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Abstract: Based on the boson realization of the Euclidean algebras, it is found that the E(n) dynamical
symmetry (DS) may emerge at the critical point of the U(n)-SO(n + 1) quantum phase transition. To
justify this finding, we provide a detailed analysis of the transitional Hamiltonian in the U(n + 1)
vibron model in both quantal and classical ways. It is further shown that the low-lying structure of
82Kr can serve as an excellent empirical realization of the E(5) DS, which provides a specific example
of the Euclidean DS in experiments.
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1. Introduction

Dynamical symmetries (DSs) play an essential role in deeply understanding dynamical
structures of quantum many-body systems. In general, a DS is supposed to occur when
the Hamiltonian of a system can be expressed as a combination of the Casimir operators
of a chain of Lie group, G ⊃ G′ ⊃ G′′ · · · [1]. The DS of this type can be recognized by
analyzing the associated algebraic structure. The typical examples are those associated with
the interacting boson model (IBM) [2] and the U(4) vibron model [3]. In the IBM, there are
three typical DSs, U(5), SO(6) and SU(3), with their group generators being all reduced from
the U(6) ones, which are composed of 36 bilinear products of the s d boson operators [2].
Apart from the exact DSs, approximate DSs are suggested to exist in many-body systems too
and yield some important symmetry-based concepts. For instance, the partial dynamical
symmetries [4–6] and quasidynamical symmetries [7–9] have been found to occur in the
IBM and other algebraic models. Approximate DSs are usually hidden behind a complicate
parameter relation of the Hamiltonian of a given system. One example is just the SU(3)
approximate symmetry in the IBM [10,11], which was found to be preserved along the
trajectory in the IBM parameter space close to the Alhassid–Whelan arc of regularity [12].

There is another type of DS, called critical point symmetry (CPS) [13]. As the first
example, the E(5) CPS was proposed to describe the spectra of nuclei around the critical
point of the U(5)-SO(6) quantum phase transition (QPT) [13]. This mode was initially
built in the Bohr–Mottelson model [14] with the collective potential function in the CPS
Hamiltonian being taken as an infinite square well in order to simulate the case at the
critical point of the U(5)-SO(6) QPT in the IBM [2]. In [15,16], the d-boson realization of the
five-dimensional Euclidean DS was proposed, by which a much closer relation between the
E(5) CPS and the U(5)-SO(6) QPT was revealed. The E(5) CPS has been further extended
to the cases of n = 3 [17] and n = 2 [18,19] to describe other quantum phase transitional
systems. In view of the success of the Euclidean mode as a benchmark for critical structure,
it is necessary to provide a general analysis of how an Euclidean DS shows up in quantum
many-body systems.

In this work, we will focus on a boson realization of the n-dimensional Euclidean
algebra with n = 2l + 1 and l = 0, 1, 2, · · · and try to reveal the connection between the E(n)
DS and the U(n + 1) vibron model [1] which is used to describe the 2l-pole deformation
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of a many-body system. The famous examples of the U(n + 1) vibron model are just
the IBM (U(6)) describing the quadrupole deformation of nuclei [2] and the U(4) vibron
model describing the spectra of diatomic molecules corresponding to a dipole-deformed
system [3]. They are also two important examples that will be discussed in this work.

2. The Boson Realization of the E(n) Algebra

The n-dimensional Euclidean (E(n)) space with n = 2l + 1 is generated by the coordinates
q(l)u (u = 0, ±1, ±2, ±l), to which the conjugate momenta are defined as p(l)u = −i ∂

∂q(l)u
. The

associated E(n) group symmetry is then described as the invariance under the translations
and rotations in the E(n) space [1]. For convenience, the symbols pu(qu) will be used instead
of p(l)u (q(l)u ) in the following discussion. The other conventions are

Ã(λ)
u = (−1)λ−u A(λ)

−u , (1)

(A(λ))2 = ∑
u

A(λ)
u Ã(λ)

u = (Ã(λ))2, (2)

Ã(λ) · Ã(λ) = ∑
u
(−1)u Ã(λ)

u Ã(λ)
−u , (3)

(Ã(λ) × B̃(λ′))
(λ′′)
u′′ = ∑

uu′
〈λuλ′u′ | λ′′u′′〉Ã(λ)

u B̃(λ′)
u′ , (4)

in which Ã(λ)
u (B̃(λ)) represents a spherical tensor of spin λ. As we know, the E(n) group

can be expressed as the semidirect product of R(n) and SO(n), namely

E(n) = R(n)⊗s SO(n) , (5)

where R(n) represents the n-dimensional translation group generated by i p̃u and SO(n)
denotes the n-dimensional rotation group generated by T̂(k)

u ≡ i(q × p̃)(k)u with k = 1,
3, · · ·, 2l − 1. The kinetic energy term p2 = ∑u p̃u pu is shown to be an invariant quantity
of the E(n) group with [i p̃u, p2] = 0 and [T̂(k)

u , p2] = 0. Considering the conservation
of angular momentum, the E(n) DS in a many-body system may be characterized by the
group chain

E(n) ⊃ SO(n) ⊃ SO(3) (6)

with the angular momentum group SO(3) being generated by T̂(1)
u .

To build a boson realization of the E(n) algebra, one can define the boson operators of
spin l by

bl†
u =

1√
2
[qu − i p̃u], bl

u =
1√
2
[q̃u + ipu] , (7)

where l = 0, 1, 2, · · · stands for the boson type, s, p, d, · · · . The definition in (7) is a
direct extension of the l = 2 case in [20]. With this definition, it is easy to prove the
boson commutation relation, [bl′

u′ , bl†
u ] = δu′uδl′ l . The n(n + 1)/2 generators of the E(n) Lie

algebra are then rewritten as

Λ̂(l)
u ≡ i p̃u =

1√
2
[b̃l

u − bl†
u ], (8)

T̂(k)
u ≡ i(q× p̃)(k)u = (bl† × b̃l)

(k)
u , k = 1, 3, · · ·, 2l − 1 . (9)

The 2nd-order Casimir operator of the E(n) group is given by

Ĉ2[E(n)] ≡ p2 = n̂bl +
n
2
− 1

2
(−)l

(
P̂†

l + P̂l

)
(10)
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with

n̂bl = ∑
u

bl†
u bl

u, P̂l = ∑
u
(−)u b̃l

u b̃l
−u, P̂†

l = (P̂l)
† . (11)

It can be proved that these generators satisfy the commutation relations:

[Λ̂(l)
u , Λ̂l

v] = 0 , (12)

[T̂(k)
u , Λ̂(l)

v ] = −

√
(2k + 1)
2l + 1

〈kulv|lu + v〉Λ̂(l)
u+v , (13)

[T̂(k)
u , T̂(k̄)

ū ] = −2
√
(2k + 1)(2k̄ + 1) ∑

λ=odd

{
k, k̄, λ
l, l, l

}
× 〈kuk̄ū|λu + ū〉 T̂(λ)

u+ū , (14)

and [
Λ̂(l)

u , Ĉ2[E(n)]
]
=
[

T̂(k)
u , Ĉ2[E(n)]

]
= 0 . (15)

Clearly, n is an odd number with n = 2l + 1 and E(n) is a non-compact Lie group.

3. The U(n + 1) Algebra and Group Contraction

The U(n + 1) vibron model with n = 2l + 1 can be applied to describe the 2l-pole
deformation dynamics of a many-body system [1]. The Hamiltonian in the U(n + 1) vibron
model is constructed from two kinds of boson operators: the scalar s-boson and the l-th
rank tensor bl-boson. Then, the (n + 1)2 bilinear operators

s†s, s†bl
u, bl†

u s, bl†
u bl

v u, v = −l, −l + 1, · · ·, l (16)

may generate the maximal dynamical symmetry group, U(n + 1). One of its subgroups is
just U(n) generated by

B̂(k)
q = (bl† × b̃l)

(k)
q , k = 0, 1, 2, · · ·, 2l (17)

with the algebraic relation

[B̂(k)
u , B̂(k̄)

ū ] =
√
(2k + 1)(2k̄ + 1)∑

λ

{
k, k̄, λ
l, l, l

}
(18)

×
(
(−)λ − (−)k+k̄

)
〈kuk̄ū|λu + ū〉B̂(λ)

u+ū

and another one is SO(n + 1) generated by

Q̂u = (s† × b̃l + bl† × s̃)(l)u , T̂(k)
q = B̂(k)

q , k = odd (19)

with the algebraic relation

[Q̂u, Q̂v] = 2 ∑
k
〈lulv|ku + v〉T̂(k)

u+v , (20)

[T̂(k)
u , Q̂v] = −

√
2k + 1
2l + 1

〈kulv|lu + v〉Q̂u+v . (21)
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Note that [T̂(k)
u , T̂(k̄)

ū ] is already given in (14). Clearly, SO(n) is the common subgroup
of U(n) and SO(n + 1). Accordingly, two typical DSs in the U(n + 1) vibron model can be
characterized by the group chains [1]

U(n + 1) ⊃ U(n) ⊃ SO(n) ⊃ SO(3) , (22)

U(n + 1) ⊃ SO(n + 1) ⊃ SO(n) ⊃ SO(3) . (23)

The relevant Casimir operators are defined by

Ĉ1[U(n)] = n̂bl , (24)

Ĉ2[U(n)] = n̂bl (n̂bl + n− 1), (25)

Ĉ2[SO(n + 1)] = (−1)lQ̂ · Q̂ + 2 ∑
k

T̂(k) · T̂(k), (26)

Ĉ2[SO(n)] = 2 ∑
k

T̂(k) · T̂(k), (27)

Ĉ2[SO(3)] =
l(l + 1)(2l + 1)

3
T̂(1) · T̂(1) , (28)

where the operators n̂bl , Q̂u and T̂(k)
u are defined in (11) and (19). The corresponding

eigenvalues can be expressed as

〈Ĉ1[U(n)]〉 = nbl , (29)

〈Ĉ2[U(n)]〉 = nbl (nbl + n− 1), (30)

〈Ĉ2[SO(n + 1)]〉 = σ(σ + n− 1), (31)

〈Ĉ2[SO(n)]〉 = ω(ω + n− 2), (32)

〈Ĉ2[SO(3)]〉 = L(L + 1) (33)

with the quantum numbers nbl , σ, ω, and L being used to signify the irreducible represen-
tations of U(n), SO(n + 1), SO(n) and SO(3), respectively [1].

It is interesting to find that the SO(n + 1) algebraic structure is very similar to the E(n)
one. Both of them have the SO(n) algebra as their subalgebra. If the generators are rescaled
by [11]

q̂u =
1√

C2[σ]
Q̂u (34)

with C2[σ] = σ(σ + 2l), the algebraic relation shown in (21) and (20) will be changed into

[T̂(k)
u , q̂v] = −

√
2k + 1
2l + 1

〈kulv|lu + v〉q̂u+v, (35)

[q̂u, q̂v] = 2 ∑
k
〈lulv|ku + v〉 1

C2[σ]
T̂(k)

u+v . (36)

In the σ→ ∞ limit, it is given by [q̂u, q̂v] ' 0 for small ω cases, in which the expectation
values 〈T̂(k)〉 should be small. By this procedure, one may obtain the same commutation
relations as those shown in (12)–(14) with the correspondence Λ̂ → q̂. It means that the
SO(n + 1) → E(n) contraction may happen in the σ → ∞ limit. Such a group contraction
for n = 5 was previously discussed in [11] and earlier in [21]. The present result is a direct
generalization of the n = 5 case. Another example worth mentioning is SU(3) → R(5)⊗s
SO(3), which can be achieved via a similar procedure [11,22]. This group contraction provides
the theoretical basis to construct the SU(3) image of the triaxial rotor dynamics [23,24], which
offers a microscopic way of understanding collective rotations in triaxial nuclei based on the
SU(3) shell model [25,26]. Different aspects of the SU(3) symmetry in nuclei are introduced
in [22].
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4. The Emergent E(n) DS in the U(n)-SO(n + 1) QPT

In contrast to the group contraction, we hope to emphasize in this work another way
in which the E(n) symmetry can dynamically emerge from the U(n + 1) vibron model. As
discussed above, U(n) and SO(n + 1) are two typical dynamical symmetry limits in the
vibron model. The Hamiltonian for either of them can be written as a linear combination
of the Casimir operators of the corresponding group chain so that the eigenvalues and
eigenvectors can be expressed in an analytical way (see Equations (29)–(33)). In general,
no analytical solutions can be achieved in the cases of symmetry mixing. Nevertheless,
beautiful algebraic solutions of the Hamiltonian mixing the U(n) and O(n + 1) DSs have
been obtained in [27,28] using the Bethe ansatz within an infinite-dimensional Lie algebra.

4.1. The Transitional Hamiltonian

To discuss a general situation in the U(n + 1) vibron model, we adopt here a schematic
Hamiltonian

Ĥ = ε
[
(1− η)n̂bl −

η

4N
(−1)lQ̂ · Q̂

]
(37)

= ε
[
(1− η)Ĉ1[U(n)]− η

4N
Ĉ2[SO(n + 1)]

+
η

4N
Ĉ2[SO(n)]

]
,

where N = ns + nbl represents the total boson number of the system and ε is a scale
parameter to be set with ε = 1 in the discussions. It is apparent that the system is in the
U(n) DS when the control parameter η = 0 and is changed into the SO(n + 1) DS when
η = 1. By varying η ∈ [0, 1], the Hamiltonian (37) describes a transitional situation in
between the U(n) and SO(n + 1) symmetry limits. In addition to U(n) and SO(n + 1), there
may exist other DSs in the U(n + 1) vibron model for n ≥ 5. For example, the SU(3) DS will
be involved in the n = 5 case [2]. Nonetheless, it is sufficient to discuss the cases involving
the U(n) and SO(n + 1) DSs for the present purpose. The reason is that the SO(n) ⊃ SO(3)
DS (see Equation (6)) will be conserved in the vibron model only in the U(n) and SO(n + 1)
limits or their mixing. Therefore, one only needs to analyze the transitional Hamiltonian,
such as that given in (37) to reveal the underlying E(n) DS in the U(n + 1) vibron model.

4.2. Quantal Analysis

As is known [11], if a system has an underlying symmetry of the group G, the corre-
sponding Hamiltonian should commute with all the generators of group G. To identify
the underlying E(n) DS in the parameter space of the vibron model, we examine the com-
mutation relations between the generators of the E(n) group defined in (8) and (9) and the
Hamiltonian (37). First of all, one can derive that

[T̂(k)
u , n̂bl ] = 0, (38)

[Λ̂(l)
u , n̂bl ] =

1√
2
(b̃l

u + bl†
u ), (39)

[Λ̂(l)
u , Q̂v] =

(−)l−u
√

2
δu,−v(s + s†) . (40)
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With the commutators, it is easy to prove [T̂(k)
u , Ĥ] = 0. This point actually reflects the

fact that T̂(k)
u as the generators of U(n) and SO(n + 1) should commute with their Casimir

operators. Furthermore, one can derive in the 〈n̂bl /N〉 → 0 limit that

[Λ̂(l)
u , Ĥ] =

√
2

2
(1− η)(b̃l

u + bl†
u )

−
√

2η

4N

(
s†s† b̃l

u + ssbl†
u + s†sb̃l

u + ss†bl†
u

)
≈ |〈n̂bl /N〉→0

√
2

2
(1− 2η)(b̃l

u + bl†
u ) . (41)

In the derivation, we used the replacements

s†(s) →
√

ns + 1(
√

ns)

=
√

N − nbl + 1(
√

N − nbl ) '
√

N , (42)

which should be well satisfied in the 〈n̂bl /N〉 → 0 limit due to N = nbl + ns. It is clear
that the commutator given in (41) will vanish at η = 1/2. Therefore, we conclude that
the vibron Hamiltonian (37) at the parameter point η = 1/2 is invariant under the E(n)
group transformations when 〈n̂bl /N〉 → 0. In other words, the E(n) DS will occur in the
U(n)-SO(n + 1) transitional region under this approximate condition.

To examine the required condition for the E(n) DS, we take n = 3 and n = 5 to
represent the examples of l = odd and l = even, respectively. For n = 5, the U(n + 1)
vibron model is reduced to the IBM (U(6)) [2]. Accordingly, the Hamiltonian in (37) can
be used to describe nuclear structural evolution from the spherical vibration (U(5) DS) to
γ-unstable rotation (SO(6) DS). To solve this Hamiltonian, one can diagonalize it within the
U(5) basis of the IBM

| φ〉U(5) =| N nd τ ∆ L〉 . (43)

Here, N, nd, τ and L represent the quantum numbers for U(6), U(5), SO(5) and SO(3),
while ∆ denotes the additional quantum number in the reduction SO(5)⊃SO(3) [2]. With
the solved wavefunctions, one can calculate the expectation value ρ(η) = 〈φ | n̂d/N | φ〉
for any given state | φ〉 to check the condition 〈n̂bl /N〉 → 0. If taking n = 3, the U(4)
vibron model for molecular spectra is obtained with the Hamiltonian in (37) being used to
describe the U(3)-SO(4) transition [3]. Similarly, one can worked out the expectation value
ρ(η) through diagonalizing the transitional Hamiltonian within the U(3) basis

| φ〉U(3) =| N np L〉 , (44)

where N, np and L represent the quantum numbers for U(4), U(3) and SO(3), respectively [3].
In (43) and (44), the quantum number of the angular momentum projection, M, is ignored
for convenience.

In Figure 1, the evolutions of ρ(η) for the lowest states with L = 0, 2, 4 are shown for
both the U(4) and U(6) models. The total boson numbers in the two models are both taken
as N = 100. One can find from Figure 1 that ρ(η) in the two models exhibit nearly the
same evolutional behaviors. Specifically, the values of ρ as a function of η remain with
ρ ∼ 0 for η ∈ [0, 1/2] and rapidly increase when η > 1/2. It is thus justified that the
condition 〈n̂bl /N〉 → 0 is well satisfied in the present cases. In particular, the larger the
boson number N, the better the approximation 〈n̂bl /N〉 → 0. If N → ∞, the condition
〈n̂bl /N〉 = 0 at η = 1/2 will be exactly achieved for the ground state as discussed later,
which means that E(n) could be an exact ground-state DS in the vibron model in the large
N limit. In addition, the sudden enhancements in ρ(η) as shown in Figure 1 actually
manifests that this is a precursor of the U(n)-SO(n + 1) QPT defined in the large-N limit.
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According to the Ehrenfest classification, such an QPT is suggested to be of the second
order. That is, the ground state energy Eg and its first derivative, ∂Eg

∂η , are both continuous

at the transitional point but the second derivative, ∂2Eg
∂η2 , is discontinuous [2]. Based on the

Hellmann–Feynman theorem, ∂En
∂η = 〈 ∂H

∂η 〉n, one can further derive that

∂eg

∂η
=

1
η
(eg − ρ(η)g),

∂2eg

∂η2 = − 1
η

∂ρ(η)g

∂η
, (45)

where eg ≡ Eg/N represents the ground state energy per boson. It is thus suggested
that the quantity ρ(η)g = 〈n̂l

b/N〉g may serve as a quantum order parameter [29] for the
U(n)-SO(n + 1) QPT. As seen in Figure 1, one can locate the critical point of this QPT at
ηc = 1/2. It means that the E(n) DS may also play a role of critical point symmetry (CPS) in
the U(n + 1) vibron model [13,30].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

U(4)

 

 

(
)

 L=0
 L=2
 L=4

(A)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

U(6)

 

 

(
)

 L=0
 L=2
 L=4

(B)

Figure 1. (A) The order parameter ρ(η) = 〈n̂l
b〉/N changes as a function of η with the results solved

from the U(4) model with N = 100 for the lowest states of L = 0, 2, 4. (B) The same as in (A) but for
those solved from the U(6) model.

4.3. Classical Analysis

In the following, we will give a classical analysis of the transitional Hamiltonian (37)
to further justify the hidden E((n)) DS. In the definitions (7), one can extract the scalar
boson operator in terms of the one-dimensional coordinate and momentum [20]

s† =
1√
2
[qs − ips], s =

1√
2
[qs + ips] . (46)

The inverse transformations

qs =
1√
2
[s† + s], ps =

i√
2
[s† − s] (47)

indicate qs = q̃s and ps = p̃s. Then, the transitional Hamiltonian (37) in the classical limit
can be expressed as

H(q, p, qs, ps) = (1− η)
1
2 ∑

u
(qu − i p̃u)(q̃u + ipu) (48)

− η

4N
(−1)lQ(q, p, qs, ps) ·Q(q, p, qs, ps)
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with

Q =
1
2

[
(qu − i p̃u)(qs + ips) + (qs − ips)(qu + i p̃u))

]
. (49)

For the classical system, the operators qu, pu, qs, ps become the ordinary coordinates
and momenta. Then, the classical Hamiltonian is reduced to

H(q, p, qs, ps) =
1− η

2
(q2 + p2) (50)

− η

4N

[
q2q2

s + p2 p2
s + 2psqs ∑

u
(puqu)

]
.

Accordingly, the boson number conservation condition N = ns + nb leads to the
classical constraint

1
2
(q2 + p2 + q2

s + p2
s ) = N . (51)

With the condition nb/N → 0 indicating s†(s) '
√

N, one may obtain ps = 0 and
qs =

√
2N (see Equation (47)). Then, the classical Hamiltonian (50) is further reduced to

H(q, p, qs =
√

2N, ps = 0) ' 1− 2η

2
q2 +

1− η

2
p2 . (52)

It is easy to be deduced from (52) that the Hamiltonian describes an n-dimensional
harmonic oscillator with

H |η=0=
1
2
(q2 + p2) (53)

when η = 0 and describes an E(n) DS system with

H |η= 1
2
=

1
4

p2 =
1
4

Ĉ[E(n)] (54)

when η = 1/2. Obviously, the E(n) DS in its classical limit just describes a free Hamilto-
nian [30]. It is thus justified that the E(n) DS may also hide in the classical system described
by the same Hamiltonian under the same condition. Note that the approximation condition
nb/N → 0 is not satisfied for η > 1/2, which means that one cannot derive the classical
limit of the SO(n + 1) DS from (52) at η = 1.

In the quantal analysis, the condition nb/N → 0 is checked in a numerical way. In the
following, we will identify this condition at the mean-field level. To do that, one needs to
work out the scaled classical potential, which can be derived from the Hamiltonian (48)
and given as

V(q, qs) ≡
1
N

H(q, p, qs, ps) |p=0,ps=0 (55)

=
1− η

2N
q2 − η

4N2 q2q2
s .

The truly classical limit is obtained for N → ∞ with the inverse of the boson number
1/N playing a role of h̄ [12,31]. So, we rescale here the coordinates with q̄ = q/

√
N and

q̄s = qs/
√

N. The constraint condition in (51) is now changed into

1
2
(q̄2 + q̄2

s ) = 1 , (56)
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by which the scaled potential is further reduced to

V(q̄) = (
1
2
− η)q̄2 +

η

4
q̄4 (57)

with q̄2 ≤ 2. To see the deformation dependence of the potential, one should transform it
into the intrinsic coordinate system through a rotation with Euler angles Ω,

q̄u = ∑
v

D(l)
u,v(Ω)β̄v , (58)

where D(l) are the Wigner matrices of spin l and β̄v represent the intrinsic coordinates.
However, this transformation may generate q̄2 = β̄2 and q̄4 = β̄4, which leaves the potential
function form unchanged with

V(β̄) = (
1
2
− η)β̄2 +

η

4
β̄4 . (59)

It means that the classical potential is only a function of the intrinsic “deformation”

measured by β̄ =
√

β̄2. By further minimizing the potential with respect to β̄, one can
obtain the ground state energy per boson

eg(η) ≡ V(η, β̄e) =

{
0 , 0 ≤ η ≤ 1/2 ,

− (1−2η)2

4η , η > 1/2 ,
(60)

where β̄e denotes the optimal value of β̄, namely the ground state deformation. According
to the Ehrenfest classification, one can prove that there exists a second-order QPT occurring
at the parameter point η = 1/2, i.e., the U(n)-SO(n + 1) QPT. As noted above, the E(n) DS
may occur at the same parameter point η = 1/2. It is thus confirmed that the Euclidean
symmetry can indeed serve as a critical point symmetry.

For the U(n)-SO(n+ 1) QPT, the ground state deformation β̄e can be taken as the classic
order parameter [29]. Its values can be derived as

β̄e(η) =

{
0 , 0 ≤ η ≤ 1/2 ,√

2(η − 1/2)/η , η > 1/2 .
(61)

Then, one can extract the critical exponent u = 1/2 by expanding the order parameter
around the critical point ηc [17] with

[β̄e(η)− β̄e(ηc)] ∝ (η − ηc)
u . (62)

Based on the relation given in (45), one can further work out ρ(η)g in the large-N limit
(classical limit), which is given by

ρ(η)g =

{
0 , 0 ≤ η ≤ 1/2 ,

(2η−1)
2η , η > 1/2 .

(63)

The results indicate that the condition 〈n̂l
b/N〉 → 0 is strictly established in the large N

limit for η ∈ [0, 1/2]. Moreover, the evolution feature of ρ(η)g shown in Figure 2 confirms
that those presented in Figure 1 are indeed the finite-N precursors of the U(n)-SO(n + 1)
QPT defined in the classical limit, which in turn justifies the consistency between the
quantal analysis and classical analysis. It should be mentioned that one may obtain similar
results by using other mean-field techniques, such as the coherent state method adopted
in [32], where a classical analysis of the phase structure of the interacting boson models in
arbitrary dimension was provided.
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Figure 2. The evolution of ρ(η)g = 〈nl
b/N〉g as a function of η with the analytical expression given

in (63).

5. An Example of the E(5) DS

As is known, the concept of CPS was proposed [13,33] in the framework of the Bohr–
Mottelson model with the model predictions being well recognized in experiments [34–37].
Theoretically, the CPS method was extensively developed and became a “standard” way
in modeling transitional structures of even–even nuclei [38–51], odd–A nuclei [52–58] and
odd–odd nuclei [59]. The relevant case in this work is the E(5) CPS [13]. Compared with
the differential realization [13,30], the algebraic realization of the E(5) CPS was provided
in [15,16] and is currently generalized to more general cases. Note that the algebraic version
of the E(5) CPS is just the E(5) DS. To give a concrete application of the E(5) DS, we adopt
the Hamiltonian [16]

ĤE(5) = a Ĉ2[E(5)] + b Ĉ2[SO(5)] + c Ĉ2[SO(3)] (64)

with a, b, and c being adjustable parameters. To solve the E(5) Hamiltonian, one can expand
the eigenstates as [16]

|ξ τ ∆L〉 =
m

∑
k=0

Cξ
k (P̂†

l=2)
k|τ ∆L〉 , (65)

where Cξ
k are the expansion coefficients with ξ denoting the additional quantum number

used to distinguish different states with the same τ, ∆, and L values. Here, τ, ∆ and L are
the quantum numbers as same as those in the U(5) basis defined in (43). In principle, the
dimension of the model space should be set to infinity due to the non-compactness of the
E(5) group, which means that the number m could be taken as m→ ∞. Nevertheless, a nice
scaling behavior of Ĉ2[E(5)] was revealed in [15]. The results suggest that a large enough
value of m can guarantee the numerical solutions rather accurately. It would be convenient
to rescale the parameter a in (64) with a = αm due to this scaling feature. More discussions
on the solutions of the E(5) DS and their connections to the infinite square well potential
adopted in the original E(5) CPS can be found in [15,16].

In experiments, 82Kr can be taken as an example of the E(5) DS, as this nucleus
was very recently suggested to be a candidate of the E(5) CPS for the U(5)-SO(6) shape
phase transition [60]. In Figure 3, the low-lying level pattern of 82Kr is shown to compare
with the results solved from the Hamiltonian (64). For the B(E2) transitions, the E2
transitional operator in theory is chosen as T̂E2

u = e(d† + d̃)(2)u with the effective charge e
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being determined by fitting the data for B(E2; 2+1 → 0+1 ). Notably, the relative strength
of B(E2) transitions are only determined by the types of symmetry [2], which means that
the B(E2) ratios in the E(5) DS should be independent of the parameters a, b, c in the
Hamiltonian. This point was confirmed in the concretely numerical calculations [15,16].
One can find from Figure 3 that the experimental data for 82Kr are in good agreement
with the results solved from the E(5) DS Hamiltonian (64) for both the level energies and
the B(E2) structure. Besides those in the ξ = 1 family, the states in the ξ = 2 family,
0+ξ and 2+ξ , are also well reproduced by the theoretical calculations. A small deviation
from the experiments may be the 3+1 state, to which the related B(E2) transitions are
accurately predicted but the excitation energy is overestimated in theory by about 0.5 MeV.
It should be noted that the original E(5) CPS results including nearly the same B(E2)
structures as that shown in Figure 3 can be also applied to compare with the experimental
data [60]. However, no energy degeneracy appearing in experiments indicates that the
SO(5) symmetry is evidently broken in this nucleus. Removing the energy degeneracies
in the E(5) mode can be naturally realized by the present Hamiltonian (64). The results
confirm that the the low-lying dynamics in 82Kr are indeed dominated by the E(5) DS [60].
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Figure 3. The low-lying structure of 82Kr with the data taken from [60] is shown to compare with
the results solved from the E(5) Hamiltonian in (64) with the truncation m = 200, α = 100.2 keV,
b = 10 keV and c = 15 keV. In the comparison, all the B(E2) results have been normalized to
B(E2; 2+1 → 0+1 ) = 100 (in any units), and 0+τ and 0+ξ (2+ξ ) represent the ones in theory with ξ = 1
and ξ = 2, respectively.

6. Conclusions

In summary, a boson algebraic realization of the n-dimensional Euclidean group
symmetry with n = 2l + 1 is proposed, by which the E(n) DS hidden in the 2l-pole
deformed system described by the U(n + 1) vibron model is revealed. Along the group
contraction, it is shown that the E(n) algebra may be equivalent to the SO(n + 1) algebra in
the large σ limit. More importantly, it has been justified that the E(n) DS can dynamically
emerge at the critical point of the U(n)-SO(n + 1) QPT under the condition that is strictly
established in the classical limit and becomes a reasonable approximation for finite N.
This point provides a solid theoretical basis for the CPS role of E(n) in describing this
second-order QPT. This present study meanwhile generalizes our previous understanding
of the E(5) DS for nuclear structure [15,16]. As a new test, an E(5) DS Hamiltonian is applied
to reproduce the low-lying structure of 82Kr. A good agreement between the experimental
data and theoretical calculations confirms that the low-lying dynamics in this nucleus are
indeed dominated by the E(5) DS, thus adding further empirical evidence of the Euclidean
dynamical symmetry in experiments. It is worth mentioning that the E(3) DS [17] and
E(2) DS [18] were also applied to explore nuclear properties. The former is just a specific
case of E(n) with n = 2l + 1, but the latter with n = even cannot be directly derived from
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the present discussions. A boson realization of the E(2) algebras is given in [19] through
considering a two-dimensional vector boson. The present analysis of n = odd might be
extended along this line to n = even, which will be discussed elsewhere.
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