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Abstract: A local bifurcation analysis of a high-dimensional dynamical system dx
dt = f (x) is per-

formed using a good deformation of the polynomial mapping P : Cn → Cn. This theory is used
to construct geometric aspects of the resolution of multiple zeros of the polynomial vector field
P(x). Asymptotic bifurcation rules are derived from Grothendieck’s theory of residuals. Following
the Coxeter–Dynkin classification, the singularity graph is constructed. A detailed study of three
types of multidimensional mappings with a large symmetry group has been carried out, namely:
1. A linear singularity (behaves similarly to a one-dimensional complex analysis theory); 2. The lattice
singularity (generalized the linear and resembling regular crystal growth models); 3. The fan-shaped
singularity (can be split radially like nuclear fission and fusion models).
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1. Introduction

The local structure of solution in high dimensional systems of a differential equation
x′ = f (x) was studied, especially near one of its equilibrium points c. Suppose that
mapping f (x) is smooth enough in neighborhood of c, f(c) = 0. One can consider instead
of f (x) the polynomial system x′ = P(x) as approximation near x = c. Here, P(x) =
[p1(x), . . . , pn(x)], pk(x) = ∑|α|≤N ak,αxα, α is multindex, xα = xα1

1 · · · x
αn
n and k = 1, . . . , n.

Our goal is to introduce properties of polynomial dynamical systems x′ = P(ε, x)
depending on the bifurcation parameter ε. When the parameter is changed, the phase
portrait, in many cases, can be slightly deformed without changing its qualitative (topo-
logical) features. However, sometimes, the dynamics can change significantly, causing a
qualitative change in the phase portrait. Bifurcation theory [1] studies these qualitative
changes in the phase portrait, i.e., the appearance or disappearance of other equilibrium as
new bifurcation points, equilibrium orbits, or more complex objects.

The present article considers a particular type of bifurcation. Namely, the bifurcations
are influenced here by a good deformation at a singular point.

Fix a point c ∈ Cn as a zero of multiplicity m ≥ 2 of a polynomial vector map
P(x) : Cn → Cn. This means that P(c) = 0 and P is non vanishing in some punctured
neighborhood of c. We can also declare that, for these zeros, det DP(c) = 0 holds. Here,
and in the sequel, DP(x) denotes the Jacobian matrix of a map P computed at the point x.

Definition 1 (cf. [2]). A one-parameter family of polynomial maps P : [0, εo]× Cn → Cn is
called a small deformation of P near c if P0 ≡ P and for any small ε > 0, there are roots of Pε(x)
sufficiently close to c.

If, in addition, all roots of Pε near c with small enough ε > 0 are simple, then the deformation
is called good.

Example 1. Consider mapping P(x) = [x2
2 − x1x2, x1x2 − x3

1] taken from Example 3 on page 85
in [3]. Let us construct small deformation P near 0 as Pε = [x2

2 − εx2 − x1x2, x1x2 − x3
1 + ε2x2

1].
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This deformation is not good. The point (−ε, 0) is a double root of Pε(x), and therefore, the last
item in Definition 1 is not fulfilled. In contrast, the small deformation P near 0 taken in the form
Pε(x) = [x2

2 − (2ε + 3ε2)x2 − x1x2, x1x2 − x3
1 + ε2x2

1] is good. There are five zeroes of Pε which
lie near the origin, namely, (0, 0), (0, 2ε + 3ε2), (ε, 0), (−ε, 0), (−2ε, 3ε2),. They are all simple
(regular) roots of Pε(x) = 0. Using the Newton polygon technique, we obtain the multiplicity of the
origin equal to 5, obtained in [3]. Singularity at zero is type D5 in the Dynkin diagram classification.

If deformation Pε(x) of the polynomial map P(x) has exactly m simple zeros ci,
i = 1, . . . , m all lie in a small neighborhood of the point c (for sufficiently small ε), then
Pε(x) is evidently good. Generally speaking, it is not easy to construct explicitly good
deformations [4]. The foremost steps in this direction were taken, which the paper ad-
dressed naturally.

The main goal of this contribution is threefold:

1. To explain a step-by-step algorithm for a good deformation construction (see Section 2);
2. To establish asymptotic laws of an equilibrium decomposition/collision, based on the

Grothendieck residual formula [5] (see Section 2.7);
3. To investigate the relationship between the so-called Am-singularities (see [3,6] for

a precise definition) and lattice singularities (see Definition 7 in this article and also
Theorem 3).

The multidimensional residual theory makes it possible to introduce new and diverse
local laws and symmetries. The article’s results can further enrich the functionality of
the existing variety of methods for studying the local bifurcations theory of polynomial
vector fields.

The standard theoretical method for studying bifurcation features is the so-called
singularity resolution. Sometimes, it is called desingularization. Upon appropriate transfor-
mation/warping of a given map, a composite singularity [7] decomposed it into a cluster
of simpler ones.

The traditional implementation of a desingularization based on the principles of
miniversal deformations (for example, unfolding related to deformations of the basis of
the local algebra of singularities, see [3,8,9]). A typical singularity resolution is a “blow-
up” of the singularity, where the singular point is replaced by an n-sphere/projective
space [4,10–13].

This article proposes an approach to determining the type of a singular point through
the geometry of a bifurcation. We employ a method of good deformations (one-parameter
deformations such that simple singularities merge to one multiple, and vice versa, see [2]).
We build scenarios for desingularization or assembly singularity back [8]. A local bifurca-
tion diagram shows a value “visited” roots of the perturbed polynomial map [9].

This article is explanatory and is mainly devoted to the geometric aspects of desingu-
larization and local bifurcation, as the primary purpose of this article. In particular, restoring
the type of singularity by the known properties of its bifurcation is solved for homogeneous
polynomial maps in Section 4.

We are refining the goals, so we will focus on explaining the results and the main ideas
and refer to the cited documents for proof and technical details.

2. Step-by-Step Construction of a Good Deformation in the Sense of Griffiths
and Harris

Many authors understand small deformations of polynomial map P(x) : Cn → Cn as
small deformations Pε(x), P0(x) ≡ P(x) of the coefficients of their Taylor expansions in the
vicinity of a singular point x∗, P(x∗) = 0.

Recall that singular point x∗ of a vector field P(x) is simple if the Jacobi matrix has
a nondegenerate determinant. Otherwise, the definition of the type of feature becomes
more difficult.
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If small deformations could break the singularity P(x∗) = 0 of a given vector field
P(x) in the vicinity of the singular point x∗ only into simple ones, then such a deformation
is recognized as good.

As a rule, a cluster of simpler singularities arises at good deformations near a critical
point x∗.

It turns out that splitting singularities with good deformations generates asymptotic
laws in their bifurcations that cannot be broken. Revealing these laws and symmetries is
the main task.

2.1. Good Deformations and Associated Geometric Graphs

The existence of good deformations can be easily established using Sard’s Theorem
(cf. [2]). The following observation is useful: if Pε is a deformation near c decomposing
c into several roots, then the same Pε can be viewed as a deformation gluing these roots
into c when ε→ 0. Moreover, one can indicate the pairs of roots of Pε, which can coalesce
(independently of other roots), as well as those that cannot merge. These observations lead
to a more formal description.

Definition 2. Let Pε : [0, εo]× V → Cn be a deformation near c (in general, not good). Take a
small positive ε and let x1 = x1(ε), . . . , xn = xn(ε) be all the zeros of Pε close to c, P(c) = 0. We
say that xi(ε) and xj(ε) are incident if there exists a deformation Rε,δ : [0, δ]×V → Cn; V is a
small ball near c, such that:

(i) Pε(x) = Rε,0(x);
(ii) all singularities of Pε close to c and different from xi(ε) and xj(ε)) are the roots of Rε,δ for all

δ ∈ [0, ε];
(iii) xi(ε) and xj(ε) coalesce into x∗(ε) as δ→ 0

Given a good deformation Pε near c, a geometric graph G(P) is defined as follows:

(a) for small ε > 0, the vertices of G(P) coincide with the singularities of Pε;
(b) an edge connects two vertices if the corresponding singularities are incident.

The incidence relation allows for associating with any good deformation so-called
geometric graph [14] as a generalization of a bifurcation analysis [1]. Geometric graphs are
an effective way of representing the nature of the singularity resolution of a one-parameter
family of differential equations.

Example 2. Consider three polynomial maps P, S, T : R2 → R2 for which the origin is a
singularity (of multiplicity four): (a) P(x, y) = (−y2, x2), (b) S(x, y) = (−y, x4), and (c)
T(x, y) = (x2 − y2, 2xy). Take the good deformations: Pε(x, y) = (x2 − εx, y2 − εy) for (a),

Sε(x, y) =
(
− y, ∏3

j=0(x− εj)
)

for (b), and Tε(x, y) =
(

x2 − y2 + εx, 2xy− εy
)

for (c). The
geometric graphs associated with (a), (b) and (c), respectively, are given in Figure 1. Different
geometric structures of these graphs reflect different possible scenarios for decompositions/gluing of
its singularities [10].

Case (a): Let us show the possibility of gluing singularities A with B, B with C, C with D, and
D with A. ( singularities A ∼ B ∼ C ∼ D ∼ A are cyclically incidents):

A ∼ B Rε,δ(x, y) =
(
δy− y2, x2 − εx

)
B ∼ C Rε,δ(x, y) =

(
εy− y2, x2 − δx

) , 0 ≤ δ ≤ ε

However, by Theorem 3, the equilibrium A is not incident with C, and equilibrium B can not
be glued with D (see Figure 2).

Case (b): Clearly, A ∼ B ∼ C ∼ D but D and A, A and C, B and D are not incident.
Case (c): Each vertex B, C, D of the geometric graph in (c) is incident only with A, while

they cannot be incident with each other (see Theorem 3). The small deformation Rε,δ(x, y) =(
x2 − y2 − δy, 2xy− εx

)
for δ ∈ [0, ε] showed that A is incident to B in case (c) (see Figure 2).
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Figure 1. Geometric graphs for resolution singularities in Example 2, cases (a–c).

Figure 2. Schema of incident vertices on a geometric graph in Example 2 cases (a–c).

Remark 1. Let Pε be a good deformation of P near c. Then:

(a) two geometric graphs corresponding to different small positive values of ε are isomorphic;
(b) The graph G(Pε) indicates possible scenarios of gluing singularities into c. These scenarios

can be identified with successive operations of edge contractions on G(Pε) widely used in
graph theory (see [14,15]);

(c) The idea behind the concept of a geometric graph can be traced back to the pioneering works
of V. Arnold on the classification of singularities of gradient maps, where a deep connection
between (i) the hierarchy of singularities related to their possible decomposition on the one
hand, and (ii) Dynkin diagrams, on the other hand, was established (see [3,8,9,16–18]).

2.2. The Concept of the Multiplicity of the Roots

Before giving several Definitions of multiplicity, we will explore how they work for
univariate polynomials, in contrast with the polynomial mappings.

Clearly, the multiplicity of a univariate polynomial can be defined equivalently in two
completely different ways: algebraic (using factorization) and/or using differentiation:

One way to identify a multiplicity m of a root c, p(c) = 0 is to examine whether we
can factorize p by the term (z− c)m but not by the term (z− c)m+1. This rule follows exactly
the form of the Laurent expansion.

Another way is to compute derivatives p(k)(c) = 0 for k = 0, . . . , m and clarify that
p(m+1)(c) 6= 0.

Straightforward factorization is not a way to do it for general functions, multivariate
polynomials, or polynomial maps. Thus, we need to take a closer look at the method we
use for polynomials. Surprisingly, even for a multivariate polynomial map, one can define
the generalization of factorization as follows.

If P(x) is a polynomial map P : Cn → Cn and vector c ∈ Cn is the root of the assumed
multiplicity m, one can not factorize P(x) by (x − c)k and obtain some vector function
gk(x). Unlike the case with univariate polynomials, we cannot expect a cancellation in
gk(x) to differentiate the polynomial map. However, substituting x = c into gk(x) leads to
problems in most cases, whether we guess correctly or not. For multiplicity of a given root
for the polynomial map, there is a famous algebraic Definition 3 (see [3,19]).
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Definition 3. The complex vector c ∈ C is the root of the multiplicity m of the polynomial map
P(x) if corresponding to P local algebra is m-dimensional.

Finally, consider topological mappings for which none of the above methods is simple
for determining the multiplicities of zeros. In the latter case, one has to use the definition of
the local mapping degree. In topology, the degree of a continuous mapping between two
compact oriented manifolds of the same dimension is a number that represents how many
times the manifold of domains wraps around the manifold of values under the mapping.

If F is a differentiable map of closed differentiable manifolds, then deg F coincides
mod 2 with the number of preimages of the regular value of the map F. In the case of
oriented manifolds connected to sign DF(x) is the sign of the Jacobian of F at the point x
(Brauer degree).

The work [6] fetches a method that combines all the above-stated concepts, both
algebraic factorization and analytic differentiation. Namely, they exploit a small topological
deformations technique.

2.3. Factorization of Map

We start with the following simple criteria of multiple roots (see Lemma 4.1 in [6,7]).

Lemma 1 (Factorization Lemma). Let P(x) = (p1(x), . . . , pn(x)) : Cn → Cn be a polynomial
map with P(c) = 0. Then:

(i) c is a multiple root of P if and only if there exist coordinates x = (x1, . . . xn) in Cn and natural
m ≥ 2 such that

P(x) = Q(x)Xm(x), Xm(x) :=
(
(x1 − c1)

m, x2 − c2, . . . , xn − cn
)t, (1)

where Q(x) = {qki(x)}n
k,i=1 is a matrix with polynomial entries. Representation (1) is

not unique
(ii) For m given in (i), one has:

∂m−1

∂xm−1
1

det(DP(x))
∣∣∣
x=c

= m! det Q(c). (2)

Definition 4. The complex vector c ∈ Cn is called the linear type root of the polynomial map
P(x) : Cn → Cn along direction x1 if one can factorize P(x) (by Formula (1)) and det Q(c) 6= 0.

2.4. Small Deformations of Zeros of Differential Mappings

Recall a regular deformation problem for isolated multiple root c of the polynomial map
P(x) is a problem for which the perturbed polynomial map Pε for all small non-zero values
of ε has a couple of roots in the vicinity of multiple isolated roots of the unperturbed
problem. The singular deformation problem is a problem for which the perturbed problem
has essentially different roots from the unperturbed polynomial system.

Definition 5. The complex vector c ∈ Cn is an isolated root of the multiplicity m of the polynomial
map P(x) if there exists regular deformation Pε(x) with m simple roots all lie in a small ε → 0
neighborhood of c ∈ Cn.

We construct the so-called small roots deformations, that is, regular small deformations,
Pε, of the coefficients of the polynomial vector field P so that the zeroes of Pε are simple to
study, and they collapse to the root c of P when ε→ 0.

We utilize this tool to study the geometrical aspects of the resolution of degenerate
singularities of multiplicity (number of preimages) two or more.

Here, it is necessary to start with precisely formulating the interrelated concepts.
Splitting is a subpart of the resolution. The small deformation carries out a complete answer.
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Definition 6. The small deformation Fε(x) of a map y→ F(x) will be called splitting near critical
point c ∈ Cn, F(c) = 0 if there exists small δ > 0 and Uδ = {x, ||x − c|| < δ}, such that all
x ∈ Null(Fε) ∩Uδ do not intersect a boundary ∂Uδ for all ε small enough and Fε is generic in Uδ.

Using splitting by Definition 6, one can override the notion of multiplicity even for
non-isolated critical points of a mapping.

Consider the following Example of a mapping P : C3 → C3

P =

2x2
1 + x1x2 − x2x3 + x3x1 − 2x1

2x2
2 + x1x2 + x2x3 − x3x1 − 2x2

2x2
3 − x1x2 + x2x3 + x3x1 − 2x3

 (3)

Remark 2. All critical zeroes of P in (3) lie on the circle γ (see Figure 3):

γ := {(3x1 − 1)2 + (3x2 − 1)2 + (3x3 − 1)2 = 6} ∩ {x1 + x2 + x3 = 1}. (4)

To correctly define the “multiplicity” of any of those non-isolated zeroes, let us realize
the splitting γ in (4) by the small deformation Pε(x) as (5):

Pε =

2x2
1 + x1x2 + (ε− 1)x2x3 + x3x1 − 2x1

2x2
2 + x1x2 + x2x3 + (ε− 1)x3x1 − 2x2

2x2
3 + (ε− 1)x1x2 + x2x3 + x3x1 − 2x3

 (5)

All zeroes of Pε are isolated: c1, . . . , c6 lie inside a torus Tγ in vicinity of the circle

γ, while c0 = 0 and the c7 =
[

2
3+ε , 2

3+ε , 2
3+ε

]
lies outside; see Figure 3 below. Any other

disassembly of non-isolated zeroes at a circle remains the qualitative picture of splitting
the same.

Figure 3. The critical points of (3) posted on the circle (painted red) on the left and simple points of
(5) on the right.

One readily verifies that the “multiplicity” of any zeroes of P lying in (4) is the same.
It is logically correctly admitted that its multiplicity is equal to six.

2.5. Hadamard’s Type Lemma

In all forthcoming problems, we expect given mapping F(x) : Cn → Cn and their
good deformation Fε(x) in the sense of Griffiths and Harris [2].

Question 1. How can one check that a small deformation Fε is at the same time a resolution of at
least one critical point c ∈ Cn of F?

2.6. Starting Algorithm for Splitting Equilibrium

Let an origin x = 0 be an isolated root of a multiplicity m of a polynomial map P(x).
Define the desingularization of a point x = 0 of a polynomial map P(x) by the good

deformation Pε(x) as splitting this origin into the cluster of m regular points that lie in the
vicinity of a source or assembling them back into the root when ε→ 0.
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Recall that the Hadamard’s lemma [20] states that the Taylor series of a smooth enough
function considering the direction of a real line near the origin has a representation, with the
product of xn+1

1 (for x1 being the one of coordinate function) to smooth enough functions.

Lemma 2 (Hadamard’s type Lemma). A twice continuous differentiable map F(x) has a critical
point at the origin if there exist coordinates x = [x1, x2, . . . , xn], such that

F(x) = x2
1G1(x) +

n

∑
i=2

xiGi(x) (6)

with differentiable mappings Gi : Rn → Rn, i = 1, . . . , n. Representation (12) is not unique.
However, G1 may be chosen depending on x1 only.

Proof. An origin is critical for F iff F(0) = 0 and det(DF(0)) = 0. Therefore, the linear
part of F(x) does not contain at least one variable, say x1. Conversely, from (12), F(0) = 0
and det(DF(0)) = 0 follow.

With representation (12) for F(x) in hand, we can define its small deformation by
the formula:

Fε(x) = x1(x1 − ε)G1(x1) +
n

∑
i=2

xiGi(x) (7)

The proof that a small deformation Fε(x) in (7) is at the same time the resolution of the
singularity at zero is trivial: Two zeroes of Fε(x), the origin and c = [ε, 0, 0, . . . , 0] belong to
a small neighbor of an origin. Resolution of singularity is still to be achieved.

Formula (12) is also well established for the principal defining factorization. It should
guide the approach to the problem of factorization in multidimensional cases. If F is
represented by (12), then factorization F by x1 is:

F(x)/x1
de f
= x1G1(x1) +

n

∑
i=2

xiGi(x) (8)

Switch from F to F(x)/x1 in (8) used for step-by-step [21] good deformations construction.

Remark 3. Let F(x) : Cn → Cn be a germ of map with an isolated double zero at x = 0 and let
L(x) = Ax be its linear part at x = 0. Then, evidently, on an appropriate basis, the matrix A may
be taken in its Jordan canonical form with exactly one zero eigenvalue Jordan block. Moreover, there
exists a basis in Cn such that det D(F(x)/x1) 6= 0.

2.7. Connection with the Grothendick Multidimensional Residual Theory

In this section, we consider methods for calculating Grothendieck residues [5], which
can be extended to handle the dependence on small parameters and based on principal
defining factorization (8).

We start with the limit formula for higher-order poles in Complex Analysis.
Let f (z) = h(z)

p(z) , where h(z), p(z) are polynomials. Then, the residual of order m at
z = c is

Res( f (z), c)
de f
=

1
(m− 1)!

lim
z→c

dm−1

dzm−1

[ (z− c)mh(z)
p(z)

]
(9)

From the very definition of Grothendieck Residue [5]: Let be an open neighborhood of
the origin and let P = {p1, . . . , pn} be n multivariate polynomials defined on D. Suppose
that P has the only one common isolated zero p1(z) = 0, . . . , pn(z) = 0 in D and that is the
origin x = 0.



Symmetry 2022, 14, 2186 8 of 16

Then, the Grothendieck residue (see [22]) is defined at the origin of O as the following
integral for a small polydisc with an essential boundary Γ ⊂ D:

ResO[H, P] =
1

(2iπ)n

∫
Γ

H(z)
p1(z). . . pn(z)

dz1 ∧ · · · ∧ dzn (10)

Here, H(z) is any multivariate polynomial.
Now, let P(z) have an isolated zero of multiplicity m at O. Denote by Pε(z) a good

deformation of P. This means: all m zeroes ck ∈ D, k = 1, . . . , m of a deformation Pε are
simple and lie at the vicinity of the origin O. Then, due to Continuity Principle, see [2,22].

Resc(P, H) = lim
ε→0

m

∑
s=1

H(cε,s)

det(DPε(cε,s))
. (11)

DPε(z) is the Jacobian matrix of Pε = (p1,ε(z), . . . , pn,ε(z)).

Remark 4. Similarly to the scalar case, given a polynomial H(x) and a polynomial map P : U ⊂
Cn → Cn with an isolated simple singularity c ∈ U, one can define the Grothendieck residue
Res(H, P) using the Bochner–Martinelli integral (10) explicitly. Namely,

Resc(P, H) =
H(c)

det(DP(c))
.

If c is a multiple root of P, then direct computations of the Grothendieck residue may be
very complicated, and good deformation techniques can help. To be more specific, if P is a good
deformation of P near c with

P−1
ε (0) ∩U = {cε,1, . . . , cε,m},

then there exists a finite limit denoted by Resc(P, H) that coincides with the Grothendieck residue
(cf. [6,22]).

The effectiveness of Formula (11) essentially depends on the complexity of c. In what
follows, we will show that (11) is usable for the Grothendieck residue at a double point
which is nicely compatible with (9).

This way, we will extend (9) to the multidimensional roots after good deformation
forming a cluster with the lattice structure of simple roots. Namely:

Definition 7. Suppose P(x) admits principal defining factorization as

P(x) =
k

∑
i=1

(xi − ci)
mi Gi(x) +

n

∑
j=k+1

(xj − cj)Gj(x) (12)

where m = {m1, m2, . . . , mk} is multi-index, mi ≥ 2 and G(x) = ∑n
i=1(xi − ci)Gi(x) is a

polynomial map with det DG(c) 6= 0. Then, P is called the lattice singularity at the origin.

Theorem 1. Suppose, the point c is a lattice singularity of a polynomial map P(x) and let G(x) be
a polynomial map described as principal defining factorization of P(x) in Definition 7. Then,

Resc(P, H) =
1

(m1 − 1)! · · · (mk − 1)!
∂|m|−k

∂xm1−1
1 · · · ∂xmk−1

k

[
H(c)

det(DG(c))

]
. (13)

The explicit form of the Grothendieck residue Formula (13) applies only to a lat-
tice singularity. This formula indicates explicitly the alternation of signs in the Jacobian
determinants in the lattice structure, as shown in Figures 4 and 5 by red and blue colour.
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Figure 4. Linear and lattice splitting/assembling of singularities.

Figure 5. Lattice splitting/assembling of singularities in 2D.

The general situation will be discussed in the next section.

3. Main Asymptotic Rules during Desingularization

In this section, we will adhere to the following conventions:
Given polynomial map P(x) : Cn → Cn with an isolated zero c of finite multiplicity

m > 1, denote its good deformation by Pε(x). Clearly, the cluster of m regular isolated
zeroes c1, . . . , cm of Pε(x) lie in the small vicinity of c ∈ Cn. The following Theorem [23]
characterized the topological properties of the Grothendieck residual:

Theorem 2. Suppose that the point c is an isolated multiple (m ≥ 2) zero of a polynomial map
P(x) and let its good deformation Pε(x) be a polynomial map with exactly m zeroes c1, . . . , cm in a
ε-neighborhood of c. Then,

Resc(P, H) = lim
ε→0

m

∑
k=1

[
H(ck)

det(DPε(ck))

]
. (14)

It is important to emphasize that the limit in (14) exists and is always finite.

Remark 5. The existence of a finite limit in (14) is a necessary condition (an asymptotic law for a
bifurcation) for desingularization using good deformations.

Fix polynomial H(x) and denote the determinant of the Jacobian matrix det(DPε(ck))
by dk(ε). Evidently, dk(ε) → 0 for all k = 1, . . . , m when ε → 0. Then, the following
asymptotic formula of 1

dk(ε)
as the Laurent series expansion takes place:

H(ck)

dk(ε)
=

d0,k

εnk
+

d1,k

εnk−1 + . . . + dnk ,k + o(ε), d0,k 6= 0, nk ≥ 1, k = 1, . . . , m. (15)

when ε→ 0. Define
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Φ(ε) :=
m

∑
k=1

H(ck)

dk(ε)

Then, the condition for the existence of a finite limit in (14) is equivalent to the fact
that the function Φ(ε) is a complex analytic in a small neighborhood of ε = 0:

∑
k∈S

d0,k = 0. Here S = {k, nk = N} and N = max
k
{n1, n2, . . . , nk}. (16)

We are now formulating the asymptotic rules for double zero of the polynomial vector
field bifurcation.

Asymptotic Rules for Spitting Double Zero of a Polynomial Map

Lemma 3. P(x) has a double zero at the origin if and only if (6) takes place with det(DG(0)) 6= 0
for some coordinate function x1 and G = [P/x1] (see (8)).

Combining the results of the previous Lemma and Remark 3 with matching the fact
that Grothendieck residue (11) exists and is finite, we obtain the following law of bifurcation
from double zero in terms of (15):

Resc(P, 1) = lim
ε→0

[
1

d1(ε)
+

1
d2(ε)

]
= 0 ⇒ n1 = n2 = 1; d0,1 + d0,2 = 0. (17)

Theorem 3. Let the point c ∈ Cn be the double zero of a polynomial map P : Cn → Cn. A
saddle-node bifurcation from a double singularity (called in physics pair interactions) is possible
only if the following asymptotic laws are fulfilled:

• Any good deformation Pε splits this double zero into two regular roots c1, c2 of Pε, all lying in
the vicinity of c;

• There is a unique eigenvector v̄ of the Jacobi matrix DP(c) with zero eigenvalue, DP(c)v̄ = 0;
• The local dynamics of ẋ = P(x) depend on a size of the unique zero eigenvalue Jordan block in

Jacobi matrix DP(x) linearization near x = c;
• Splitting the double zero c of P into two regular points by use of any good deformation can be

achieved (asymptotically) only along a direction of v̄. (In physics, v̄ is usually called the dipole
polarization axis);

• A critical double point is always type A2 in Arnold–Dynkin classification (see [16]);
• The main terms of the asymptotic by calculation determinants of the Jacobian matrices at zeroes

c1 and c2 must have the same absolute value and opposite sign. Namely, a critical double point
can be split into two simple points around the critical point if and only if

det DPε(c1)+det DPε(c2)→ 0, when ε→ 0. (18)

The argument for Theorem 3’s proof based on Lemma 3 and Remark 3 (see [6]).
The bifurcations split the double zero of the polynomial map into two simple ones,

often called Saddle-Nodes. However, even starting from dimension n = 2, one can also rec-
ognize Saddle-Focus and Saddle-Center bifurcations (see Figure 6). In 3D, to the above-stated
plane cases of pair interactions, we should add various issues of Saddle–Helix bifurcations
(see Figure 7).

The splitting of double singularities is relatively simple and obeys the asymptotic
laws listed in Theorem 3. Illustrations of double points interactions on the plane and in
the space are shown in Figures 6 and 7. In contrast, generalizations already to triple or
quadruple features have a more complex scenario. We plan to dwell on them in more detail
in subsequent papers.
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Figure 6. Splitting/assembling of two singularities in 2D (pair interaction in 2D).

Figure 7. Spiral splitting/assembling of two singularities in 3D (Pair Interaction in 3D).

4. Fan Singularity of the Homogeneous Map

In this section, we show that the small deformation of a k-linear mapping near the ori-
gin can be constructed knowing the set of its fixed points. Namely, if P(x) is homogeneous
map, Pε(x) = P(x)− εx is always a small deformation of P.

Problem 1. Given the sequence of complex vectors vj ∈ Cn and associated with each vj n complex
numbers {λij}, fix an integer k. Then, determine necessary and sufficient conditions on these
vectors and numbers such that they are the eigenvectors and eigenvalues of a set of n× n quadratic
Jacobian matrices DP(a). They are constructed by k linear homogeneous polynomial map P(x) at
their fixed points set a ∈ Fix

[
P(x)

]
.
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4.1. Construction of Good Deformation for the Fan Singularity.

For our purposes, we need to use Kronecker’s powers of vectors.
Given non-zero vector V ∈ Cn, define Kronecker’s tensor k-power of a vector V as V⊗k.

Recall the symmetric tensor product of two vectors U = {Ui} and V = {Vi} represented
as follows:

U ⊗V := {U1V1, . . . , UiVi, . . . , UnVn, U1V2, U1V3, . . . , UiVj>i, . . . , Un−1Vn}. (19)

The Kronecker power V⊗k puts V onto itself k-times as symmetric Kronecker products.
Denote the dimension of the symmetric Kronecker k-power space Cn⊗k by dk

n = (k+n−1
k ).

Where (i
j) is a standard notion for a binomial coefficient. We start to answer the Problem 1

with the following sentence: Sets of fixed points uniquely determine the homogeneous
multilinear generic mapping.

More accurately, using Bêzout theorem (cf. [24]), the generic k-linear map in Cn has
B(n, k) = kn−1

k−1 non proportional fixed points for k ≥ 2. Then,

Theorem 4. If set S of l = dk
n vectors S := {v1, v2, . . . , vl} forms a basis in Cn⊗k, then there

exists a unique k-homogeneous mapping Fk : Cn → Cn such that Fix(Fk) = S.

Proof. Compare dimension (Cn⊗k) = (k+n−1
k ) with the maximum number of isolated fixed

points m = B(k, n) in Fs.
By Bézout’s Theorem (cf. [24]), there exists no more than B(k, n) = kn−1

k−1 fixed points
of Fx or infinitely many. If Fk is generic, then there exists exactly m = B(k, n) fixed points.

If n = 2, then B(k, 2) = dk
2 = k + 1. For n > 2, B(k, n) > dk

n. Therefore, in Theorem 4,
it is enough to choose dk

n fixed points in Cn in order to define the Fk uniquely as a solution
of system Fk(pi) = pi.

The system of m equation Vm(pi) = pi, i = 1, . . . , m is a linear system of m× n equations
with respect to the coefficients of Fk(x) in Cn. By the assumption of Theorem, m = B(k, n),
and the matrix of this linear system is not singular. Therefore, Fk is uniquely defined as a
solution of Fk(pi) = pi.

Example 3. Choose six points in Cn

S := {[2, 2, 0], [0, 2, 2], [1, 1, 1], [−1, 1, 1], [1,−1, 1], [1, 1,−1]}.

They all are quadratically independent (see (19)) and form a basis in the symmetric tensor
product in space C3 ⊗C3. This fact allows us to unambiguously restore two remaining fixed points
[0,−2, 0], [0, 0, 0] Furthermore, the coefficients of the quadratic map for which all above-stated
points are fixed (See Figure 8):

[x1x2 + x1x3 − x2x3 + x2
3, x2

1 + x1x2 − x1x3 − x2
2 + x2x3 + x2

3, x2
1 − x1x2 + x1x3 + x2x3]

Two remaining fixed points [0,−2, 0], [0, 0, 0] were obtained based on syzygies (16). The eight
fixed points of a quadratic map were located at the corner of two coaxial tetrahedrons, as shown
in Figure 8.
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Figure 8. Fixed points located at the corners of two coaxial tetrahedrons.

Remark 6. Theorem 4 in two-dimensional space may be formulated much easier. See Section 4.2.

In contrast with Theorem 4, already for three-dimensional quadratic homogeneous
systems, the simple observation shows that the fixed points cannot take arbitrary val-
ues. Namely, there exist certain universal relations (syzygy) among the following as a
consequence of the Euler–Jacobi Formula.

Undoubtedly, two-dimensional results are much simpler and more intuitive than in
the general setting. For example, linear factors can factorize any homogeneous polynomial
mapping over C. Moreover, any k-homogeneous nontrivial polynomial P(x, y) in 2D may
be represented using a polynomial with single variable p(z): P(x, y) := xk p

( y
x
)

4.2. Results in 2D

Our reasoning [6] for how to find a canonical form of the k-homogeneous map F :
C2 → C2 is based on:

Theorem 5. Let S be set of k + 1 pairwise non-collinear planar vectors

S = {(x0, y0), (x1, y1), . . . , (xk, yk)}, (xi, yi) ∈ C2.

Then, there exists a unique k-homogeneous polynomial map Fk : C2 → C2 such that S
coincides with a set of their non-proportional fixed points.

Proof. In order to define Fk, it is enough to find its coefficients ai, bi for all i = 0, . . . , k:

Fk(x, y) =

[
a0xk + a1xk−1y + . . . + aixk−iyi + . . . + akyk

b0xk + b1xk−1y + . . . + bixk−iyi + . . . + bkyk

]
(20)
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The following linear system is responsible for a fixed point finding:

Fk(xi, yi) =

[
xi
yi

]
⇔ A


a0 b0

a1 b1

. . . . . .

ak bk

 = B. (21)

Here, A and B are respectively (m + 1)× (m + 1) and (m + 1)× 2 matrices presenting
explicitly:

A =


xk

0 xk−1
0 y1 . . . yk

0

xk
1 xk−1

1 y2 . . . yk
1

. . . . . . . . . . . .

xk
k xk−1

k yk . . . yk
k

 B =


x0 y0

x1 y1

. . . . . .

xk yk

 (22)

A is a slightly modified Vandermonde matrix.

det(A) = ±∏
i<j

(xiyj − xjyi).

By the assumption of Theorem 5, all points in S are pairwise non-collinear, det(A) 6= 0.

To illustrate Theorem 5, we use the following convention: any point (x, y) and any
k-homogeneous polynomial map Fk(x, y) over reals in 2D can be represented in the complex
form as F(x, y)↔ Φ(x + iy, x− iy), meaning that F(x, y) =

(
<(Φ(z, z)),=(Φ(z, z))

)
(x, y)↔ x + iy, F(x, y)↔

k

∑
m=0

am(x + iy)m(x− iy)k−m, ai ∈ C. (23)

Example 4. Given a set of k + 1 points, P = {p0, p1, . . . , pk : pm ↔ exp( 2πim
k+1 )} lie at the

vertices of the equilateral polygon (see Figure 9a). Then, the homogeneous polynomial mapping
Fk(x, y) of order k, such that a set of its fixed points coincide with P, acquires [25] an elementary
correspondence form:

Fk(x, y)↔ (x− iy)k (24)

In particular,

F2(x, y) =
(

x2 − y2

−2xy

)
, F3(x, y) =

(
x3 − 3xy2

y3 − 3x2y

)
, F4(x, y) =

(
x4 − 6x2y2 − y4

4xy(y2 − x2)

)
. (25)

The proof that all fixed points of the mapping Fk lie at the vertices of a regular k-gon follows
easily from the correspondence Formula (26). Thus, all fixed points fulfill the equation:

(x− iy)k = x + iy ⇔ (x− iy)k+1 = x2 + y2.

Using the Euler form for the complex numbers, we obtain x− iy = r exp(−iϕ), and

rk+1 exp[−iϕ(k + 1)] = r2 ⇔ {r = 1, (k + 1)ϕ = 2πm} ⇔ pm ↔ exp
(2πim

k + 1

)
.

Example 5. Given a set of 2(k + 1) points: Pk = {p0, p1, . . . , pk : pm ↔ exp( 2πim
k+1 )} , and

Qk = {q0, q1, . . . , qk : pm ↔ a exp(πi(2m+1)
k+1 )}. P, Q lie at the vertices of equilateral k + 1-star

as it is shown schematically in Figure 9b). Then, there exists a homogeneous polynomial mapping
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Fk(x, y) of order k, such that the set of its fixed points coincide with P and Q. Fk(x, y) acquires the
following correspondence form:

Fk(x, y)↔ 1
2

(
1− 1

ak−1

)
(x− iy)k + 1

2

(
1 +

1
ak−1

)
(x + iy)(x2 + y2)

1
2 (k−1) (26)

In particular,

F3(x, y) =
[

x3 +
( 2

a2 − 1
)

xy2, y3 −
( 2

a2 + 1
)

yx2
]
. (27)

The proof that all fixed points of the mapping Fk lie at the vertices of a regular k + 1-star
follows quickly from the correspondence Formula (26). From Fk(x) = x, using the polar coordinates
x− iy = r exp(−iϕ), it follows that

1
2

(
1− 1

ak−1

)
rk+1 exp[−iϕ(k + 1)] + 1

2

(
1 +

1
ak−1

)
rk+1 = r2. (28)

Clearly, x + iy = pm ↔ exp
(

2πim
k+1

)
and x + iy = qm ↔ exp

(
πi(2m+1)

k+1

)
fulfill (28).

Figure 9. Fixed points location at the corners of m-gon (a) and on m-star (b).

Remark 7. Comparing the representation (23) of the general k-linear mapping, two extreme cases
F(x) ↔ (x − iy)k and Φ(x) ↔ (x + iy)k can be noted. It is worth mentioning that F(x) is a
λ-potent, and Φ(x) represents a diagonalizable map. The first displays the map that the eigenvalue
preserves at all its fixed points, and the last one is an eigenvector that preserves mapping at all
points by the coincidental similarity. It is clear that the combination of these two edge cases while
preserving all the spectral properties of DF(x) leads to the unambiguousness of their definition, that
is, in the specificity, Spec(A) = Spec(B) if and only if A ∼ B.

Recall that the canonical form constructed in Theorem 5 used the fixed points of a
multilinear mapping. Acquiring an invariant of the Jacobian matrix DF(x) is the right
choice for a suitable canonical form description.

5. Conclusions

• The bifurcation associated with the resolution of multiple singularities has specific
features, the key to understanding related to the asymptotic Grothendieck local residue
conservation law.

• Suppose the singularities of a multivariant polynomial mapping are identical to the
singularities of a locally holomorphic function of one variable. In that case, such
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singularities can be splitting along a line and must obey the alternating accordion rule,
where the sign of the Jacobian determinants alternate.

• The lattice singularities must have staggered features whose nearby nodes of the
geometric graph are incidental;

• Calculation of Grothendieck residue at points with lattice singularity has a simple
form of generalized residue from complex analysis;

• Bifurcations of singularities of the homogeneous vector field may be constructed along
rays with fixed points.
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