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Abstract: Symmetries play an important role in the study of a plethora of physical phenomena,
including the study of microworlds. These phenomena reduce to solving nonlinear equations
in abstract spaces. Therefore, it is important to design iterative methods for approximating the
solutions, since closed forms of them can be found only in special cases. Several iterative methods
were developed whose convergence was established under very general conditions. Numerous
applications are also provided to solve systems of nonlinear equations and differential equations
appearing in the aforementioned areas. The ball convergence analysis was developed for the King-
like and Jarratt-like families of methods to solve equations under the same set of conditions. Earlier
studies have used conditions up to the fifth derivative, but they failed to show the fourth convergence
order. Moreover, no error distances or results on the uniqueness of the solution were given either.
However, we provide such results involving the derivative only appearing on these methods. Hence,
we have expanded the usage of these methods. In the case of the Jarratt-like family of methods, our
results also hold for Banach space-valued equations. Moreover, we compare the convergence ball
and the dynamical features both theoretically and in numerical experiments.

Keywords: king method; jarratt method; ball convergence; attraction basin

MSC: 37N30; 65H05; 65H10; 30C15

1. Introduction

Let M = R or C and T ⊆ M be a non-empty, convex and open set. We denote by
B(q∗, µ) the closure of the open ball B(q∗, µ) with radius µ > 0 and center q∗ ∈ M. Suppose
the set {BL : M→ M linear and bounded operators} is denoted by L(M, M). Consider the
non-linear equation

F(q) = 0, (1)

where F : T ⊆ M→ M is differentiable. Nonlinear equations of the type (1) are often used
in science and other practical domains to tackle a variety of very challenging problems
from diverse disciplines. Notice that solving these equations is a difficult process; the
answer has only been found analytically in a small number of situations. As a result,
iterative procedures are often utilized to solve these equations. The job of developing a
successful iterative approach for tackling Equation (1) is a great challenge. A traditional
technique, Newton’s iterative technique, is the one that is most commonly used to solve
this problem. More results on advanced forms, in terms of efficiency and convergence
order, of popular methods such as Newton’s, Jarratt’s, King’s and Chebyshev’s methods,
are presented in [1–9]. Chun [10] developed fourth-order classes of new modifications of
King’s family of methods [11] for solving nonlinear equations. These methods involve
two function evaluations and one of its first derivatives per iteration. Additionally, as
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a special variant of King’s method, the classical Traub–Ostrowski method was derived.
Wang et al. [12] presented a sixth-order variant of Jarratt’s method, which requires the
evaluation of the function at an additional point in the iteration procedure of Jarratt’s
method [13]. A new family of fourth-order methods independent of the second derivative
was introduced by Ghanbari in [14]. This family generates the King’s family and some
other well-known methods as specific cases. Grau-Sánchez and Gutiérrez [15], by using
Obreshkov-like techniques, described two families of zero-finding iterative approaches.
An efficient family of nonlinear system solvers was suggested by Cordero et al. [16] using
a reduced composition technique on Newton’s and Jarratt’s methods. Sharma et al. [17]
composed two weighted-Newton steps to construct an efficient, fourth-order weighted-
Newton method to solve nonlinear systems. Sharma and Arora [18] introduced iterative
methods of fourth and sixth convergence order for solving nonlinear systems. Two bi-
parametric fourth-order families of predictor-corrector iterative solvers are given in [19].
Solaiman et al. [20] proposed a modified class of fourth and eighth-convergence order
iterative methods based on King’s method for nonlinear equations. In each iteration,
three function evaluations are required for the fourth-order methods, and the eighth-order
methods require four evaluations. Other results related to the convergence and dynamics
of iterative formulas can be found in [3,21–29].

This paper deals with a comparison of the convergence balls and the complex dynami-
cal features between the King-like and Jarratt-like families of methods. These methods are
as follows:

King-like family of methods (KLFM):

yn = qn − F′(qn)
−1F(qn)

qn+1 = yn − A−1
n BnF′(qn)

−1F(yn) (2)

and
Jarratt-like family of methods (JLFM):

yn = qn − αF′(qn)
−1F(qn)

qn+1 = yn − γC−1
n Hn(yn − qn), (3)

where α, β, γ, δ ∈ M,

An = F(qn) + (δ− 2)F(yn),

Bn = F(qn) + δF(yn),

Cn = I + βHn

and
Hn = H(yn, qn) = F′(qn)

−1(F′(yn)− F′(qn)).

If α = 1, β = 3
2 , γ = 3

4 and δ ∈ [0, 2], methods (2) and (3) reduce to the ones studied
in [2,11,13], where it was shown they are of fourth-order using fifth derivative and Taylor
expansions. As such results require derivatives of higher orders, these methods are very
hard to execute, since their scope of application is small. Notice, however, those derivatives
of orders higher than one do not appear in these methods. Hence, the earlier results limit
the applicability of these methods to equations containing functions that are at least five
times differentiable, although they may converge. Hence, their applicability is restricted.
To support our argument, we consider the following motivational function

F(q) =
{

q3 ln(q2) + q5 − q4, if q 6= 0
0, if q = 0

, (4)

where M = R and F is defined on T = [− 1
2 , 3

2 ]. Then, it is extremely important to
emphasize that F′′′ is unbounded. As a consequence, the previous convergence findings
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for KLFM and JKLM, which are based on F(v), are invalid in this case. Additionally, these
convergence results supply negligible information regarding the limits on error ‖qn − q∗‖,
the convergence domain and about the whereabouts of the solution q∗. We need the ball
analysis of iterative methods for determining the convergence radii, establishing error
bounds and calculating the region in which q∗ is unique. The most significant benefit
of the ball analysis is that it simplifies the very demanding task of selecting a starting
point. Having this perspective, we are encouraged to analyze and compare the balls of
convergence of KLFM and JKLM under the same set of assumptions based on just the first
derivative of F, which only appears in these methods. In addition to providing the error
estimates ‖qn − q∗‖ and convergence radii, the convergence theorems that we established
also offer a correct location of the solution q∗. Notice also that the local convergence results
are important, since they demonstrate the degree of difficulty in choosing the initial points.
The dynamic comparison between these methods is also presented.

It is worth noticing that methods (2)–(4) are explicit. We refer the reader to [30–32] for
important implicit methods. This type of method is out of the scope of this paper. However,
we plan to study such methods in our future research, since they provide better stability
during data processing along the same lines.

Various portions of this paper may be described as follows: Section 2 discusses the key
convergence theorems on the ball analysis of KLFM and JFLM. Comparison of attraction
basins for these methods is the main content of Section 3. Section 4 is devoted to numerical
applications of various kinds. Section 5 contains the final remarks of this research.

2. Ball Comparison

We first present the ball convergence analysis for KLMF. Let S = [0, ∞).
Suppose function(s):

(i)
ω0(t)− 1

has a minimal zero ρ0 ∈ S \ {0} for function ω0 : S → S that is non-decreasing and
continuous. Set S0 = [0, ρ0).

(ii)
h1(t)− 1

has a minimal zero d1 ∈ S0 \ {0}, where function ω : [0, 2ρ0)→ S is non-decreasing
and continuous and h1 : S0 → S is defined by

h1(t) =

∫ 1
0 ω((1− θ)t) dθ

1−ω0(t)
.

(iii)
ω0(h1(t))− 1 and p(t)− 1

have minimal zeros ρ1 and ρp ∈ S0 \ {0}, respectively, where ω1 : S0 → S is non-
decreasing and continuous, and p : S0 → S is defined by

p(t) =
∫ 1

0
ω0(θt) dθ + |δ− 2|

∫ 1

0
ω1(θh1(t)t) dθh1(t).

Set ρ = min{ρ1, ρp} and S1 = [0, ρ).
(iv)

h2(t)− 1

has a minimal zero d2 ∈ S1 \ {0}, where h2 : S1 → S is defined by
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h2(t) =
[∫ 1

0 ω((1− θ)h1(t)t) dθ

1−ω0(h1(t)t)

+
(ω0(t) + ω0(h1(t)t))

∫ 1
0 ω1(θh1(t)t) dθ

(1−ω0(t))(1−ω0(h1(t)t))

+
2
∫ 1

0 ω1(θh1(t)t) dθ

(1−ω0(t))(1− p(t))

]
h1(t).

Then, parameter d is defined by

d = min{dm}, m = 1, 2 (5)

which shall be shown to be a convergence radius for KLMF. Set S2 = [0, d).

Notice that it is implied by (5)

0 ≤ ω0(t) < 1, (6)

0 ≤ ω0(h1(t)t) < 1, (7)

0 ≤ p(t) < 1 (8)

and
0 ≤ hm(t) < 1, m = 1, 2, (9)

are satisfied if t ∈ S2.
The developed conditions (C) play a role in the ball convergence analysis of KLFM if

functions “ω′′ are as given previously, and q∗ is a simple zero of F.
Suppose:

(C1)

‖F′(q∗)−1(F′(v)− F′(q∗))‖ ≤ ω0(‖v− q∗‖)

for each v ∈ T. Set T0 = T ∩ B(q∗, ρ0).
(C2)

‖F′(q∗)−1(F′(u)− F′(z))‖ ≤ ω(‖u− z‖)

and
‖F′(q∗)−1F′(z)‖ ≤ ω1(‖z− q∗‖)

for each u, z ∈ T0.
(C3) B(q∗, d̃) ⊂ T for some d̃ to be given the latter.
(C4) There exists d∗ ≥ d̃ satisfying

∫ 1

0
ω0(θd∗) dθ < 1.

Set T1 = T ∩ B(q∗, d∗).

Next, the main ball convergence for KLFM is given utilizing conditions (C).

Theorem 1. Under conditions (C) for d̃ = d, choose starting point q0 ∈ B(q∗, d) \ {q∗}. Then,
we get lim

n→∞
qn = q∗, which is the only zero of F in the domain T1 given in (C4).

Proof. Mathematical induction on i shall establish items

‖yi − q∗‖ ≤ h1(‖qi − q∗‖)‖qi − q∗‖ ≤ ‖qi − q∗‖ < d (10)

‖qi+1 − q∗‖ ≤ h2(‖qi − q∗‖)‖qi − q∗‖ ≤ ‖qi − q∗‖. (11)
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Let q ∈ B(q∗, d) \ {q∗}. Using (5), (6) and (C1), we obtain

‖F′(q∗)−1(F′(q)− F′(q∗))‖ ≤ ω0(‖q− q∗‖) ≤ ω0(d) < 1 (12)

implying with a lemma due to Banach on linear operations with inverses [3,33] that F′(q)
is invertible with

‖F′(q)−1F′(q∗)‖ ≤
1

1−ω0(‖q− q∗‖)
. (13)

Notice that we now have that y0 is well defined by the first substep of KLFM if n = 0,
from which we can also write

y0 − q∗

= q0 − q∗ − F′(q0)
−1F(q0)

= (F′(q0)
−1F′(q∗))

( ∫ 1

0
F′(q∗)−1(F′(q∗ + θ(q0 − q∗))− F′(q0)) dθ(q0 − q∗)

)
. (14)

By (5), (9) (for m = 1), (13) (for q = q0), (C2), (C3) and (14), we have

‖y0 − q∗‖ ≤
∫ 1

0 ω((1− θ)‖q0 − q∗‖) dθ‖q0 − q∗‖
1−ω0(‖q0 − q∗‖)

≤ h1(‖q0 − q∗‖)‖q0 − q∗‖ ≤ ‖q0 − q∗‖ < d (15)

showing (10) for i = 0 and y0 ∈ B(q∗, d).
Next, we shall establish the invertibility of A0 provided that q0 6= q∗ (otherwise, the

proof for items (10) and (11) is terminated). In view of (5), (8), (C2) and (15), we have

‖(F′(q∗)(q0 − q∗))−1(F(q0)− F(q∗)− F′(q∗)(q0 − q∗) + (δ− 2)(F(y0)− F(q∗)))‖

≤ 1
‖q0 − q∗‖

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
F′(q∗)−1F′(q∗ + θ(q0 − q∗))− F′(q∗)) dθ

∣∣∣∣∣
∣∣∣∣∣ ‖q0 − q∗‖

+ |δ− 2|
∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
F′(q∗)−1F′(q∗ + θ(y0 − q∗)) dθ

∣∣∣∣∣
∣∣∣∣∣ ‖y0 − q∗‖]

≤
∫ 1

0
ω0(θ‖q0 − q∗‖) dθ + |δ− 2|

∫ 1

0
ω1(θh1(‖q0 − q∗‖)‖q0 − q∗‖ dθh1(‖q0 − q∗‖)

= p(‖q0 − q∗‖) ≤ p(d) < 1, (16)

so
‖A−1

0 F′(q∗)‖ ≤
1

1− p(‖q0 − q∗‖)
, (17)

and q1 is well defined by the second substep of KLFM, from which we can also write

q1 − q∗ = y0 − q∗ − F′(y0)
−1F′(y0) + F′(y0)

−1F′(y0)

− A−1
0 B0F′(q0)

−1F′(y0) + F′(q0)
−1F′(y0)− F′(q0)

−1F′(y0)

= y0 − q∗ − F′(y0)
−1F′(y0) + (F′(y0)

−1 − F′(q0)
−1)F(y0)

− (A−1
0 B0 − I)F′(q0)

−1F′(y0)

= (y0 − q∗ − F′(y0)
−1F′(y0)) + F′(y0)

−1(F′(q0)− F′(y0))F′(q0)
−1F(y0)

− A−1
0 (B0 − A0)F′(q0)

−1F(y0). (18)
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It then follows by (5), (9) (for m = 2), (13) (for q = q0, y0), (15), (17) and (18) that

‖q1 − q∗‖ ≤
[∫ 1

0 ω((1− θ)‖y0 − q∗‖) dθ

1−ω0(‖y0 − q∗‖)

+
(ω0(‖q0 − q∗‖) + ω0(‖y0 − q∗‖))

∫ 1
0 ω1(θ‖y0 − q∗‖) dθ

(1−ω0(‖q0 − q∗‖))(1−ω0(‖y0 − q∗‖))

+
2
∫ 1

0 ω1(θ‖y0 − q∗‖) dθ

(1−ω0(‖q0 − q∗‖)(1− p(‖q0 − q∗‖))

]
‖y0 − q∗‖

≤ h2(‖q0 − q∗‖)‖q0 − q∗‖ ≤ ‖q0 − q∗‖, (19)

showing (11) for i = 0 and q1 ∈ B(q∗, d). By exchanging q0, y0 and q1 for qi, yi and qi+1 in
the preceding calculations, we complete the induction for items (10) and (11). Hence, by
the estimation

‖qi+1 − q∗‖ ≤ r‖qi − q∗‖ < d, (20)

where r = h2(‖q0 − q∗‖) ∈ [0, 1), we deduce that lim
i→∞

qi = q∗ and qi+1 ∈ B(q∗, d). The

uniqueness part is shown by setting Q =
∫ 1

0 F′(q∗ + θ(y− q∗)) dθ for y ∈ T1 with F(y) = 0.
Using (C1) and (C4), we obtain

‖F′(q∗)−1(Q− F′(q∗))‖ ≤
∫ 1

0
ω0(θ‖y− q∗‖) dθ

≤
∫ 1

0
ω0(θd∗) dθ < 1, (21)

so we conclude q∗ = y by the identity 0 = F(y)− F(q∗) = Q(y− q∗) and the invertibility
of Q.

Next, we present the ball convergence analysis of JLFM similarly. However, this time,
functions are defined by

h1(t) =

∫ 1
0 ω((1− θ)t) dθ + |1− α|

∫ 1
0 ω1(θt) dθ

1−ω0(t)

and

h2(t) = h1(t) +
|γ|(ω0(t) + ω0(h1(t)t))

∫ 1
0 ω1(θt) dθ

(1−ω0(t))2(1− p(t))
,

where

p(t) =
|β|(ω0(t) + ω0(h1(t)t))

1−ω0(t)
.

The convergence radius is given by

d = min{dk}, k = 1, 2, (22)

where dk are supposed to be zeros of the functions hk(t)− 1, respectively. The functions hk
are motivated by the estimates (obtained under the conditions (C) for d̃ = d):

yn − q∗ = qn − q∗ − F′(qn)
−1F(qn) + (1− α)F′(qn)

−1F(qn)

so

‖yn − q∗‖ ≤
(
∫ 1

0 ω((1− θ)‖qn − q∗‖) dθ + |1− α|
∫ 1

0 ω1(θ‖qn − q∗‖) dθ)‖qn − q∗‖
1−ω0(‖qn − q∗‖)

≤ h1(‖qn − q∗‖)‖qn − q∗‖ ≤ ‖qn − q∗‖ < d,
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qn+1 − q∗ = yn − q∗ + γC−1
n F′(qn)

−1(F′(yn)− F′(qn))F′(qn)
−1F(qn),

so

‖qn+1 − q∗‖ ≤
[

h1(‖qn − q∗‖)

+
|γ|(ω0(‖qn − q∗‖) + ω0(‖yn − q∗‖))

∫ 1
0 ω1(θ‖qn − q∗‖) dθ

(1−ω0(‖qn − q∗‖))2(1− p(‖qn − q∗‖))

]
‖qn − q∗‖

≤ h2(‖qn − q∗‖)‖qn − q∗‖ ≤ ‖qn − q∗‖,

where we also used

‖Cn − I‖ = |β| ‖F′(qn)
−1(F′(yn)− F′(qn))‖

≤ |β|(ω0(‖qn − q∗‖) + ω0(‖yn − q∗‖))
1−ω0(‖qn − q∗‖)

≤ p(‖qn − q∗‖) ≤ q(d) < 1,

so
‖C−1

n ‖ ≤
1

1− p(‖qn − q∗‖)
.

Hence, we arrived at the corresponding ball convergence result for JLFM:

Theorem 2. Under conditions (C) for d̃ = d, choose starting point q0 ∈ B(q∗, d̃) \ {q∗}. Then,
the conclusions of Theorem 1 hold for JLFM with d and hk replacing d and hk, respectively.

3. Comparison of Attraction Basins

The dynamical qualities of KLFM and JLFM were compared by analyzing the attraction
basins for these methods. For generating the basins, these methods were applied to
various complex polynomials Wk(z), k = 1, 2, ..., 10, of degrees more than or equal to
two. A region Z = [−4, 4] × [−4, 4] on C was selected with a grid of 400× 400 points.
Then, these methods were applied to find solutions of the considered polynomials Wk(z),
where each point z0 ∈ Z was engaged as a stater. If the point z0 belonged to the set
{z0 ∈ C : zj → z∗ as j → ∞}, then it remained in the basin of a zero z∗ of a considered
polynomial. We represent this z0 with a distinct color related to z∗. We assigned the light
to dark colors to each z0 as per the number of iterations. Non-convergence zones are
displayed in black. We use the accuracy ‖zj − z∗‖ < 10−6 or executed 100 iterations for
terminating the process. The diagrams were designed in MATLAB 2019a.

We start by considering polynomials W1(z) = z2 − 1 and W2(z) = z2 − z − 1 of
degree two. The results of the comparison between the attraction basins for KLFM and
JLFM are displayed in Figures 1 and 2. In Figure 1, green and pink areas indicate the
attraction basins corresponding to the zeros −1 and 1, respectively, of W1(z). The basins
of the solutions 1+

√
5

2 and 1−
√

5
2 of W2(z) = 0 are shown in Figure 2 in pink and green,

respectively. Figures 3 and 4 offer the attraction basins for KLFM and JLFM associated
with the zeros of W3(z) = z3 + (−0.7250+ 1.6500i)z− 0.2750− 1.6500i and W4(z) = z3− z.
The basins for KLFM and JLFM associated with the zeros 1, −1.401440 + 0.915201i and
0.4014403− 0.915201i of W3(z) are given in Figure 3 using green, pink and blue, respectively.
In Figure 4, the basins of the solutions 0, 1 and −1 of W4(z) = 0 are yellow, magenta and
cyan, respectively. Next, we used polynomials W5(z) = z4 − 10z2 + 9 and W6(z) = z4 − z
of degree four to compare the attraction basins for KLFM and JLFM. The basins for KLFM
and JLFM corresponding to the zeros−1, 3,−3 and 1 of W5(z) are demonstrated in Figure 5
using yellow, pink, green and blue, respectively. Figure 6 provides the comparison of basins
for these schemes associated with the solutions 0, 1, − 1

2 −
3
2 i and − 1

2 + 3
2 i of W6(z) = 0,

which are denoted in green, blue, yellow and red regions, respectively. Moreover, we
selected polynomials W7(z) = z5 + z and W8(z) = z5 − 5z3 + 4z of degree five to design



Symmetry 2022, 14, 2206 8 of 14

and compare the attraction basins for KLFM and JLFM. In Figure 7, green, cyan, red, pink
and yellow regions illustrate the attraction basins of the solutions −0.707106− 0.707106i,
−0.707106 + 0.707106i, 0.707106 + 0.707106i, 0.707106− 0.707106i and 0, respectively, of
W7(z) = 0. Figure 8 gives the basins of zeros 0, 2,−1,−2 and 1 of W8(z) in yellow, magenta,
red, green and cyan, respectively. Lastly, sixth-degree complex polynomials W9(z) =
z6 + z − 1 and W10(z) = z6 − 0.5z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 + i)z2 − 1
4 (19 +

3i)z + 3
2 − 3i are considered. In Figure 9, green, pink, red, yellow, cyan and blue colors

illustrate the basins in relation to the solutions −1.134724, 0.629372− 0.735755i, 0.7780895,
−0.451055 − 1.002364i, 0.629372 + 0.735755i and −0.451055 + 1.002364i of W9(z) = 0,
respectively. In Figure 10, the attraction basins for KLFM and JLFM corresponding to
the zeros 1− i, − 1

2 −
i
2 , − 3

2 i, 1, i and −1 + 2i of W10(z) are given in blue, yellow, green,
magenta, cyan and red, respectively.

From Figures 1–10, we can deduce that KLFM has the wider basins in comparison
to JLFM. It can be seen that the black zones that appear in Figures 1, 5 and 8 only appear
for the JLFM and not the KLFM. Furthermore, the KLFM is better than the JLFM in terms
of less chaotic behavior, as it can be seen that basins are bigger with the KLFM, and
there are fewer changes of basin than for the JLFM in each figure, which means that the
fractal dimension is smaller in KLFM, and consequently less chaotic. Hence, the overall
conclusion of this comparison is that the numerical stability of KLFM is higher than
that of JLFM. This means that KLFM is the preferred option for solving real problems.
Moreover, in relation to the patterns that appear in the basin of attraction, it is clear that
the KLFM is similar to third-order methods such us Halley or Chebyshev methods, and
the immediate basin of attraction is big, and black zones are avoided. On the other hand,
in the JLFM, everything seems more independent with different structures; for example,
see Figure 9, where the roots are bounded by a small basin, and then a really big one in
red appears in Figures 1, 5 and 8, where zones with no convergence appear, especially in
Figure 5 where almost the half of the plane is black. Finally, in Figures 4, 6, 7 and 9, it seems
that compactification appears in the roots, but one of the basins is much bigger than the
rest, and this behavior is really interesting and could be considered in the future.
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Figure 1. Attraction basins comparison between KLFM and JLFM in relation to W1(z).
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Figure 2. Attraction basins comparison between KLFM and JLFM in relation to W2(z).
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Figure 3. Attraction basins comparison between KLFM and JLFM in relation to W3(z).
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Figure 4. Attraction basins comparison between KLFM and JLFM in relation to W4(z).
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Figure 5. Attraction basins comparison between KLFM and JLFM in relation to W5(z).
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Figure 6. Attraction basins comparison between KLFM and JLFM in relation to W6(z).
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Figure 7. Attraction basins comparison between KLFM and JLFM in relation to W7(z).
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Figure 8. Attraction basins comparison between KLFM and JLFM in relation to W8(z).
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Figure 9. Attraction basins comparison between KLFM and JLFM in relation to W9(z).
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Figure 10. Attraction basins comparison between KLFM and JLFM in relation to W10(z).
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4. Numerical Examples

A comparison of the radii of convergence balls is presented in this section. By applying
the newly suggested theorems, the radii of KLFM and JLFM were obtained and compared
for three numerical problems.

Example 1. Let M = R and T = [−1, 1]. Consider F on T defined by

F(q) = eq − 1.

Using this definition, we have F′(q) = eq and the solution q∗ = 0. In order to verify the
conditions (C), we see that since F′(q∗) = 1,

| f ′(q∗)−1(F′(v)− F′(q∗))| = |ev − 1|

≤
∣∣∣∣1 + 12

2!
+ · · ·+ 1

n!
− 1
∣∣∣∣|v− 0|,

| f ′(q∗)−1(F′(u)− F′(z))| = |eu − ez| ≤ eξ |u− z|, ξ =
1

e− 1
,

|F′(q∗)−1F′(z)| = ez ≤ e
1

1−e ≤ 2,

since

T0 = [−1, 1] ∪ B
(

0,
1

e− 1

)
= B

(
0,

1
e− 1

)
.

Hence, we can choose

w0(t) = (e− 1)t, w(t) = e
1

e−1 t and w1(t) = 2.

Using Theorem 1 and Theorem 2, the values of d̃ (for δ = 2) and d were calculated and are
presented in Table 1.

Table 1. Comparison of convergence radii for Example 1.

KLFM JLFM

d1 = 0.382692 d1 = 0.382692
d2 = 0.130790 d2 = 0.114125
d̃ = 0.130790 d = 0.114125

Example 2. Let M = R and T = [−1, 1]. Define F on T by

F(q) = sin(q).

Using this definition, we have q∗ = 0, such that F′(q) = cos(q):

|F′(q∗)−1(F′(v)− F′(q∗))| = | sin(ξ)||v− 0| ≤ 1|v− 0|,
|F′(q∗)−1(F′(u)− F′(z))| = | sin(ξ)||u− z| ≤ 1|u− z|,

|F′(q∗)−1F′(z)| = | cos(z)| ≤ 1/

Hence, we can choose w0(t) = w(t) = w1(t) = 1. Using Theorem 1 and Theorem 2, the
values of d̃ (for δ = 2) and d are calculated and presented in Table 2.

Example 3. In the end, we address the motivational problem given in the first section. We have
q∗ = 1. Additionally, ω0(t) = ω(t) = 96.662907t and ω1(t) = 2. We applied Theorem 1 and
Theorem 2 to compute values of d̃ (for δ = 2) and d. These values are presented in Table 3.
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Table 2. Comparison of convergence radii for Example 2.

KLFM JLFM

d1 = 0.666667 d1 = 0.666667
d2 = 0.318305 d2 = 0.243217
d̃ = 0.318305 d = 0.243217

Table 3. Comparison of convergence radii for Example 3.

KLFM JLFM

d1 = 0.006897 d1 = 0.006897
d2 = 0.002379 d2 = 0.002039
d̃ = 0.002379 d = 0.002039

5. Conclusions

We provided the ball analysis results for the KLFM and JLFM under the same set
of conditions. To establish these results, the first derivative and generalized Lipschitz
conditions were employed. In this way, the usefulness of these methods was improved.
In addition, the convergence ball and dynamics comparison between these methods were
presented. Based on the comparison results, it was derived that the stability of the KLFM
is higher, and it is a much better method than the JLFM in terms of convergence ball
and dynamical quality. Notice that although method (3) (JLFM) was studied on M, the
same proofs can be given for F : D ⊆ B1 → B2, where B1 and B2 are Banach spaces and
D 6= ∅ is open and convex. Hence, the earlier result also extends to hold for Banach
space-valued equations. As you may have noticed, our methodology does not depend on
the methods. Therefore, it can be used to extend the usage of other methods using inverses.
That includes single and multistep methods. Our future research will include the study of
implicit methods, such as the ones in [30–32] and other such methods along the same lines,
since they provide better stability during data processing.
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