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Abstract: Several inverse integral inequalities were proved in 2004 by Yong. It is our aim in this paper
to extend these inequalities to time scales. Furthermore, we also apply our inequalities to discrete and
continuous calculus to obtain some new inequalities as special cases. Our results are proved using
some algebraic inequalities, inverse Hölder’s inequality and inverse Jensen’s inequality on time scales.
Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
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1. Introduction

The form of the established classical discrete Hardy–Hilbert double series inequality [1]
is given as follows: If {am} > 0, {bn} > 0, 0 < ∑∞

n=1 ap
n < ∞ and 0 < ∑∞

n=1 bq
n < ∞, then

we have
∞

∑
n=1

∞

∑
m=1

anbm

m + n
6

π

sin π
p

( ∞

∑
n=1

ap
n

) 1
p
( ∞

∑
m=1

bq
m

) 1
q

, (1)

where p > 1, q = p/p− 1.
The continuous versions of inequality (1) is given by:

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dxdy 6
π

sin π
p

( ∫ ∞

0
f p(x)dx

) 1
p
( ∫ ∞

0
gp′(x)dx

) 1
q

, (2)

unless f ≡ 0 or g ≡ 0, where f and g are measurable non-negative functions such that∫ ∞
0 f p(x)dx < ∞ and

∫ ∞
0 gp(x)dx < ∞. The constant π

sin π
p

, in (1) and (2), is the best

possible.

In [2], Pachpatte proved that if f ∈ C1[[0, x],R+], g ∈ C1[[0, y],R+] with f (0) =
g(0) = 0 and p, q are two positive functions defined for t ∈ [0, x) and τ ∈ [0, y), with
P(t) =

∫ t
0 p(τ)dτ and Q(t) =

∫ t
0 q(τ)dτ for s ∈ [0, x) and t ∈ [0, y), where x, y are positive

real numbers. Let Φ and Ψ be two real-valued non-negative, convex and sub-multiplicative
functions defined on [0, ∞). Then,

∫ x
0

∫ y
0

Φ( f (s))Ψ(g(t))
s + t

dsdt 6 L(x, y)
( ∫ x

0 (x− s)
(

p(s)Φ
(

f ′(s)
p(s)

)2

ds
) 1

2

×
( ∫ y

0 (y− t)
(

q(t)Ψ
(

g′(t)
q(t)

)2

dt
) 1

2

,

(3)

Symmetry 2022, 14, 2234. https://doi.org/10.3390/sym14112234 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112234
https://doi.org/10.3390/sym14112234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2822-4092
https://orcid.org/0000-0002-2878-5300
https://doi.org/10.3390/sym14112234
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112234?type=check_update&version=2


Symmetry 2022, 14, 2234 2 of 18

where

L(x, y) =
1
2

( ∫ x

0

(
Φ(P(s))

P(s)

)2

ds
) 1

2
( ∫ y

0

(
Ψ(Q(t))

Q(t)

)2

dt
) 1

2

.

In 2004, Yong [3] studied the following integral inequality:

Theorem 1. Let l, m > 1 r 6 0 and f (σ) > 0, g(τ) > 0 for σ ∈ (0, ξ), τ ∈ (0, ζ), where ξ, ζ
are positive real numbers and define

Θ(=) :=
∫ =

0
f (σ)dσ, and Ξ(ς) :=

∫ ς

0
g(τ)dτ,

for = ∈ (0, ξ) and ς ∈ (0, ζ). Then, for p−1 + q−1 = 1, p < 0 or 0 < p < 1

∫ ξ

0

∫ ζ

0

Θl(=)Ξm(ς)( (=r+ςr)
2

) 2
rp

d=dς > lm(ξζ)
1
p

( ∫ ξ

0
(ξ −=)

(
Θ f (=)

)qd=
) 1

q

×
( ∫ ζ

0
(ζ − ς)

(
Ξg(ς)

)qdς

) 1
q

(4)

unless f ≡ 0 or g ≡ 0, where Θ f (=) = Θl−1(=) f (=), Ξg(ς) = Ξm−1(ς)g(ς).

In 2009, Yang [4] studied the following integral inequality:

Theorem 2. Let p, q > 0, α > 1, γ > 1 and f (σ) > 0, g(τ) > 0 for σ ∈ (0, ξ), τ ∈ (0, ζ),
where ξ, ζ are positive real numbers and define

Θ(=) :=
∫ =

0
f (σ)dσ, and Ξ(ς) :=

∫ ς

0
g(τ)dτ,

for = ∈ (0, ξ) and ς ∈ (0, ζ). Then,

∫ ξ

0

∫ ζ

0

Θp(=)Ξq(ς)

γ=
(α−1)(α+γ)

αγ + ας
(α−1)(α+γ)

αγ

d=dς 6 D(p, q, ξ, ζ, α, γ)

( ∫ ξ

0
(ξ −=)

(
Θp−1(=) f (=)

)αd=
) 1

α

×
( ∫ ζ

0
(ζ − ς)

(
Ξq−1(ς)g(ς)

)γdς

) 1
γ

(5)

unless f ≡ 0 or g ≡ 0, where D(p, q, ξ, ζ, α, γ) = pq
α+γ ξ

α−1
α ζ

γ−1
γ .

In this paper, we prove some new dynamic inequalities of Hilbert type and their
converses on time scales. From these inequalities, as special cases, we formulate some
special integral and discrete inequalities. Symmetry plays an essential role in determining
the correct methods to solve dynamic inequalities.

Now, we present some fundamental concepts and effects on time scales which are
beneficial for deducing our main results. In 1988, S. Hilger [5] presented time scale the-
ory to unify continuous and discrete analysis. For some Hilbert-type integral, dynamic
inequalities and other types of inequalities on time scales, see the papers [2,3,6–16]. For
more details on time scale calculus see [17].

We need the following important relations between calculus on time scales T and
either continuous calculus on R or discrete calculus on Z. Note that:

(i) If T = R, then

σ(ς) = ς, µ(ς) = 0, f ∆(ς) = f ′(ς),
∫ b

a
f (ς)∆ς =

∫ b

a
f (ς)dς. (6)
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(ii) If T = Z, then

σ(ς) = ς + 1, µ(ς) = 1, f ∆(ς) = f (ς + 1)− f (ς),
∫ b

a
f (ς)∆ς =

b−1

∑
ς=a

f (ς). (7)

Next, we write Hölder’s inequality and Jensen’s inequality on time scales.

Lemma 1 (Dynamic Hölder’s Inequality [18]). Let a, b ∈ T and f , g ∈ Crd([a, b]T, [0, ∞)). If
p, q > 1 with 1

p + 1
q = 1, then

∫ b

a
f (ς)g(ς)∆ς ≤

[ ∫ b

a
f p(ς)∆ς

] 1
p
[ ∫ b

a
gq(ς)∆ς

] 1
q

. (8)

This inequality is reversed if 0 < p < 1 and if p < 0 or q < 0.

Lemma 2 (Dynamic Jensen’s Inequality [18]). Let a, b ∈ T and c, d ∈ R. Assume that
g ∈ Crd

(
[a, b]T, [c, d]

)
and r ∈ Crd

(
[a, b]T,R

)
are non-negative with

∫ b
a r(ς)∆ς > 0. If φ ∈

Crd
(
(c, d),R

)
is a convex function, then

φ

(∫ b
a g(ς)r(ς)∆ς∫ b

a r(ς)∆ς

)
6

∫ b
a r(ς)φ(g(ς))∆ς∫ b

a r(ς)∆ς
. (9)

This inequality is reversed if φ ∈ Crd
(
(c, d),R

)
is concave.

Moreover, we use the following definition and lemma as we see in the proof of our
results:

Definition 1. Λ is called a supermultiplicative function on [0, ∞) if

Λ(xy) > Λ(ξ)Λ(ζ), for all ξ, ζ > 0. (10)

Lemma 3 ([19]). Let T be a time scale with ξ, a ∈ T such that ξ > a. If f > 0 and α > 1, then( ∫ ξ

a
f (τ)∆τ

)α

> α
∫ ξ

a
f (η)

( ∫ η

a
f (τ)∆τ

)α−1

∆η. (11)

Now, we present the formula that reduces double integrals to single integrals, which
is desired in [9].

Lemma 4. Let χ : T −→ R and u, =, θ ∈ T. Then,∫ =
u

∫ θ

u
χ(τ)∆τ∆θ =

∫ =
u

(=− σ(θ))χ(θ)∆θ f or = ∈ T, (12)

assuming the integrals considered exist.

The following section contains our main results:

2. Main Results

In the next theorems, we assume that p < 0 and 1
p + 1

q = 1.
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Theorem 3. Let T be time scale with L, K > 1 and =, ς, ς0, ξ, ζ ∈ T. Assume a(τ) and b(τ)
are two non-negative and right-dense continuous functions on [ς0, ξ] and [ς0, ζ], respectively, and
define

ψ(=) :=
∫ =

ς0

a(τ)∆τ and ϕ(ς) :=
∫ ς

ς0

b(τ)∆τ,

then, for = ∈ [ς0, ξ] and ς ∈ [ς0, ζ], we have that

∫ ξ

ς0

∫ ζ

ς0

ψK(=)ϕL(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> C1(K, L, p, p∗)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(
a(=)ψK−1(=)

)p∆=
) 1

p

×
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))
(
b(ς)ϕL−1(ς)

)p∗∆ς

) 1
p∗

, (13)

where
C1(K, L, p, p∗) =

KL

(p + p∗)
p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗ .

Proof. By using the inequality (11), we obtain

ψK(=) > K
∫ =

ς0

a(η)ψK−1(η)∆η, (14)

ϕL(ς) > L
∫ ς

ς0

b(η)ϕL−1(η)∆η. (15)

Applying inverse Hölder’s inequality on the right hand side of (14) with indices p and p
p−1 ,

we have

ψK(=) > K(=− ς0)
p−1

p

( ∫ =
ς0

(
a(η)ψK−1(η)

)p∆η

) 1
p

. (16)

Applying inverse Hölder’s inequality on the right hand side of (15) with indices p∗ and
p∗

p∗−1 , we also have that

ϕL(ς) > L(ς− ς0)
p∗−1

p∗

( ∫ ς

ς0

(
b(η)ϕL−1(η)

)p∗∆η

) 1
p∗

. (17)

From (16) and (17), we obtain

ψK(=)ϕL(ς) > KL(=− ς0)
p−1

p
(ς− ς0)

p∗−1
p∗

×
( ∫ =

ς0

(
a(η)ψK−1(η)

)p∆η

) 1
p

×
( ∫ ς

ς0

(
b(η)ϕL−1(η)

)p∗∆η

) 1
p∗

. (18)

Using the following inequality

λ
α′1
1 λ

α′2
2 >

(
1
α′
(
α′1λ1 + α′2λ2

))α′

, (19)
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where α′1, α′2 < 0 and λ1, λ2 > 0. Now, by setting λ1 = (=− ς0)
(p−1), λ2 = (ς− ς0)

(p∗−1),
α′1 = 1

p , α′2 = 1
p∗ and α′ = α′1 + α′2. we obtain that

(=− ς0)
p−1

p
(ς− ς0)

p∗−1
p∗ >

(
pp∗

p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

. (20)

Substituting (20) in (18), yields

ψK(=)ϕL(ς) >
KL

(p + p∗)
p+p∗
pp∗

(
p∗(=− ς0)

p−1 + p(ς− ς0)
p∗−1

) p+p∗
pp∗

×
( ∫ =

ς0

(
a(η)ψK−1(η)

)p∆η

) 1
p

×
( ∫ ς

ς0

(
b(η)ϕL−1(η)

)p∗∆η

) 1
p∗

. (21)

Dividing both side of (21) by
(

p∗(=− ς0)
p−1 + p(ς− ς0)

p∗−1
) p+p∗

pp∗
, we obtain that

ψK(=)ϕL(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

>
KL

(p + p∗)
p+p∗
pp∗

( ∫ =
ς0

(
a(η)ψK−1(η)

)p∆η

) 1
p

×
( ∫ ς

ς0

(
b(η)ϕL−1(η)

)p∗∆η

) 1
p∗

. (22)

Integrating both sides of (22) from ς0 to ξ and from ς0 to ζ, and applying inverse

Hölder’s inequality with indices p,
p

p− 1
and p∗,

p∗
p∗ − 1

, we obtain

∫ ξ

ς0

∫ ζ

ς0

ψK(=)ϕL(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
KL

(p + p∗)
p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗

( ∫ ξ

ς0

( ∫ =
ς0

(
a(η)ψK−1(η)

)p∆η

)
∆=
) 1

p

×
( ∫ ζ

ς0

( ∫ ς

ς0

(
b(η)ϕL−1(η)

)p∗∆η

)
∆ς

) 1
p∗

. (23)
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Applying Lemma 4 on the right hand side of (23), we have

∫ ξ

ς0

∫ ζ

ς0

ψK(=)ϕL(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
KL

(p + p∗)
p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗

( ∫ ξ

ς0

(ξ − σ(=))
(
a(=)ψK−1(=)

)p∆=
) 1

p

×
( ∫ ζ

ς0

(ζ − σ(ς))
(
b(ς)ϕL−1(ς)

)p∗∆ς

) 1
p∗

= C1(K, L, p, p∗)
( ∫ ξ

ς0

(ξ − σ(=))
(
a(=)ψK−1(=)

)p∆=
) 1

p

×
( ∫ ζ

ς0

(ζ − σ(ς))
(
b(ς)ϕL−1(ς)

)p∗∆ς

) 1
p∗

.

By using the facts ξ > ρ(ξ) and ζ > ρ(ζ), we obtain

∫ ξ

ς0

∫ ζ

ς0

ψK(=)ϕL(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> C1(K, L, p, p∗)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(
a(=)ψK−1(=)

)p∆=
) 1

p

×
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))
(
b(ς)ϕL−1(ς)

)p∗∆ς

) 1
p∗

.

This completes the proof.

Theorem 4. Let a(τ), b(η), ψ(=) and ϕ(ς) be defined as Theorem 3. Then, we have∫ ξ

ς0

∫ ζ

ς0

ψ(=)ϕ(ς)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
(ξ − ς0)

p−1
p (ζ − ς0)

p∗−1
p∗

(p + p∗)
p+p∗
pp∗

( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(
a(=)

)p∆=
) 1

p

×
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))
(
b(ς)

)p∗∆ς

) 1
p∗

.

Proof. Put K = L = 1 in (13). This completes the proof.

As a special case of Theorem 3, when T = R, we have ρ(ξ) = ξ, ρ(ζ) = ζ, σ(=) = =,
σ(ς) = ς, and we obtain the following result:
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Corollary 1. Assume that a(=) and b(ς) are non-negative functions and define ψ(=) :=
∫ =

0 a(η)dη

and ϕ(ς) :=
∫ ς

0 b(η)dη. Then,

∫ ξ

0

∫ ζ

0

ψK(=)ϕL(ς)(
p∗ =p−1 + p ςp∗−1

) p+p∗
pp∗

d=dς

> C3(K, L, p, p∗)
( ∫ ξ

0
(ξ −=)

(
a(=)ψK−1(=)

)pd=
) 1

p

×
( ∫ ζ

0
(ζ − ς)

(
b(ς)ϕL−1(ς)

)p∗dς

) 1
p∗

,

where

C3(L, K, p, p∗) =
KLξ

p−1
p ζ

p∗−1
p∗

(p + p∗)
p+p∗
pp∗

.

As special case of Theorem 3, when T = Z, we have ρ(ξ) = ξ − 1, ρ(ζ) = ζ − 1,
σ(=) = =+ 1, σ(ς) = ς + 1, and we obtain the following result:

Corollary 2. Assume that a(n) and b(m) are non-negative sequences and define

ψ(n) =
n

∑
==0

a(=) and ϕ(m) =
m

∑
k=0

b(k).

Then,

N

∑
n=1

M

∑
m=1

ψL(n)ϕK(m)(
p∗ np−1 + p mp∗−1

) p+p∗
pp∗

> C4(K, L, p, p∗)
( N

∑
n=1

((N − 1)− (n + 1))(a(n)ψL−1(n))p
) 1

p

×
( M

∑
m=1

((M− 1)− (m + 1))(b(m)ϕL−1(m))p∗
) 1

p∗
,

where

C4(K, L, p) =
KLN

p−1
p M

p∗−1
p∗

(p + p∗)
p+p∗
pp∗

.

Theorem 5. Let T be a time scale with =, ς, ς0, ξ, ζ ∈ T, ψ(=) and ϕ(ς) be as defined in
Theorem 3. Let f (τ) and g(η) be two non-negative and right-dense continuous functions on [ς0, ξ]
and [ς0, ζ], respectively. Suppose that Λ and Υ are non-negative, concave and supermultiplicative
functions defined on [0, ∞). Furthermore, assume that

Θ(=) :=
∫ =

ς0

f (τ)∆τ and Ξ(ς) :=
∫ ς

ς0

g(η)∆η, (24)
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then, for = ∈ [ς0, ξ] and ς ∈ [ς0, ζ], we have that∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> M1(p)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(

f (=)Λ
[

a(=)
f (=)

])p

∆=
) 1

p

(25)

×
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))

(
g(ς)Υ

[
b(ς)
g(ς)

])p∗
∆ς

) 1
p∗

,

where

M1(p) =
(

1
p + p∗

) p+p∗
pp∗
{ ∫ ξ

ς0

(
Λ(Θ(=)

Θ(=)

) p
p−1

∆=
} p−1

p
{ ∫ ζ

ς0

(
Υ(Ξ(ς))

Ξ(ς)

) p∗
p∗−1

∆ς

} p∗−1
p∗

.

Proof. Since Λ is a concave and supermultiplicative function, we obtain by applying
inverse Jensen’s inequality that

Λ(ψ(=)) = Λ
(Θ(=))

∫ =
ς0

f (τ) a(τ)
f (τ)∆τ∫ =

ς0
f (τ)∆τ

)

> Λ(Θ(=))Λ
(∫ =

ς0
f (τ) a(τ)

f (τ)∆τ∫ =
ς0

f (τ)∆τ

)
(26)

>
Λ(Θ(=))

Θ(=)

∫ =
ς0

f (τ)Λ
(

a(τ)
f (τ)

)
∆τ.

Applying inverse Hölder’s inequality with indices p and p
p−1 on the right hand side of (26),

we see that

Λ(ψ(=)) > Λ(Θ(=)
Θ(=) (=− ς0)

p−1
p

( ∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ

) 1
p

. (27)

Moreover, since Υ is a concave and supermultiplicative function, we obtain by applying
inverse Jensen’s inequality and inverse Hölder’s inequality with indices p∗ and p∗

p∗−1 that
we have

Υ(ϕ(ς)) >
Υ(Ξ(ς))

Ξ(ς)
(ς− ς0)

p∗−1
p∗

( ∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η

) 1
p∗

. (28)

From (27) and (28), we have

Λ(ψ(=))Υ(ϕ(ς)) > (=− ς0)
p−1

p (ς− ς0)
p∗−1

p∗

(
Λ(Θ(=)

Θ(=)

( ∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ

) 1
p
)

×
(

Υ(Ξ(ς))
Ξ(ς)

( ∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η

) 1
p∗
)

. (29)

By using inequality (19), we obtain that

(=− ς0)
p−1

p
(ς− ς0)

p∗−1
p∗ >

(
pp∗

p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

. (30)

From (29) and (30), we have that
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Λ(ψ(=))Υ(ϕ(ς)) >
(

pp∗
p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

(31)

×
(

Λ(Θ(=)
Θ(=)

( ∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ

) 1
p
)(

Υ(Ξ(ς))
Ξ(ς)

( ∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η

) 1
p∗
)

.

Then,

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

>
(

1
p + p∗

) p+p∗
pp∗
(

Λ(Θ(=)
Θ(=)

( ∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ

) 1
p
)

×
(

Υ(Ξ(ς))
Ξ(ς)

( ∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η

) 1
p∗
)

. (32)

Integrating both sides of (32) from ς0 to ξ and from ς0 and ζ, we obtain∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
(

1
p + p∗

) p+p∗
pp∗ ∫ ξ

ς0

(
Λ(Θ(=)

Θ(=)

( ∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ

) 1
p

∆=
)

(33)

×
∫ ζ

ς0

(
Υ(Ξ(ς))

Ξ(ς)

( ∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η

) 1
p∗

∆ς

)
.

Applying inverse Hölder’s inequality with indices p, p
p−1 and p∗,

p∗−1
p∗ on the right hand of

side (33), we have∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
(

1
p + p∗

) p+p∗
pp∗
{ ∫ ξ

ς0

(
Λ(Θ(=)

Θ(=)

) p
p−1

∆=
} p−1

p
( ∫ ξ

ς0

∫ =
ς0

(
f (τ)Λ

[
a(τ)
f (τ)

])p

∆τ∆=
) 1

p

(34)

×
{ ∫ ζ

ς0

(
Υ(Ξ(ς))

Ξ(ς)

) p∗
p∗−1

∆ς

} p∗−1
p∗
( ∫ ζ

ς0

∫ ς

ς0

(
g(η)Υ

[
b(η)
g(η)

])p∗
∆η∆ς

) 1
p∗

.

Applying Lemma 4 on the right hand side of (34), we obtain∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> M1(p)
( ∫ ξ

ς0

(ξ − σ(=))
(

f (=)Λ
[

a(=)
f (=)

])p

∆=
) 1

p

×
( ∫ ζ

ς0

(ζ − σ(ς))

(
g(ς)Υ

[
b(ς)
g(ς)

])p∗
∆ς

) 1
p∗

.
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By using the facts ξ > ρ(ξ) and ζ > ρ(ζ), we obtain∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> M1(p)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(

f (=)Λ
[

a(=)
f (=)

])p

∆=
) 1

p

×
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))

(
g(ς)Υ

[
b(ς)
g(ς)

])p∗
∆ς

) 1
p∗

,

where

M1(p) =
(

1
p + p∗

) p+p∗
pp∗
{ ∫ ξ

ς0

(
Λ(Θ(=)

Θ(=)

) p
p−1

∆=
} p−1

p
{ ∫ ζ

ς0

(
Υ(Ξ(ς))

Ξ(ς)

) p∗
p∗−1

∆ς

} p∗−1
p∗

.

This completes the proof.

As a special case of Theorem 5, when T = R, we have ρ(ξ) = ξ ρ(ζ) = ζ, σ(=) = =,
σ(ς) = ς, and we obtain the following result:

Corollary 3. Assume that a(=), b(ς), f (τ) and g(η) are non-negative functions and define

ψ(=) :=
∫ =

0
a(η)dη, ϕ(ς) :=

∫ ς

0
b(η)dη, Θ(=) :=

∫ =
0

f (τ)dτ, and Ξ(ς) :=
∫ ς

0
g(η)dη.

Then, ∫ ξ

0

∫ ζ

0

Λ(ψ(=))Υ(ϕ(ς))(
p∗=p−1 + pςp∗−1

) p+p∗
pp∗

d=dς

> M2(p)
( ∫ ξ

0
(ξ −=)

(
f (=)Λ

[
a(=)
f (=)

])p

d=
) 1

p

×
( ∫ ζ

0
(ζ − ς)

(
g(ς)Υ

[
b(ς)
g(ς)

])p∗
dς

) 1
p∗

,

where

M2(p) =
(

1
p + p∗

) p+p∗
pp∗
{ ∫ ξ

0

(
Λ(Θ(=)

Θ(=)

) p
p−1

d=
} p−1

p
{ ∫ ζ

0

(
Υ(Ξ(ς))

Ξ(ς)

) p∗
p∗−1

dς

} p∗−1
p∗

.

As a special case of Theorem 5, when T = Z, we have ρ(ξ) = ξ − 1, ρ(ζ) = ζ − 1,
σ(=) = =+ 1, σ(ς) = ς + 1, and we obtain the following result.

Corollary 4. Assume that a(n), b(m), f (n) and g(m) are non-negative sequences and define

ψ(n) =
n

∑
==0

a(=), ϕ(m) =
m

∑
k=0

b(k), Θ(n) =
n

∑
==0

f (=) and Ξ(m) =
m

∑
k=0

g(k).
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Then,

N

∑
n=1

M

∑
m=1

Λ(ψ(n))Υ(ϕ(m))(
p∗np−1 + pmp∗−1

) p+p∗
pp∗

> M3(p)
{ N

∑
n=1

((N − 1)− (n + 1))
(

f (n)Λ
[

a(n)
f (n)

])p} 1
p

×
{ M

∑
m=1

((M− 1)− (m + 1))
(

g(m)Υ
[

b(m)

g(m)

])p∗} 1
p∗

,

where

M3(p) =
(

1
p + p∗

) p+p∗
pp∗
{ N

∑
n=1

(
Λ(Θ(n)

Θ(n)

) p
p−1
} p−1

p
{ M

∑
m=1

(
Υ(Ξ(m))

Ξ(m)

) p∗
p∗−1

} p∗−1
p∗

.

Theorem 6. Let T be a time scale with =, ς, ς0, ξ, ζ ∈ T. Let f and g be two non-negative and
right-dense continuous functions on [ς0, ξ] and [ς0, ζ], respectively. Suppose that Λ and Υ are
non-negative, concave and supermultiplicative functions defined on [0, ∞) and define

Θ(=) :=
1

=− ς0

∫ =
ς0

f (τ)∆τ and Ξ(ς) :=
1

ς− ς0

∫ ς

ς0

g(τ)∆τ, (35)

then, for = ∈ [ς0, ξ] and ς ∈ [ς0, ζ], we have that∫ ξ

ς0

∫ ζ

ς0

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> E(p, p∗)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
[
Λ
(

f (=)
)]p∆=

) 1
p
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))
[
Υ
(

g(ς)
)]p∗∆ς

) 1
p∗

, (36)

where

E(p, p∗) =
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗ .

Proof. By assumption and by using the inverse Jensen inequality, we see that

Λ(Θ(=)) = Λ
(

1
=− ς0

∫ =
ς0

f (τ)∆τ

)
>

1
=− ς0

∫ =
ς0

Λ
(

f (τ)
)
∆τ. (37)

By applying inverse Hölder’s inequality on (37) with indices, p, p
p−1 , we have

Λ(Θ(=)) > 1
=− ς0

(=− ς0)
p−1

p

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p

. (38)

This implies that

Λ(Θ(=))(=− ς0) > (=− ς0)
p−1

p

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p

. (39)

Analogously,

Υ(Ξ(ς))(ς− ς0) > (ς− ς0)
p∗−1

p∗

( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

) 1
p∗

. (40)
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From (39) and (40), we obtain

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0) > (=− ς0)
p−1

p (ς− ς0)
p∗−1

p∗

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p

×
( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

) 1
p∗

. (41)

By using inequality (19), we obtain that

(=− ς0)
p−1

p
(ς− ς0)

p∗−1
p∗ >

(
pp∗

p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

. (42)

Then,

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0) >
(

pp∗
p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p
( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

) 1
p∗

. (43)

From (43), we have

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

>
(

1
p + p∗

) p+p∗
pp∗
( ∫ =

ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p

×
( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

) 1
p∗

. (44)

Taking delta integrating on both sides of (44), first over = from ς0 to ξ and then over ς from
ς0 to ζ, we find that

∫ ξ

ς0

∫ ζ

ς0

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς >
(

1
p + p∗

) p+p∗
pp∗
( ∫ ξ

ς0

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

) 1
p

∆=
)

×
( ∫ ζ

ς0

( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

) 1
p∗

∆ς

)
. (45)

By applying inverse Hölder’sinequality on (45) with indices p,
p

p− 1
and p∗,

p∗
p∗ − 1

, we get

∫ ξ

ς0

∫ ζ

ς0

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς >
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗

×
( ∫ ξ

ς0

( ∫ =
ς0

[
Λ
(

f (τ)
)]p∆τ

)
∆=
) 1

p
( ∫ ζ

ς0

( ∫ ς

ς0

[
Υ
(

g(τ)
)]p∗∆τ

)
∆ς

) 1
p∗

. (46)

Applying Lemma 4 on (46), we fined that
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∫ ξ

ς0

∫ ζ

ς0

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς >
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗

×
( ∫ ξ

ς0

(ξ − σ(=))
[
Λ
(

f (=)
)]p∆=

) 1
p
( ∫ ζ

ς0

(ζ − σ(ς))
[
Υ
(

g(ς)
)]p∗∆ς

) 1
p∗

= E(p, p∗)
( ∫ ξ

ς0

(ξ − σ(=))
[
φ
(

f (=)
)]p∆=

) 1
p
( ∫ ζ

ς0

(ζ − σ(ς))
[
Υ
(

g(ς)
)]p∗∆ς

) 1
p∗

.

By using the facts ξ > ρ(ξ) and ζ > ρ(ζ), we obtain∫ ξ

ς0

∫ ζ

ς0

Λ(Θ(=))Υ(Ξ(ς))(=− ς0)(ς− ς0)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> E(p, p∗)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
[
Λ
(

f (=)
)]p∆=

) 1
p
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))
[
Υ
(

g(ς)
)]p∗∆ς

) 1
p∗

,

where

E(p, p∗) =
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗ .

This completes the proof.

As a special case of Theorem 6, when T = R, we obtain the following conclusion.

Corollary 5. Assume that f and g are non-negative functions and define

Θ(=) :=
1
=

∫ =
0

f (τ)dτ and Ξ(ς) :=
1
ς

∫ ς

0
g(τ)dτ,

then, for = ∈ [0, ξ] and ς ∈ [0, ζ], we have that

∫ ξ

0

∫ ζ

0

Λ(Θ(=))Υ(Ξ(ς))=ς(
p∗=p−1 + pςp∗−1

) p+p∗
pp∗

d=dς > E1(p, p∗)
( ∫ ξ

0
(ξ −=)

[
Λ
(

f (=)
)]pd=

) 1
p

×
( ∫ ζ

0
(ζ − ς)

[
Υ
(

g(ς)
)]p∗dς

) 1
p∗

,

where

E1(p, p∗) =
(

1
p + p∗

) p+p∗
pp∗

ξ
p−1

p ζ
p∗−1

p∗ .

As a special case of Theorem 6, when T = Z, we obtain the following conclusion.

Corollary 6. Assume that f (n) and g(m) are two non-negative sequences of real numbers and de-
fine

Θ(n) :=
1
n

n

∑
==1

f (=) and Ξ(m) :=
1
m

m

∑
k=1

g(k),
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then,

N

∑
n=1

M

∑
m=1

Λ(Θ(n))Υ(Ξ(m))nm(
p∗np−1 + pmp∗−1

) p+p∗
pp∗

> E2(p, p∗)
( N

∑
n=1

((N − 1)− (n + 1))
[
Λ
(

f (n)
)]p
) 1

p

×
( M

∑
m=1

((M− 1)− (m + 1))
[
Υ
(

g(m)
)]p∗

) 1
p∗

,

where

E2(p, p∗) =
(

1
p + p∗

) p+p∗
pp∗

N
p−1

p M
p∗−1

p∗ .

Theorem 7. Let T be a time scale with =, ς, ς0, ξ, ζ ∈ T. Let a(τ) and b(τ) be two non-negative
and right-dense continuous functions on [ς0, ξ] and [ς0, ζ], respectively. Let Θ, Ξ, f , g, Λ and Υ be
as assumed in Theorem 5. Furthermore, assume that

ψ(=) :=
1

Θ(=)

∫ =
ς0

a(τ) f (τ)∆τ and ϕ(ς) :=
1

Ξ(ς)

∫ ς

ς0

b(η)g(η)∆η, (47)

then, for = ∈ [ς0, ξ] and ς ∈ [ς0, ζ], we have that∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

)) p+p∗
pp∗

∆=∆ς

> D1(p)
( ∫ ξ

ς0

(ξ − σ(=))
(

f (=)Λ[a(=)]
)p

∆=
) 1

p
( ∫ ζ

ς0

(ζ − σ(ς))

(
g(ς)Υ[b(ς)]

)p∗
∆ς

) 1
p∗

,

where

D1(p) =
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗ .

Proof. From (47), we see that

Λ(ψ(=)) = Λ
(

1
Θ(=)

∫ =
ς0

f (τ)a(τ)∆τ

)
. (48)

Applying inverse Hölder’s inequality with indices p and p
p−1 on the right hand side of (48),

we obtain

Λ(ψ(=)) > (=− ς0)
p−1

p

Θ(=)

( ∫ =
ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p

. (49)

From (49), we obtain that

Λ(ψ(=))Θ(=) > (=− ς0)
p−1

p

( ∫ =
ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p

. (50)

Similarly, we obtain

Υ(ϕ(ς))Ξ(ς) > (ς− ς0)
p∗−1

p∗

( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

) 1
p∗

. (51)
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From (50) and (51), we observe that

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=) > (=− ς0)
p−1

p (ς− ς0)
p∗−1

p∗

×
( ∫ =

ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p
( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

) 1
p∗

. (52)

Applying the inequality (19) on the term (=− ς0)
p−1

p (ς− ς0)
p∗−1

p∗ , we obtain the following
inequality

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=) >
(

pp∗
p + p∗

(
(=− ς0)

p−1

p
+

(ς− ς0)
p∗−1

p∗

)) p+p∗
pp∗

(53)

×
( ∫ =

ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p
( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

) 1
p∗

.

Dividing both sides of (53) by
(

p∗(=− ς0)
p−1 + p(ς− ς0)

p∗−1
) p+p∗

pp∗
, we obtain that

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

>
(

1
p + p∗

) p+p∗
pp∗
( ∫ =

ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p

×
( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

) 1
p∗

. (54)

Integrating both sides of (54) from ς0 to ξ and ς0 to ζ, we obtain∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς (55)

>
(

1
p + p∗

) p+p∗
pp∗
( ∫ ξ

ς0

( ∫ =
ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

) 1
p

∆=
)( ∫ ζ

ς0

( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

) 1
p∗

∆ς

)
.

Applying inverse Hölder’s inequality again with indices p,
p

p− 1
and p∗,

p∗
p∗ − 1

on the

right hand side of (55), we have∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

>
(

1
p + p∗

) p+p∗
pp∗

(ξ − ς0)
p−1

p (ζ − ς0)
p∗−1

p∗

( ∫ ξ

ς0

( ∫ =
ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

)
∆=
) 1

p

×
( ∫ ζ

ς0

( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

)
∆ς

) 1
p∗

(56)

= D1(p)
( ∫ ξ

ς0

( ∫ =
ς0

(
f (τ)Λ[a(τ)]

)p

∆τ

)
∆=
) 1

p
( ∫ ζ

ς0

( ∫ ς

ς0

(
g(η)Υ[b(η)]

)p∗
∆η

)
∆ς

) 1
p∗

.

Applying Lemma4 on the right hand side of (56), we obtain that
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∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> D1(p)
( ∫ ξ

ς0

(ξ − σ(=))
(

f (=)Λ[a(=)]
)p

∆=
) 1

p
( ∫ ζ

ς0

(ζ − σ(ς))

(
g(ς)Υ[b(ς)]

)p∗
∆ς

) 1
p∗

.

By using the facts ξ > ρ(ξ) and ζ > ρ(ζ), we obtain

∫ ξ

ς0

∫ ζ

ς0

Λ(ψ(=))Υ(ϕ(ς))Ξ(ς)Θ(=)(
p∗(=− ς0)p−1 + p(ς− ς0)p∗−1

) p+p∗
pp∗

∆=∆ς

> D1(p)
( ∫ ξ

ς0

(ρ(ξ)− σ(=))
(

f (=)Λ[a(=)]
)p

∆=
) 1

p
( ∫ ζ

ς0

(ρ(ζ)− σ(ς))

(
g(ς)Υ[b(ς)]

)p∗
∆ς

) 1
p∗

.

This completes the proof.

As a special case of Theorem 7, when T = R, we have ρ(ξ) = ξ, ρ(ζ) = ζ, σ(=) = =,
σ(ς) = ς, and we obtain the following result:

Corollary 7. Assume that a(=), b(ς), f (=) and g(ς) are non-negative functions and define

ψ(=) :=
1

Θ(=)

∫ =
0

f (τ)a(τ)dτ and ϕ(ς) :=
1

Ξ(ς)

∫ ς

0
g(τ)b(τ)dτ,

Θ(=) :=
∫ =

0
f (τ)dτ and Ξ(ς) :=

∫ ς

0
g(τ)dτ.

Then,

∫ ξ

0

∫ ζ

0

Λ(ψ(=))Υ(ϕ(ς))Θ(=)Ξ(ς)(
p∗=p−1 + pςp∗−1

) p+p∗
pp∗

d=dς > D2(p)
( ∫ ξ

0
(ξ −=)

(
f (=)Λ

(
a(=)

))p

d=
) 1

p

×
( ∫ ζ

0
(ζ − ς)

(
g(ς)Υ

(
b(ς)

))p∗
dς

) 1
p∗

,

where

D2(p) =
(

1
p + p∗

) p+p∗
pp∗

(ξ)
p−1

p (ζ)
p∗−1

p∗ .

As a special case of Theorem 7, when T = Z, we have ρ(ξ) = ξ − 1, ρ(ζ) = ζ − 1,
σ(=) = =+ 1, σ(ς) = ς + 1, and we obtain the following result:

Corollary 8. Assume that a(n), b(m), f (n) and g(m) are non-negative sequences and define

ψ(n) :=
1

Θ(n)

n

∑
==0

f (=)a(=) and ϕ(m) :=
1

Ξ(m)

m

∑
k=0

g(k)b(k),

Θ(n) :=
n

∑
==0

f (=) and Ξ(m) :=
m

∑
k=0

g(k).

Then
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N

∑
n=1

M

∑
m=1

Λ(ψ(n))Υ(ϕ(m))Θ(n)Ξ(m)(
p∗np−1 + pmp∗−1

) p+p∗
pp∗

> D3(p)
( N

∑
n=1

((N − 1)− (n + 1))
(

f (n)Λ
(

a(n)
))p) 1

p

.

×
( M

∑
m=1

((M− 1)− (m + 1))
(

g(m)Υ
(

b(m)

))p∗) 1
p∗

,

where

D3(p) =
(

1
p + p∗

) p+p∗
pp∗

(N)
p−1

p (M)
p∗−1

p∗ .

3. Conclusions and Discussion

In this article, with the help of the inverse Hölder’s inequality and inverse Jensen’s
inequality on time scales, we discussed and proved several new generalizations of the
integral retarded inequalities given in [3]. Moreover, we generalized a number of other
inequalities to a general time scale. Finally, as a special case, we studied the discrete and
continuous inequalities. As a future work, we intend to generalize these inequalities by
using alpha-conformable fractional derivatives on time scales. Furthermore, we will extend
these results to diamond alpha calculus.
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