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Abstract: Due to the difference in distance cognition between virtual and real symmetric space, it
is difficult for users to accurately interact with the target in the Digital Twin system. In order to
study the cross-effects of interaction task, target size and target location on the accuracy of egocentric
peripersonal distance cognition, a 2× 5× 9× 5 asymmetric experiment was designed and carried out.
There were two kinds of interaction tasks, five kinds of interaction target widths and nine kinds of
spatial locations set to estimate the five egocentric peripersonal distances. Based on the experimental
data, with interaction task, target width and the actual spatial location as independent variables and
virtual interaction location as a dependent variable, the mapping model between the actual physical
location and virtual interaction location of different interaction targets was constructed and evaluated
by multiple linear regression method. The results showed that the prediction model constructed by
stepwise regression method was simple and less computationally intensive, but it had better stability
and prediction ability. The correlation coefficients R2 on xp, yp and zp were 0.994, 0.999 and 0.998,
RMSE values were 2.583 cm, 1.0774 cm and 1.3155 cm, rRMSE values were 26.57%, 12.60% and 1.15%,
respectively. The research of relevant experiments and the construction of models are helpful to solve
the layout optimization problem of virtual interactive space in the Digital Twin system.

Keywords: Digital Twin system; distance cognition; virtual interaction location; prediction model

1. Introduction

Distance cognition refers to the observer’s estimation of the distance between external
objects or between himself and an external object. The distance estimated by distance
cognition is called perceptual distance. Research shows that the perceptual distance in
real space is generally 87~91% of the actual distance, while in VR space it is generally
41~72% [1]. The process of distance cognition consists of three basic and continuous
psychological stages: perception stage; analysis stage; and report stage.

The perception stage refers to the observer using his eyes or other senses to perceive
the distance of the target object to himself or its location relative to a reference object. In the
perceptual stage, people usually make judgments based on visual cues, which are various
sources of information collected and used by the visual system to understand and perceive
the natural depth of field. Page et al. [2] divided visual cues into 10 categories: occlusion;
relative size; relative density; visual field height; and perspective of motion. Faure et al. [3]
divided visual cues into four categories: graphic cues; motion-generated cues; oculomotor
cues; and binocular parallax.
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In the analysis stage, distance estimation is one of the important problems to be
solved [4]. Paes et al. [2] proposed that the distance estimation region can be divided
into three self-centered circular regions according to the location of the target object
relative to the observer, which are as follows: near space (within 1.5 m); action space
(between 1.5–30 m); and distant space (beyond 30 m), and are also called near field, middle
field and far field by Ping et al. [5], as shown in Figure 1. According to the reference frame,
distance cognition can be divided into egocentric distance and exocentric distance. The
egocentric distance takes the observer as the center to estimate the distance from the target
object, while the exocentric distance refers to the distance between the other two target
objects in the environment, except the observer [6]. The egocentric distance can be divided
into egocentric peripersonal distance (within 1.5 m) and egocentric extrapersonal distance
(1.5 m away) according to the location of the target object relative to the observer. Accord-
ing to the definition, distance judgment includes absolute distance, relative distance and
sequential judgment. Absolute distance judgment means that the observer uses predefined
criteria (meters, inches, etc.) to judge the distance; relative distance judgment means that
the observer compares two or more target objects to judge their near and far relationship;
sequential judgment means that the observer sorts the depth of multiple target objects.
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There are three main reporting methods: verbal reporting; perceptual matching;
and visual orientation method (such as blind walking matching, blind throwing and
triangulation) [7]. Verbal reporting is the simplest method, in which the observer only
needs to orally tell the relative location or absolute distance of the target object. In the
perceptual matching method, the observer needs to determine the spatial location of one
target object and then move the other target object to a similar location [8]. The deviation
in the perceptual matching method is much lower than that of the verbal reporting method.
The most commonly used method of visual orientation is blind walking, which requires
the observer to walk blindfolded to the location of the target object, so there is no visual
clue for support [9]. Triangulation is an improved form of blind walking, in which the
observer moves a slanted distance and then estimates the distance by walking or pointing.
As triangulation does not require the observer to walk to the target location, it saves time
on distance estimation and helps in customizing experiments and setting up experimental
sites. Blind throwing requires the observer, with his eyes covered, to throw a specific
object (such as a sandbag) at the spatial location he previously perceived the target to be
in. Although this method does not require walking, the observer also lacks the support of
visual cues, so it is used only when blind walking is not appropriate or due to the danger
of the environment.

2. Related Work

In order to analyze the difference of distance cognition in different environments, a
total of 324 pieces of literature were collected, including works on the distance cognition of
real and virtual symmetric spaces, two symmetric distances: egocentric peripersonal and
egocentric extrapersonal, and outer center distance. Articles without research methods,
which did not meet the definition of stereoscopic display and distance cognition, and which
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had no data to extract, were excluded. Finally, 39 articles were selected for data extraction
and quantitative analysis.

Since the analyzed data came from different journals, in order to conduct accurate
analysis and evaluation, the overall distance cognition deviation was calculated by using
the overall distance cognition accuracy (PO).

Po =
∑k

j=1 Pj × nj

∑k
j−1 nj

, (1)

In Equation (1), Pj is the distance cognition accuracy in study j (expressed by the ratio
of perceived distance to actual distance), nj is the sample size in the jth study (i.e., the
number of participants), and k is the total number of studies under certain conditions.

2.1. Quantitative Analysis of Egocentric Distance Cognition
2.1.1. Egocentric Extrapersonal Distance

Figures 2 and 3, respectively, summarized the egocentric extrapersonal distance cogni-
tion of real space and VR space. Figures 2 and 3 showed that for a different range of distance,
people’s cognition of distance in real space was more accurate than that in VR space. The
distance cognition accuracy of users in real space and VR space was shown in Table 1.
According to Equation (1), the overall distance cognition accuracy of users in real space
and VR space were 94% and 80%, respectively. In the study of Willemsen et al. [10], it was
found that users’ estimation of egocentric extrapersonal distance was as low as 44% of the
actual distance. It could be seen from previous studies that users tended to underestimate
the egocentric extrapersonal distance cognition in the VE (virtual environment).
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Table 1. Distance cognition accuracy of users in real and VR space.

The Distance
Cognition Accuracy/% Real Space VR Space

<60 —— Willemsen, Thompson, et al.
60~70 —— Kelly, et al.
70~75 —— Piryankova, Plumert, et al.

75~80 Plumert, Ziemer, et al. Jones, Ziemer, Steinicke,
Sahm, Messing, Durgin, et al.

80~85 —— Iosa, Nguyen, Jones, et al.
85~90 —— Mohler, et al.
90~95 Thompson, Willemsen, et al. Ahmed, Kunz, et al.

95~100 Wu, Ahmed, Steinicke, Sahm, Sinai,
Jones, Messing, Durgin, et al. Takahashi, et al.

100~110 Fukusima, Piryankova, et al. Lin, et al.

2.1.2. Egocentric Peripersonal Distance

Relevant studies showed that egocentric peripersonal distance cognition was more
accurate than egocentric extrapersonal distance cognition in both real space and VR space.
Naceri et al. [11] showed that it was easier and more accurate for users to perform inter-
action tasks in the near space of VR space. Armbruster et al. [12] found that users could
identify objects in the correct order when performing interaction tasks in the near space
of VR space, and the error rate was very small when performing pointing tasks. The
egocentric peripersonal distance cognition difference in VR space was shown in Figure 4.
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2.2. Research of Egocentric Distance Cognition

There were relatively few studies on the exocentric distance cognition. Nikolić et al. [13]
and Joe et al. [14] showed that users’ exocentric distances cognition in real space was
accurate, but they tended to underestimate in VR space. The research of Gralak [15]
showed that users’ exocentric distances cognition was overestimated in both real space
and VR space. Li [16] conducted two experiments to observe the effect of a larger GFOV
(geometric field of view) on the accuracy of distance judgment. In the first experiment,
HMD (Head-Mounted Display) with limited GFOV was used to find any overestimation of
distance cognition. The second experiment found that distance cognition was more accurate
through extended GFOV. In the experiment of Lin et al. [17,18], perceptual matching task
was used to analyze and evaluate distance cognition in VR and AR space. They found that
in VR and AR space, users’ overall distance cognition accuracy was only 80% and 84% of
the actual distance, respectively.

2.3. Research of Egocentric Distance Cognition

In VR space, users’ distance cognition is mainly characterized by underestimation.
Such wrong judgment of distance will directly affect the interaction efficiency of VR space.
Therefore, scholars at home and abroad have studied the causes of this phenomenon and
summarized them as follows:

2.3.1. Report Method

Some scholars believed that the participants adopted different reporting methods
when performing distance cognition tasks, resulting in inaccurate data. The experimental
results of Malbos et al. [19] showed that perceptual matching method was more accurate
than verbal reporting method in distance cognition. Makaremi et al. [20] evaluated the
impact of blind throwing and blind walking in peripersonal distance cognition. Willem-
sen et al. [21] compared the difference in distance cognition between blind walking and
triangulation walking. The overall research showed that perceptual matching and vi-
sual orientation methods were more effective than verbal reporting methods, which was
consistent with the conclusion reached by Marsh et al. [22] in real space.
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2.3.2. Quality of Computer Graphics

Another factor affecting distance cognition accuracy is the quality of computer graph-
ics in the VE. Cardoso et al. [23] emphasized the importance of creating an accurate VE for
improving distance perception and stated that the transition between the real environment
and VE should be smooth enough for users to better understand the latter. Yu et al. [24]
found that texture had a significant impact on distance cognition. When users performed
perceptual matching tasks, better texture quality resulted in smaller error in distance estima-
tion. Naceri et al. [11] compared the influence of dark, moderate and bright environmental
brightness in VR space, and found that distance cognition was the most accurate in a bright
room environment, while the tendency to underestimate distance cognition was the most
serious in a dark room.

2.3.3. Technology of Stereoscopic Display

Some scholars attributed the underestimation of distance cognition in VR space to the
limitations of FOV, while others believed it was caused by the mass and inertia of HMD itself.

2.3.4. VR Experience of Participants

Bremers et al. [25] analyzed the importance of training participants who participated
in distance cognition experiments and found that VR experience could indeed improve the
accuracy of distance cognition through experimental comparison. Similarly, the study of
Hong et al. [26] found that in the same space, the participants’ second distance cognition
would be improved by the first experience.

2.3.5. Other Factors

In addition to these main factors, the researchers found other potential factors.
Grabowski et al. [27] found that tactile feedback could effectively improve users’ dis-
tance cognition. Harris et al. [28] studied the influence of viewing the simulated body
(static and dynamic) of oneself in HMD-based VR on measured egocentric extrapersonal
distance. It is worth noting that the influence of each factor is not independent, and is
usually a combination of multiple factors. Hecht et al. [29] studied the effect of graphic
quality on distance cognition in VR without visual feedback and visual clues. They found
that graphic quality had a positive effect on distance perception accuracy when using
verbal reporting, but not when using blind walking.

To sum up, it is difficult for users to accurately interact with the target in Digital Twin
system due to the difference in distance cognition between virtual space and real space,
which is manifested as the virtual interaction location Qp (the location that the user touches
when completing the interaction) cannot coincide with the actual physical location Qa of
each interactive control, as shown in Figure 5.
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The main contribution of this paper is as follows: (1) A asymmetric 2 × 5 × 9 × 5
experiment was designed and carried out, with two kinds of interaction tasks, five kinds
of interaction target widths and nine kinds of spatial locations to estimate the egocentric
peripersonal distance. According to the experimental results, the separate and cross effects
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of interaction task, target width and target location on distance cognition were studied.
(2) The machine learning method was used to construct the matching relationship between
the actual and virtual symmetric positions of the interaction target, so as to realize the
prediction of the virtual interaction location. (3) The optimal model was determined by
comparing and evaluating the prediction models established by multiple linear regression
and stepwise regression.

3. Virtual Interactive Space Distance Cognition Experiment
3.1. Experimental Equipment and Related Tools

HTC Vive Pro, a VR experience device produced by HTC Company (Taoyuan City,
Taiwan), was selected as the experimental device. The viewing angle of the device is
110 degrees, matching the maximum viewing angle of the human eyes. HMD’s monocular
and binocular resolutions are 1440 × 1600 pixels and 2880 × 1200 pixels, respectively. The
refresh rate of stereoscopic display is 90 Hz. The HMD is equipped with 32 photoelectric
sensors for the locator to capture and support the user to rotate and move 360 degrees in
all directions. HTC motion sensing controller (handle) was used as the input device in the
experiment. The handle is equipped with 24 photoelectric sensors for location. Users can
trigger interactive events by pressing the trigger button below the handle. Figure 6 shows
the HTC Vive’s devices.
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Figure 6. HTC Vive Pro device.

The experiment set up five egocentric peripersonal distance interaction tasks of
50 cm, 75 cm, 100 cm, 125 cm and 150 cm. In the VR system, the participants interacted
with the target objects in different distance planes through rays, and the ray lengths were
set to 30 cm, 50 cm, 70 cm, 90 cm and 110 cm, respectively. To provide a similar experience
to real space, five light hollow sticks of the same length as the rays provided in the VR
system were used and fastened to the gamepad. To make the mass difference between the
five sticks small enough that it did not affect the participants’ interaction and hardware
performance, the researchers carefully selected the materials of the sticks. The end of the
stick is equipped with a reflection mark for location. In the experiment, Microsoft Kinect 2.0
(SN: WA 98052-6399) motion capture device (as shown in Figure 7) was used to identify the
reflection mark attached to the end of the stick, and the corresponding location data was
tracked and recorded at the speed of 120 frames per second.
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3.2. VR System and Experiment Participants

The VR system was developed by the UE4 platform, and the experimental platform
was built by HTC Vive Pro. The participants used the matching HMD and gamepad input
devices to interact with the VR system. According to the “Research Report on VR User
Behavior in China” released in 2016, most VR system users are between 20 and 40 years
old. Therefore, this experiment selected 10 graduate students (six male and four female)
with VR system development or play experience. The average age of the participants is
24.6 years old. The SD (Standard Deviation) is 1.35, and all of them are right-handed. The
visual function of the participants is normal or normal after correction, and no symptoms
of 3D vertigo appeared during the VR experience.

3.3. Experimental Scheme Design

In this experiment, a 2× 5× 9× 5 repeated measurement design was adopted. A total
of two interaction tasks (pointing task and placing task), five interactive target widths (five
spheres with diameters of 2 cm, 4 cm, 6 cm, 8 cm and 10 cm) and nine spatial locations were
set, respectively, to estimate five egocentric peripersonal distances (as shown in Figure 8).
The pointing task required the participants to click the random target spheres in turn, and
before each pointing task, they needed to click the initial location (S), which was set 25 cm
from the viewpoint. The placing task required the participants to place the target sphere at
the initial location in turn. Each participant performed 450 non-repetitive interaction tasks,
including 225 pointing tasks and 225 placing tasks.
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Figure 8. Nine spatial locations of the interactive target at each egocentric distance.

The experiment uses Fitts law to determine the difficulty of the user interaction task.
Fitts law was proposed by Paul M. Fitts [30]. He studied the movement rule, movement
range, task time and task accuracy of users in the process of interaction. It was found that
the time consumed by users to move any point to the target center in the interaction process
was related to the distance from the point to the target center and the width of the target.
The distance is proportional to time, while the target width is inversely proportional to
time. The Equation is expressed as follows:

TM = a + b× ID, (2)

ID = log2(
A
W

+ 1), (3)

where a and b are constant terms, TM is the task time of the user from the initial location to
the target location, ID is the difficulty coefficient, A is the movement amplitude, and W is
the interactive target width.

To ensure the same difficulty coefficient of participants performing interaction tasks
at different distances, five difficulty coefficients (ID) were set according to five different
interactive target widths, and the interactive target widths (sphere diameters) at differ-
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ent distances were modified according to the difficulty coefficient Equation of Fitts law
(as shown in Equation (3)). The relevant parameter values are shown in Table 2.

Table 2. The five task difficulty coefficients corresponding to the movement amplitude and target
width values.

ID A/cm W/cm

3.755

25 2
50 4
75 6
100 8
125 10

2.858

25 4
50 8
75 12
100 16
125 20

2.369

25 6
50 12
75 18
100 24
125 30

2.044

25 8
50 16
75 24
100 32
125 40

1.807

25 10
50 20
75 30
100 40
125 50

3.4. Experimental Environment Layout

The experiment was carried out in the VR laboratory with no other interference factors
and good lighting. The VE was set to free mode according to the room settings in Steam
VR, and the size of the VE was delimited in a 3 m × 4 m rectangular area, with adjustable
height chairs placed in the middle of the area. After wearing HTC Vive Pro, the participants
sat on a chair and adjusted the seat to achieve the specified HMD eye height. HMD eye
height was 115 cm for males and females at the 50th percentile according to the sitting
standard of the adult human body in China. The Kinect 2.0 motion capture device was
hung directly above the viewpoint location (O) to record the spatial location of the markers
fixed at the end of the stick when the participants performed interaction tasks. The specific
layout of the VR laboratory is shown in Figure 9.

The participants were immersed into the VR experimental system by wearing the
HMD device, and the space inside the system was set as a rectangular area with a size of
3 m × 4 m. Figure 10 shows the location of the interactive target in the VR experimental
system, and the view location (O) in the figure is 115 cm above the center of the rectangular
area. Each interactive target was placed in the optimal eye rotation zone according to
the spatial location shown in Figure 8 (the rotation amplitude of the eye was determined
to be 60◦) to determine the spacing between each interactive target. A spatial Cartesian
coordinate system was established by taking the viewpoint’s landing point (G) on the floor
as the origin of coordinates, and the visual direction of the participant was the positive
direction of x-axis, the right direction of the participant was the positive direction of y-axis,
and the vertical direction of z-axis. The spatial location of each interactive target in the VR
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system could be obtained, namely Qa = (x, y, z). Table 3 shows the coordinate values of Qa
for five different egocentric distances.
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Table 3. Coordinate values of Qa for five different egocentric distances.

Qa/cm

50 cm 75 cm 100 cm 125 cm 150 cm

x y z x y z x y z x y z x y z

50 −20 135 75 −30 145 100 −40 155 125 −50 165 150 −60 175
50 0 135 75 0 145 100 0 155 125 0 165 150 0 175
50 20 135 75 30 145 100 40 155 125 50 165 150 60 175
50 20 115 75 30 115 100 40 115 125 50 115 150 60 115
50 0 115 75 0 115 100 0 115 125 0 115 150 0 115
50 −20 115 75 −30 115 100 −40 115 125 −50 115 150 −60 115
50 −20 95 75 −30 85 100 −40 75 125 −50 65 150 −60 55
50 0 95 75 0 85 100 0 75 125 0 65 150 0 55
50 20 95 75 30 85 100 40 75 125 50 65 150 60 55

3.5. Experimental Process

First, the researchers described the tasks and procedures to the participant through
verbal descriptions and demonstrations. Then, the participant wore relevant equipment
and entered the test module in the VR system to complete the simulation experiment. After
the participants were familiar with the task and process of the experiment, they entered the
experimental stage formally.

The experiment was divided into two stages. The first stage was the pointing task.
After adjusting the sitting location and viewpoint location, the participant selected the
random spherical interactive target in a cyclic sequence, from initial location to spherical
interactive target to initial location, by pressing the trigger button of the handle. The
spherical interactive target appeared only once in a certain location, disappeared after
being clicked, and then appeared in another location, with a total of 45 spatial locations
(as shown in Table 3). The pointing task stage was divided into five parts according to
the value of ID, so 45 pointing tasks that needed to be performed under a specific ID, were
counted as a part. Participants needed to rest 30–60 s for each part. Participants were given
a 5-min rest after completing the first phase of the experiment, followed by a second phase
of the experiment. The second stage was the placing task, in which the participants needed
to place the target object at the initial location in 45 random spatial locations successively.
The experimental process was similar to the pointing task stage. It took about 70 min for
each participant to complete 225 pointing tasks and 225 placing tasks. Figure 11 shows a
flow chart of the experiment.
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3.6. Analysis of the Experimental Results
3.6.1. The Independent Variable

The independent variables of this experiment included the difficulty coefficient ID
(determined by controlling the width of the interaction target W), the actual value of the
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egocentric distance Da, and the spatial location of the interaction target Qa (xa, ya, za).
xa = Da, plus or minus ya value represents the spatial location relative to the right and left of
the participant, and za value represents the height of the spatial location relative to the ground.

3.6.2. The Dependent Variable

The dependent variable in the experiment was the spatial location of the marker when
the participant completed each interaction task in the VR experimental space, namely the
virtual interactive location Qp (xp, yp, yp). According to the value of xp, the estimated value Dp
of egocentric distance could be obtained, and the accuracy E and marking error S of egocentric
distance cognition could be, respectively, calculated from Equations (4) and (5). E is used to
indicate the closeness between the estimated value and the actual value, and S is used to
judge whether distance cognition tends to overestimate (S is positive) or underestimate
(S is negative).

E = 1−
∣∣∣∣Dp − Da

Da

∣∣∣∣, (4)

S =
Dp

Da
− 1, (5)

3.6.3. Cognitive Characteristics of Egocentric Peripersonal Distance

The experimental results showed that, when the participants performed the pointing
task, the distance at 50 cm, 75 cm, 100 cm, 125 cm and 150 cm, the overall estimated
values Dp were 49.30 cm (SD = 0.51), 73.29 cm (SD = 1.05), 97.28 cm (SD = 1.23), 120.37 cm
(SD = 1.86) and 141.51 cm (SD = 3.94), respectively. The accuracy E calculated by Equa-
tion (3) on the corresponding distance was 0.985 (SD = 0.010), 0.977 (SD = 0.014), 0.973
(SD = 0.012), 0.963 (SD = 0.015) and 0.943 (SD = 0.026), respectively. While the partic-
ipants performed the placing task, the overall estimated values of the five egocentric
distances were 49.51 cm (SD = 0.44), 73.73 cm (SD = 1.34), 98.81 cm (SD = 1.32), 121.91
(SD = 4.18) and 146.25 cm (SD = 4.13), respectively. The corresponding accuracy E was 0.990
(SD = 0.009), 0.983 (SD = 0.018), 0.988 (SD = 0.013), 0.978 (SD = 0.033) and 0.945
(SD = 0.28), respectively. Similarly, the tendency to underestimate or overestimate distance
cognition was judged according to the marking error S of the participants when performing
different interaction tasks. The marking errors of the participants in the pointing task
were −0.014 (SD = 0.010), −0.023 (SD = 0.014), −0.027 (SD = 0.012), −0.037 (SD = 0.015),
−0.057 (SD = 0.026), respectively. S in the placing task were −0.010 (SD = 0.009), −0.017
(SD = 0.018), −0.012 (SD = 0.013), −0.025 (SD = 0.033), −0.025 (SD = 0.028).

Figures 12–14, respectively, show the comparison of Dp, E and S at different distances
of the participants when performing the pointing task and the placing task. As can be seen
from the figures, participants tend to underestimate the egocentric peripersonal distance
no matter what kind of interaction task they perform, but the degree of underestimation
is not serious. The E values in the placing task were better than those in the pointing
task, indicating that the users had more accurate cognition of the egocentric peripersonal
distance when performing the placing task. According to the observation, no matter what
kind of interaction task the participants performed, E value showed a downward trend
with the increase in egocentric distance, indicating that the cognition and estimation ability
of egocentric peripersonal distance decreased with the increase in distance, and users could
more accurately and easily handle the interaction task close to them.

To study the influence of the interaction task, task difficulty coefficient (target width)
and target location on the egocentric peripersonal distance cognition accuracy E and
marking error S, the following actions were taken. The pointing task and placing task
were set as J1 and J2, the five difficulty coefficients were set as ID1 to ID5, and the nine
target locations were set as Q1 to Q9 in the order of top left, top, top right, front right,
front, front left, bottom left, bottom, bottom right. The results shown in Tables 4 and 5
obtained by multivariate analysis of variance. The results showed that the difference of
accuracy E (F[1360] = 48.868, p < 0.001) and marking error S (F[1360] = 47.269, p < 0.001)



Symmetry 2022, 14, 2178 13 of 24

between pointing task and placing task was very significant, the difference of accuracy
E (F[4360] = 3.695, p = 0.006) and marking error S (F[4360] = 3.803, p = 0.005) between
difficulty coefficient was significant, and the difference of accuracy E (F[8360] = 3.070,
p = 0.002) and marking error S (F[8360] = 3.112, p = 0.002) between target location was also
significant. Therefore, the interaction task, difficulty coefficient and target location are all
important factors affecting the egocentric peripersonal distance cognition accuracy and
marking error, and interaction task is the primary factor affecting the difference.
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Table 4. Results of multivariate analysis of variance of E.

Variate Class III Sum of
Squares

Degrees of
Freedom

The Mean
Square F Significant

interaction task 0.022 1 0.022 48.868 <0.001
difficulty coefficient 0.007 4 0.002 3.695 0.006

target location 0.011 8 0.001 3.070 0.002
interaction task &

difficulty coefficient 0.015 4 0.004 8.601 <0.001

interaction task &
target location 0.005 8 0.001 1.367 0.209

difficulty coefficient &
target location 0.010 32 0.000 0.704 0.886

target location & difficulty
coefficient & target location 0.012 32 0.000 0.825 0.740

Table 5. Results of multivariate analysis of variance of S.

Variate Class III Sum of
Squares

Degrees of
Freedom

The Mean
Square F Significant

interaction task 0.021 1 0.021 47.269 <0.001
difficulty coefficient 0.007 4 0.002 3.803 0.005

target location 0.011 8 0.001 3.112 0.002
interaction task and
difficulty coefficient 0.016 4 0.004 8.722 <0.001

interaction task and
target location 0.005 8 0.001 1.330 0.227

difficulty coefficient and
target location 0.011 32 0.000 0.734 0.855

target location & difficulty
coefficient & target location 0.012 32 0.000 0.806 0.767

The experiment also considered the influence of interaction between the interac-
tion task, difficulty coefficient and target location on E (F[4360] = 8.601, p < 0.001) and
S (F[4360] = 8.772, p < 0.001). Data analysis showed that the interaction between the in-
teraction task and difficulty coefficient had an extremely significant influence on E and S.
However, the interaction between the interaction task and target location (F[8360] = 1.367,
p = 0.209; F[8360] = 1.330, p = 0.227), difficulty coefficient and target location
(F[32,360] = 0.704, p = 0.886; F[32,360] = 0.734, p = 0.855) and the interaction among the
three (F[32,360] = 0.825, p = 0.740; F[32,360] = 0.806, p = 0.767) had no significant influence
on E and S.

As can be seen from Figure 15a,b, when the difficulty coefficient ID is at the first
and second levels, i.e., ID = 3.755 and ID = 2.858, E and S values of users performing
different interaction tasks have little difference. As ID decreases gradually, when ID = 2.369,
ID = 2.044 and ID = 1.807, E and S values show more obvious differences. It can be seen that
the influence of interaction tasks on egocentric peripersonal distance cognition weakens
with the increase in ID. As can be seen from Figure 15c,d, only at the first target location,
i.e., at the upper left corner, there is no significant difference in E and S values, while at
other locations there are significant differences. However, the interaction between difficulty
coefficient and target location in Figure 15e,f shows no obvious trend or difference in the
influence on E and S.
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Through experiments, it was found that in the VR environment provided by HMD,
users’ overall accuracy of egocentric peripersonal distance reached 97.53%, and they all
tended to underestimate the distance. Different from the previous verbal reporting method,
perceptual matching method and blind walking matching method, this experiment directly
contacted the target object by setting the pointing task and placing task, which not only
helped users to evaluate spatial perception ability, but also helped to evaluate users to
improve their decision-making ability according to the visual information and the pos-
sible differences among the nine target locations. When studying the interaction of the
interaction task, difficulty coefficient (target size) and target location, it was found that
interaction task, difficulty coefficient and spatial location all had significant effects on ego-
centric peripersonal distance cognition, and the interaction task was the most significant
influencing factor.

4. Virtual Interaction Location Prediction Model Based on Linear Regression Analysis

First, according to the setting of experimental independent variables, the value of
independent variables of regression analysis was determined; then, the experimental
data were screened and processed, and the corresponding dependent variable values
were counted after the abnormal data were eliminated. Then the IBM SPSS Statistics 25.0
software was used for linear regression analysis of the data of virtual interaction location,
and the prediction model of virtual interaction location was established. Finally, different
prediction models were compared and evaluated.

4.1. Data Processing

Considering that interaction task, difficulty coefficient (target size) and target location
all have a significant influence on E and S. The interaction task J, the target size W, and the
spatial location of the interaction target Qa (xa, ya, za) were taken as independent variables,
while the virtual interaction location Qp (xp, yp, zp) was taken as dependent variables.
J was used as a classification variable to classify interaction tasks. When J = 0, it refers to the
pointing task, and when J = 1, it refers to the placing task. Each participant completed the
experiment consisting of 450 different combinations of independent variables under these two
tasks, so there were 450 independent variable samples in total. Each sample corresponds to a
dependent variable Qp. There were 10 participants in the experiment, so 10 measurements had
been obtained for each Qp. Taking the average value of 10 measurements as the dependent
variable, a total of 450 cases of corresponding Qp were obtained.

In order to facilitate the calculation and fitting of the model, the three-dimensional
variables Qa and Qp were divided into one-dimensional variables, after which the inde-
pendent variables were subdivided into J, W, xa, ya and za, and the dependent variables
were subdivided into xp, yp and zp. Therefore, the corresponding prediction models were
obtained by regression analysis of xp, yp and zp.

4.2. Data Analysis

SPSS software was used for a collinearity test, linear regression analysis and back
test. First, the VIF (variance inflation factor) was calculated according to the correlation
coefficient between independent variables and Equation (6). VIF was an indicator used to
judge whether independent variables were collinear. If VIF value was greater than 10, it
could be considered that there was collinearity among independent variables.

VIF =
1

1− r2 , (6)

where r is the correlation coefficient between independent variables.
In linear regression analysis, the coefficient of determination R2, RMSE (root mean

square error, as shown in Equation (7) and rRMSE (relative root mean square error, as
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shown in Equation (8)) were selected as the evaluation indexes of the prediction accuracy
of the fitted regression model.

RMSE =

√
1
n∑n

i=1

(
Si − S′i

)2, (7)

rRMSE =

√
1
n∑n

i=1

(
Si − S′i

Si

)2

, (8)

where n represents the number of samples, Si represents the measured value in the experi-
ment, and S′i represents the predicted value of the regression model. Generally speaking,
the larger R2 and the smaller RMSE and rRMSE indicate the better regression effect of the
experimental data involved in the analysis.

In order to test the significance of each parameter in the regression model, the p-value
method was used in this paper, and the evaluation criteria are as follows:

p ≤ 0.001
0.001 < p ≤ 0.01
0.01 < p ≤ 0.05
p > 0.05

, (9)

When p ≤ 0.001, the difference between the parameters is very significant. When
0.001 < p ≤ 0.01, the difference between the parameters is highly significant. When
0.01 < p ≤ 0.05, it means that there are significant differences among the parameters involved
in the analysis. When p > 0.05, it indicates that there is no significant difference between the
data. Under the condition of p < 0.05, one-way analysis of variance was performed on the
regression models to evaluate the differences between different regression models [31].

4.3. Construction of Virtual Interaction Location Prediction Regression Model

In order to build the matching relationship between the actual spatial location of the
interaction target and the virtual interaction location in VR space, a regression model for
predicting the virtual interaction location was established. Firstly, the basic analysis of the
sample data was carried out to master the sample characteristics. Then the collinearity
analysis of the respective variables was carried out to determine whether the respective
variables could be used to establish the regression model. Then, multiple linear regression
analysis and stepwise regression analysis were carried out on the experimental data, and
the corresponding regression model was established. Finally, the regression models were
compared and analyzed.

4.3.1. Sample Characteristics

The data of 450 groups of samples in an egocentric distance cognition experiment
were analyzed, and the minimum (Min), maximum (Max), Mean (Mean) and standard
deviation (SD) of independent variables and dependent variables were sorted out. The
main characteristic parameters of the sample were shown in Table 6.

Table 6. The main characteristic parameters of the sample.

Sample Type Sample Size Parameter Min Max Mean SD

The independent variable 450

J 0 1 0.5 0.50
W/cm 2 50 18 12.66
xa/cm 50 150 100 35.40
ya/cm −60 60 0 34.68
za/cm 55 175 115 34.68

The dependent variable 450
xp/cm 47.02 149.53 97.20 33.61
yp/cm −59.21 59.72 0.14 33.62
zp/cm 54.68 174.73 114.57 33.63
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4.3.2. Test for Collinearity of Independent Variables

In order to ensure the accuracy of linear regression analysis of sample data, collinearity
test was carried out on the independent variable of J, W, xa, ya and za. The correlation
coefficient r between the five parameters and the variance inflation factor VIF value are
shown in Table 7. It can be found from the table that except for the VIF value between W
and xa, which is 1.818, the VIF values of other independent variables are all close to zero,
which satisfies the condition of VIF < 10, indicating that the collinearity among the five
variables is negligible, so it can be used to establish multiple linear regression models.

Table 7. Correlation coefficient and VIF value of independent variables.

Parameter J W xa ya za

The correlation coefficient

J 1 0 0 0 0
W 0 1 −0.671 0 0
xa 0 −0.671 1 0 0
ya 0 0 0 1 0
ya 0 0 0 0 1

VIF

J — 1.000 1.000 1.000 1.000
W 1.000 — 1.818 1.000 1.000
xa 1.000 1.818 — 1.000 1.000
ya 1.000 1.000 1.000 — 1.000
za 1.000 1.000 1.000 1.000 —

4.3.3. Construction of Multiple Regression Model

Multiple regression models are established with xa, ya and za as single independent
variables or their combination with other variables as independent variables.

For the dependent variable xp, xa need to be taken as a fixed independent variable. When
the regression model is a single independent variable, the model can be written as follows:

xp = θ1 + θ2xa, (10)

When the regression model has two independent variables, there are four equation
forms in the model, as shown below:

xp = θ1 + θ2xa + θ3 J
xp = θ1 + θ2xa + θ3W
xp = θ1 + θ2xa + θ3ya
xp = θ1 + θ2xa + θ3za

, (11)

When the regression model has three independent variables, there are six equation
forms in the model, as shown below:

xp = θ1 + θ2xa + θ3 J + θ4W
xp = θ1 + θ2xa + θ3 J + θ4ya
xp = θ1 + θ2xa + θ3 J + θ4za
xp = θ1 + θ2xa + θ3W + θ4ya
xp = θ1 + θ2xa + θ3W + θ4za
xp = θ1 + θ2xa + θ3ya + θ4za

, (12)

When the regression model has four independent variables, there are four equation
forms in the model, as shown below:

xp = θ1 + θ2xa + θ3 J + θ4W + θ5ya
xp = θ1 + θ2xa + θ3 J + θ4W + θ5za
xp = θ1 + θ2xa + θ3 J + θ4ya + θ5za
xp = θ1 + θ2xa + θ3W + θ4ya + θ5za

, (13)
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When the regression model has five independent variables, the model can be written
as follows:

xp = θ1 + θ2xa + θ3 J + θ4W + θ5y + θ6za, (14)

In the above 16 equation forms, θ1 is a constant term, and θ2 to θ6 are independent
variable coefficients. Similarly, the regression model for the dependent variables yp and zp
also has 16 equation forms. The multiple regression model of xp, yp and zp can be obtained
by using SPSS software, and the results are shown in Tables 8–10.

Table 8. Regression model and evaluation of virtual interaction location xp.

The Model Number The Regression Model R2 RMES/cm rRMSE/%

1-1 2.568 + 0.946xa 0.993 2.751 28.30
1-2 1.723 + 0.946xa + 1.688J 0.994 2.621 26.97
1-3 2.276 + 0.958xa − 0.049W 0.993 2.716 27.94
1-4 2.568 + 0.946xa + 0.006ya 0.993 2.747 28.26
1-5 3.036 + 0.946xa − 0.004za 0.993 2.750 28.29
1-6 1.432 + 0.958xa + 1.688J − 0.049W 0.994 2.583 26.57
1-7 1.723 + 0.946xa + 1.688J + 0.006ya 0.994 2.616 26.91
1-8 2.192 + 0.946xa + 1.688J − 0.004za 0.994 2.620 26.96
1-9 2.276 + 0.958xa − 0.049W + 0.006ya 0.994 2.711 27.89

1-10 2.745 + 0.958xa − 0.049W − 0.004za 0.994 2.715 27.93
1-11 3.036 + 0.946xa + 0.006ya − 0.004za 0.993 2.746 28.25
1-12 1.432 + 0.958xa + 1.688J − 0.049W + 0.006ya 0.994 2.578 26.52
1-13 1.901 + 0.958xa + 1.688J − 0.049W − 0.004za 0.994 2.582 26.56
1-14 2.192 + 0.946xa + 1.688J + 0.006ya − 0.004za 0.994 2.615 26.90
1-15 2.745 + 0.958xa − 0.049W + 0.006ya − 0.004za 0.994 2.711 27.89
1-16 1.901 + 0.958xa + 1.688J − 0.049W + 0.006ya − 0.004za 0.994 2.577 26.51

Table 9. Regression model and evaluation of virtual interaction location yp.

The Model Number The Regression Model R2 RMES/cm rRMSE/%

2-1 0.140 + 0.969ya 0.999 1.0913 12.76
2-2 0.081 + 0.969ya + 0.118J 0.999 1.0908 12.75
2-3 0.050 + 0.969ya + 0.005W 0.999 1.0907 12.75
2-4 −0.181 + 0.969ya + 0.003xa 0.999 1.0865 12.70
2-5 −0.356 + 0.969ya + 0.004za 0.999 1.0822 12.65
2-6 −0.009 + 0.969ya + 0.118J + 0.005W 0.999 1.0903 12.75
2-7 −0.241 + 0.969ya + 0.118J + 0.003xa 0.999 1.0861 12.70
2-8 −0.415 + 0.969ya + 0.118J + 0.004za 0.999 1.0818 12.64
2-9 −0.193 + 0.969ya − 0.002W + 0.004xa 0.999 1.0876 12.72

2-10 −0.445 + 0.969ya + 0.005W + 0.004za 0.999 1.0815 12.65
2-11 −0.677 + 0.969ya + 0.003xa + 0.004za 0.999 1.0774 12.60
2-12 −0.252 + 0.969ya + 0.118J − 0.005W + 0.004xa 0.999 1.0872 12.71
2-13 −0.504 + 0.969ya + 0.118J + 0.005W + 0.004za 0.999 1.0811 12.64
2-14 −0.736 + 0.969ya + 0.118J + 0.003xa + 0.004za 0.999 1.0769 12.59
2-15 −0.688 + 0.969ya − 0.005W + 0.004xa + 0.004za 0.999 1.0784 12.61
2-16 −0.747+ 0.969ya + 0.118J− 0.002W + 0.004xa + 0.004za 0.999 1.0780 12.60
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Table 10. Regression model and evaluation of virtual interaction location zp.

The Model Number The Regression Model R2 RMES/cm rRMSE/%

3-1 3.146 + 0.969za 0.998 1.3499 1.18
3-2 2.894 + 0.969za + 0.504J 0.998 1.3276 1.16
3-3 3.160 + 0.969za − 0.001W 0.998 1.3514 1.18
3-4 3.580 + 0.969za − 0.004xa 0.998 1.3426 1.17
3-5 3.146 + 0.969za + 0.003ya 0.998 1.3480 1.18
3-6 2.908 + 0.969za + 0.504J − 0.001W 0.998 1.3291 1.16
3-7 3.328 + 0.969za + 0.504J − 0.004xa 0.998 1.3201 1.15
3-8 2.894 + 0.969za + 0.504J + 0.03ya 0.998 1.3256 1.16
3-9 3.661 + 0.969za + 0.013W − 0.008xa 0.998 1.3382 1.17

3-10 3.160 + 0.969za − 0.001W + 0.003ya 0.998 1.3495 1.18
3-11 3.580 + 0.969za − 0.004xa + 0.003ya 0.998 1.3407 1.17
3-12 3.409 + 0.969za + 0.504J + 0.013W − 0.008xa 0.998 1.3155 1.15
3-13 2.908 + 0.969za + 0.504J − 0.001W + 0.003ya 0.998 1.3270 1.16
3-14 3.328 + 0.969za + 0.504J − 0.004xa + 0.003ya 0.998 1.3181 1.15
3-15 3.661 + 0.969za + 0.013W − 0.008xa + 0.003ya 0.998 1.3362 1.17
3-16 3.409 + 0.969za + 0.504J + 0.013W − 0.008xa + 0.003ya 0.998 1.3134 1.14

The R value and R2 value of the above model were close to one, indicating that the
fitting degree of the model was very good. The p values of ANOVA results also meet
p ≤ 0.001, indicating that the statistical results have a very significant effect. It can be seen
from the RMES and rRMSE values of the above different regression models:

(1) Among all regression models for xp prediction of virtual interaction location,
regression model 1-16 established with J, W, xa, ya and za as input showed the highest
correlation with xp, and the prediction effect was the best. The R2 of model 1-16 was
0.994. The RMSE and rRMSE were 2.577 cm and 26.51%, respectively. From model 1-2 to
model 1-5, when the independent variables of the model were two, the regression model
(model 1-2) established with xa and J as input quantities showed a good fitting effect
(R2 = 0.994, RMSE = 2.621 cm, rRMSE = 26.97%), indicating that the influence of J on xp was
second only to xa. Models 1-6 to models 1-11 showed that when the independent variables
of the model were three, it could be found that the model with xa, J, and W, as the inputs
(model 1-6) showed a good fitting effect (R2 = 0.994, RMSE = 2.583 cm, rRMSE = 26.57%).
This indicated that the influence of W on xp was better than that of ya and za. However,
when the independent variables of the model were four, as shown in Models 1–12 to 1–15,
the model with xa, J, W and ya as inputs (models 1-12) had a better fitting effect (R2 = 0.994,
RMSE = 2.578cm, rRMSE = 26.52%).

(2) Among all regression models for yp prediction of virtual interaction location,
Model 2-14 showed the optimal correlation with yp and prediction effect (R2 = 0.999,
RMSE = 1.0769 cm, rRMSE = 12.59%). This model had four independent variables ya, J,
xa and za. It was better than model 2-16 with five inputs (R2 = 0.999, RMSE = 1.0780 cm,
rRMSE = 12.60%). According to model 2-2 to model 2-5, when the independent variables
of the regression model were two, the model 2-5 established with ya and za as the input
showed a good fitting effect (R2 = 0.999, RMSE = 1.0822 cm, rRMSE = 12.65%), and the
influence of za on yp was second only to ya. When the independent variables of the model
were three, as shown in model 2-6 to model 2-11, the model 2-11 established by ya, xa, and
za had a better fitting effect (R2 = 0.999, RMSE = 1.0774 cm, rRMSE = 12.60%), and it could
be found that J and W did not have a good positive effect on the establishment of the model.
W even played a negative role in the establishment of regression models.

(3) Among all regression models for zp prediction of virtual interaction location, regres-
sion model 3-16 established with J, W, xa, ya and za as input showed the highest correlation
with zp and the best fitting effect (R2 = 0.998, RMSE = 1.3134 cm, rRMSE = 1.14%). It showed
that the model with five independent variables as inputs had the best prediction effect on zp.
At the same time, by observing and comparing the regression model 3-2 to 3-5 established
with two independent variables as inputs, it could be found that the model 3-2 estab-
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lished with za and J as inputs showed a better fitting effect (R2 = 0.998, RMSE = 1.3276 cm,
rRMSE = 1.16%), similar to the regression model of xp. In the regression model of zp pre-
diction, J was the influencing factor second only to za. When three independent variables
were selected to establish the regression model, the model 3-7 established by za, J and xa
showed a good fitting effect (R2 = 0.998, RMSE = 1.3201 cm, rRMSE = 1.15%). By comparing
model 3-12 to model 3-15, it could be found that when the independent variables of the
regression model were four, the fitting effect of model 3-12 established with za, J, W and xa
as inputs was better (R2 = 0.998, RMSE = 1.3155 cm, rRMSE = 1.15%).

Therefore, multiple linear regression models 1-16, 2-14 and 3-16 were selected as the
prediction models of virtual interaction locations xp, yp, and zp, respectively, and the results
were shown in Equation (15):

xp = 1.901 + 0.958xa + 1.688J − 0.049W + 0.006ya − 0.004za
yp = −0.736 + 0.969ya + 0.118J + 0.003xa + 0.004za
zp = 3.409 + 0.969za + 0.504J + 0.013W − 0.008xa + 0.003ya

, (15)

where J represents the interaction task, and the values of J are zero and one; when J = 0, it
is the pointing task; when J = 1, it is the placement task; W is the width of the interaction
target; xa, ya, and za are the x-axis, y-axis and z-axis coordinate values corresponding to
the actual spatial location coordinate Qa of the interaction target in the three-dimensional
Cartesian coordinate system with respect to the G point.

4.3.4. Construction of Stepwise Regression Model

In the establishment of a multiple linear regression model, there were many inde-
pendent variables that had no significant influence on the dependent variables (p > 0.05
for independent variables). In order to exclude these independent variables, the stepwise
linear regression method was used to establish a regression model for the prediction of
virtual interactive location, taking J, W, xa, ya and za as independent variables and xp, yp
and zp as dependent variables. The model is shown in Equation (16):

xp = 1.432 + 0.958xa + 1.688J − 0.049W
yp = −0.677 + 0.969ya + 0.003xa + 0.004za
zp = 3.409 + 0.969za + 0.504J + 0.013W − 0.008xa

, (16)

According to Equation (16), the regression model of xp abandoned ya and za vari-
ables and adopted models 1-6 in Table 8 (R2 = 0.994, RMSE = 2.583 cm, rRMSE = 26.57%).
In the regression model of yp, J and W were discarded, and model 2-11 in Table 9 was
used (R2 = 0.999, RMSE = 1.0774 cm, rRMSE = 12.60%). Only one variable ya was dis-
carded in the regression model of zp, and model 3-12 in Table 10 was used (R2 = 0.998,
RMSE = 1.3155 cm, rRMSE = 1.15%). Figures 16–18, respectively, show the scatter plots of
the model predicted values and the actual measured values of xp, yp and zp. The results
showed that the established model has good stability and predictive ability. Although the
R2, RMSE and rRMSE values in the stepwise linear regression model are slightly inferior
compared with the previously selected model, the model can be relatively simple while
ensuring the prediction accuracy, and no significant factors are required to participate in
the calculation, which reduces the workload of the model.
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5. Conclusions

Aimed at the difference between the actual and virtual symmetric locations of the
interaction targets in Digital Twin system, this paper designed and carried out an egocentric
peripersonal distance cognition experiment. The experiment adopted a 2 × 5 × 9 × 5
repeated measurement design, and set two interaction tasks, five interaction target widths
and nine spatial locations to estimate the five egocentric peripersonal distances. Through
the analysis of the experimental data, it was found that:

(1) In the VR environment provided by HMD, the accuracy of egocentric peripersonal
distance cognition was 97.53% on the whole, and all the users tended to underestimate the distance.

(2) Whether users performed pointing tasks or placing tasks in VR space, they tended
to underestimate the egocentric peripersonal distance, but the degree of underestimatation
was not serious.

(3) Users’ egocentric peripersonal distance cognition was more accurate when per-
forming placement tasks.

(4) Users’ egocentric peripersonal distance estimation ability decreased with the increase
in the distance, and the user was more likely to deal with the interaction tasks close to him.

(5) The interaction task, difficulty coefficient (target width) and target location were
all important factors affecting the cognitive accuracy and labeling error of egocentric
peripersonal distance. Among them, the interaction task had the most significant effect,
but the significance would weaken with the increase in difficulty coefficient ID.

Based on the experimental data, with the interaction task J, the target width W, xa, ya
and za in the actual spatial location of the interaction target Qa as independent variables,
and xp, yp and zp in the virtual interaction location Qp as dependent variables, the prediction
model was established and compared by multiple linear regression and stepwise regression
methods. Finally, a prediction model with a good fitting effect was determined. From the
model, it was found that the independent variables J, W and xa had a significant impact on
xp, while xa, ya and za had a significant impact on yp, and zp was affected by J, W, xa and za.

The constraints of the prediction model proposed in this paper are limited to the
interaction task, target width and the actual spatial location, and the interaction task only
involves the pointing task and placing task. However, the interaction tasks and constraints
in a VR system are diverse. Therefore, in future research, more constraints will be added,
such as target color and target transparency, and the types of interaction tasks will be
expanded, such as picking task and transmitting task.
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