21.5 ± 5.3 Right: Preseason: 21.0 ± 4.4 Midseason: 20.6 ± 4.3 Endseason: 21.4 ± 3.8 | ASI = 100 / (maximum value) × (minimum value) × −1+100 CMJ ASI: High group: Preseason: 17.97 ± 9.06 Midseason: 12.88 ± 7.72 Endseason: 14.64 ± 4.80 Low group: Preseason: 4.40 ± 3.03 Midseason: 4.33 ± 1.79 Endseason: 3.22 ± 1.62 DJ ASI: High group: Preseason: 13.20 ± 6.31 Midseason: 16.24 ± 8.91 Endseason: 16.22 ± 8.54 Low group: Preseason: 3.65 ± 1.34 Midseason: 4.02 ± 3.80 Endseason: 3.77 ± 2.49 | 505: s Left: Preseason: 2.34 ± 0.12 Midseason: 2.30 ± 0.11 Endseason: 2.23 ± 0.08 Right: Preseason: 2.32 ± 0.12 Midseason: 2.30 ± 0.12 Endseason: 2.23 ± 0.10 COD-D: s Left: Preseason: 0.57 ± 0.12 Midseason: 0.53 ± 0.12 Endseason: 0.45 ± 0.14 Right: Preseason: 0.56 ± 0.11 Midseason: 0.53 ± 0.12 Endseason: 0.45 ± 0.11 | DJ ASI vs 505 Right: r = 0.65, p = 0.003 |
Bishop et al. [25] | N = 30 National level youth basketball athletes Age: yr 17.67 ± 1.32 Height: m 1.81 ± 0.10 Mass: kg 73.33 ± 13.34 | CMJ: cm Session 1 Left: 13.67 ± 5.40 Right: 14.15 ± 5.30 Session 2 Left: 13.72 ± 5.87 Right: 13.34 ± 4.74 DJ: cm Session 1 Left: 11.61 ± 6.02 Right: 12.10 ± 5.86 Session 2: Left: 10.98 ± 5.69 Right: 11.34 ± 5.66 | ASI = 100/(maximum value) × (minimum value) × −1+100 CMJ ASI: Session 1: 10.64 ± 8.56 Session 2: 10.93 ± 9.17 DJ ASI: Session 1: 14.28 ± 10.28 Session 2: 11.07 ± 9.44 | 505: s Session1 Left: 2.85 ± 0.24 Right: 2.80 ± 0.23 505 test ASI: 3.27 ± 2.66 Session 2 Left: 2.86 ± 0.25 Right: 2.84 ± 0.25 505 ASI: 2.60 ± 1.79 | CMJ ASI VS 505 Left: r = 0.25, p > 0.05 Right: r = 0.34, p > 0.05 DJ ASI VS 505 Left: r = 0.45, p < 0.05 Right: r = 0.48, p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Shen, J.; Zhou, A.; Badicu, G.; Grosz, W.R. The Effects of Inter-Limb Asymmetry on Change of Direction Performance: A Systematic Review. Symmetry 2022, 14, 2177. https://doi.org/10.3390/sym14102177
Lin J, Shen J, Zhou A, Badicu G, Grosz WR. The Effects of Inter-Limb Asymmetry on Change of Direction Performance: A Systematic Review. Symmetry. 2022; 14(10):2177. https://doi.org/10.3390/sym14102177
Chicago/Turabian StyleLin, Junlei, Jie Shen, Aiguo Zhou, Georgian Badicu, and Wilhelm Robert Grosz. 2022. "The Effects of Inter-Limb Asymmetry on Change of Direction Performance: A Systematic Review" Symmetry 14, no. 10: 2177. https://doi.org/10.3390/sym14102177
APA StyleLin, J., Shen, J., Zhou, A., Badicu, G., & Grosz, W. R. (2022). The Effects of Inter-Limb Asymmetry on Change of Direction Performance: A Systematic Review. Symmetry, 14(10), 2177. https://doi.org/10.3390/sym14102177