
����������
�������

Citation: Wu, M.-H.; Guo, H.; Kuang,

X.-M. Shadow Cast of Rotating

Charged Black Hole with Scalar

Q-Hair. Symmetry 2022, 14, 2237.

https://doi.org/10.3390/

sym14112237

Academic Editors: Xin Wu and

Wenbiao Han

Received: 2 October 2022

Accepted: 20 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Shadow Cast of Rotating Charged Black Hole with Scalar Q-Hair
Meng-He Wu 1,2, , Hong Guo 3 and Xiao-Mei Kuang 4,*

1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science,
Shanghai 201620, China

2 Center of Application and Research of Computational Physics, Shanghai University of Engineering Science,
Shanghai 201620, China

3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
4 Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University,

Yangzhou 225002, China
* Correspondence: xmeikuang@yzu.edu.cn

Abstract: In this paper, we investigate the shadow cast by non-rotating and rotating charged black
holes with scalar Q-hair. We find that in addition to the spin parameter of black hole and inclination
angle of the observer, the charge parameter and the self-interaction parameters of the scalar hair
also influence the shape of the black hole shadow. Our studies show that the charged black holes
with scalar Q-hair always have smaller shadow size compared to those without hair. Moreover,
it is found that the parameters significantly affect the shadow observables. In particular, for the
fixed spin parameter and inclination angle, a larger charge parameter will increase the shadow size
but decrease the shadow distortion, whilst stronger self-interaction parameters have the opposite
influence. In short, the shadow of the charged black hole with scalar Q-hair can be distinguished
from the Reissner–Nordström (RN) black hole or Kerr–Newmann (KN) black hole, and they indeed
generate new templates with large deviations from general relativity those are invariably smaller
in size.

Keywords: black hole with scalar hair; rotating black hole; shadow cast

1. Introduction

Recent observations of images from supermassive black holes M87* [1–3] and SgrA* [4,5]
by the Event Horizon Telescope (EHT) are significant events in black hole physics, which
ushers in a new era for probing the strong gravity regime. The shadow region surrounded
by a bright ring is one of important features in the image, which is attributed to the strong
gravitational lensing by the black holes. Specifically, there exists a photon region around
the black hole, where the light rays from the source are captured such that they cannot form
images visible to an outside observer. Then, the unstable photon regions outside the event
horizon make it possible to observe the black hole directly. The photons escaping from the
spherical orbits form the boundary of the dark silhouette of the black hole, which is known
as black hole shadow from the outside observers [6,7]. Thus, the ability of the black hole
shadow to indicate the geometry around black hole is widely researched, especially, the
characterization of the properties near the horizon [8–27].

The observations from EHT are in good agreement with the predictions of Kerr
spacetime in general relativity (GR), which further demonstrates the success of GR. It is
well understood that GR needs to be modified or generalized since GR faces challenges
in explaining the universe expansion and quantum gravity. Therefore, plenty of modified
theories of gravity have been constructed and extensively studied. Nevertheless, EHT
observations cannot exclude other black holes in GR or some exotic black holes in modified
theories of gravity. In particular, the black hole shadow was used as a new tool to test the
no-hair theorem. As one of the simplest manifestation of new physics, the circumvention
of the black hole no-hair theorem by producing primary or secondary additional black hole
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hair has lately received a lot of interest. In short, the emergence of new fundamental fields
in GR, such as the Yang–Mills field [28–31], Skyrme field [32,33], and conformally-coupled
scalar field [34], may result in hairy black hole solutions. However, without the existence of
matter, hairy black holes may be created by directly coupling the scalar field with the second
order algebraic curvature, as in a dilatonic black hole [35–38]. Choosing specific forms of
the scalar coupling function activates the onset of spontaneous scalarization and generates
the secondary scalar hair of black holes; the coupling terms include Ricci scalar [39,40],
Gauss–Bonnet curvature [41,42], Chern Simon invariant [43], and even matter sources such
as Maxwell invariant [44]. Due to the wide extension in this scenario, the shadow of black
holes with scalar hair has attracted plenty of attention and remarkable progress has been
made [45–54].

More recently, the spherically charged Q-hair solution was constructed in Einstein–
Maxwell-scalar gravity with the minimal coupling of the charged scalar field with self-
interactions to the gravity [55,56], putting forward the study of formation of hairy black
hole. The static charged black hole with scalar Q-hair in this sector are not zero modes of
the superradiant instability; instead, the U(1) gauge interaction is primarily responsible for
the repulsive force, which is balanced by the gravitational attractive force. Subsequently,
many related extensions on this model were explored in the literatures, for instances, hairy
solutions and (in)stability analysis with alternative scalar potential formalism [57,58], the
inside of the black hole with hair and the holographic superconductor’s likeness [59], black
holes with scalar Q-hair in Einstein–Born-Infeld gravity [60] and the extension to five
dimensional case [61].

The aim of this paper is to investigate the shadow cast in the static charged black hole
with scalar Q-hair constructed in [55,56] as well as in its rotating counterpart. Starting from
the null geodesic, we determine the shadow cast in celestial coordinates. We find that the
charged black holes with scalar Q-hair beyond GR always have smaller shadow size than
the normal black holes, which suggests that the Q-hair compacts the black hole shadow
in both non-rotating and rotating cases. Moreover, we study the shadow observables
(shadow size and distortion) in the rotating case. It is found that the shadow cast for larger
charge parameters has a larger size but smaller distortion, whilst for larger self-interaction
parameters, it has smaller size but larger distortion.

This paper is organized as follows. In Section 2, we first review the constructions of
the static charged black hole with scalar Q-hair in Einstein–Maxwell-scalar gravity with
a self-interacted scalar field, and then construct its rotating counterpart. In Section 3, we
work on the null geodetic, the photon sphere and the celestial coordinates which describe
the shadow cast. In Section 4, we analyze the black hole shadow cast for non-rotating and
rotating cases, respectively. Section 5 provides our closing remarks.

2. Charged Black Holes with Scalar Q-Hair

In this section, we will first review the process of constructing a spherically charged
black hole with scalar Q-hair in Einstein–Maxwell-scalar theory, which was proposed
in [55,56]. Then, with the use of the Newman–Janis approach [62–65], we generalize the
rotating counterpart from the seed of the spherical black hole with scalar Q-hair.

2.1. Spherically Static Black Hole with Scalar Q-Hair

The action of Einstein–Maxwell-scalar gravity, in which the gauge filed and charged
scalar field minimally couple to the gravity, is given by

S =
∫

d4x
√
−g
(

R
16πG

− FµνFµν −
(

DµΨ
)†
(DµΨ)−U(Ψ)

)
(1)

where R is the Ricci scalar, Fµν ≡ ∂µ Aν − ∂ν Aµ with the associated gauge 4-potential Aµ,
Ψ is a complex scalar field coupled to the Maxwell field by DµΨ = ∂µΨ− ieAµΨ with e
the gauge coupling constant. The scalar potential U(Ψ) is taken to be non-negative in the
model which should contain the scalar mass and a self-interaction term. As addressed
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in [55,56], the simplest formalism reads U(Ψ) = m2Ψ2 − τΨ4 + ζΨ6 where m is the scalar
field mass and τ, ζ are positive parameters controlling the strength of the self-interactions.

By varying the action (1) with respect to the metric gµν, scalar field and electromagnetic
field, we obtain the following equations of motion

Rµν − 1
2 gµνR = 8πG

[
TM

µν + TS
µν

]
, (2)

DµDµΨ = (m2 − 2τΨ2 + 3ζΨ3)Ψ, (3)

∇µFνµ = ie
[
Ψ†(DνΨ)−

(
DνΨ†)Ψ)] ≡ ejν, (4)

where the terms of energy-momentum tensor are

TM
µν = Fγ

µ Fνγ − 1
4 gµνFρσFρσ, (5)

TS
µν = DµΨ†DνΨ + DνΨ†DµΨ− gµν ×

[
1
2 gρσ

(
DρΨ†DσΨ + DσΨ†DρΨ

)
+ U(Ψ)

]
, (6)

and jµ is a 4-current satisfying the conserved condition ∂jµ = 0.
In order to construct the solutions for various fields, we take the ansatz on the metric,

the gauge field and scalar field as

ds2 = − f (r)dt2 +
1

g(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, Aµdxµ = φ(r)dt, Ψ = ψ(r)e−iωt (7)

where f (r) = σ(r)2g(r). Because of a local U(1) gauge symmetry, the model is invariant
under the transformation

Ψ→ Ψe−eX(xν), Aµ → Aµ + ∂µX(xν) (8)

where X(xν) is any real function and xν describes the coordinate parameters. Thus, we can
choose the gauge to set ω = 0 without loss of generality in the following discussion.

Subsequently, the corresponding field Equations (2)–(4) with respect to the ansatz are
rewritten as

g′(r)r = 1− g(r)− 4πGr2
[

φ′2(r)
2σ2(r) + g(r)ψ′2 + U(ψ(r)) + e2φ2

g(r)σ2(r)ψ2(r)
]
, (9)

σ′(r) = 8πGrσ(r)
[
ψ′2(r) + e2φ2(r)ψ2(r)

g(r)2σ2(r)

]
, (10)

φ′′(r) +
(

2
r −

σ′(r)
σ(r)

)
φ′(r)− 2e2φ(r)ψ2(r)

g(r) = 0, (11)

ψ′′(r) +
(

2
r +

g′(r)
g(r) + σ′(r)

σ(r)

)
ψ′(r) + e2φ2(r)ψ(r)

g(r)2σ2(r) −
1

g(r)

(
m2ψ(r)− 2τψ3(r) + 3ζψ5(r)

)
= 0. (12)

Moreover, according to the analysis on scaling symmetry in [55], the system has only
three independent dimensionless input parameters

α2
0 =

4πGm2

τ
, β2

0 =
ζm2

τ2 , q =
e√
τ

. (13)

To solve the full equations of motion numerically, we have to fix the boundary condi-
tions. On the horizon r = rh, we should have

φ(rh) = 0, g(rh) = 0 (14)

to guarantee the existence of black hole solutions, while φ(r)dt is well defined, and other
field functions are regular.
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Near infinity for r → ∞, the functions for the fields behave as

g(r)→ 1− 2M
r
−

α2
0Q2

e
r2 + . . . , (15)

σ(r)→ 1, (16)

φ(r)→ φ0 −
Qe

r
+ . . . , (17)

ψ(r)→ ψ0

r
e−m∞r + . . . , (18)

where m∞ ≡
√

m2 − e2φ2
0 implying m ≥ eφ0. Here, M is the ADM mass of the black

hole, φ0 is the chemical potential, and Qe = QBH + eQN is the total electric charge.
QN = 1

4π

∫
d3x
√−gjt is the conserved No-ether charges in the radial direction and QBH

is the electric charge of black hole QBH = 1
4π

∮
H dSrFtr .

With the boundary conditions stated above, the group of equations of motion (9)–(12)
is solved. To this end, we employ the spectral method. The basic idea of the spectral method
is to expand differential equations under a finite number of bases polynomials to obtain
the matrix of the differential equations. Thus, solving the differential equations is replaced
by calculating the eigenvalues of the matrices. More details on spectral method and its
applications in general relativity can be found in [66–73] and therein. In the equation, we
set m = τ = 1 for convenience. Depending on the choices of the input parameters, we
can produce the charged black hole without or with the Q-scalar hair, and the signal of
the black hole with scalar Q-hair is the existence of a non-zero solution of ψ(r). We show
a sample of charged black holes with scalar Q-hair in Figure 1, where we plot the metric
functions g(r), σ(r), the electric field φ(r), and the scalar field ψ(r) for the parameters
α0 = 0.068, β0 =

√
0.6, and q = 0.08. More solutions with scalar Q-hair in the sector will

be produced in later studies.

g(r)

ϕ(r)/15
σ(r)
ψ(r)

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

r

Figure 1. The metric functions g(r), σ(r), the electric field φ(r), and the scalar field ψ(r) for
α0 = 0.068, β0 =

√
0.6 and q = 0.08. The dashed curves are the corresponding functions of no-hair

black hole, i.e., the RN black hole.

2.2. Rotating Charged Black Hole with Scalar Q-Hair

Since non-rotating black hole tests are rare, as the spinning of black holes is crucial in
many astrophysical processes, rotating black hole solutions could provide an arena to test
the theories of gravity via astrophysical observation. Thus, in this subsection, we shall use
the Newman–Janis approach to generate a stationary and axisymmetric metric from the
seed of spherically static solutions with scalar Q-hair. As mentioned in [62–65], the original
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formalism is constrained by the non-trivial requirement that the final transformation to
Boyer–Lindquist coordinates necessitates theta-independent functions, resulting in the
difficulty that it cannot be extended to a generic spherically symmetric metric. To bypass
the limitation, the authors of [65] considered the slowly-rotating limit. Here, we employ
the improved formalism in [62,64] by introducing an arbitrary undetermined function.

To proceed, we introduce du = dt− dr√
f (r)g(r)

and transform the metric (7) into the

Eddington–Finkelstein coordinates

ds2 = − f (r)du2 − 2

√
f
g

dudr + r2
(

dθ2 + sin2 θdϕ2
)

. (19)

The inverse metric gµν can be expressed by a null tetrad (lµ, nµ, mµ, m†µ) as

gµν = −lµnν − lνnµ + mµm†ν + mνm†µ. (20)

The tetrad vectors should satisfy [62]

lµlµ = nµnµ = mµmµ = lµmµ = nµmµ = 0, (21)

lµnµ = −mµm†µ = −1, (22)

which in our case could be the formalism

lµ = δ
µ
r , nµ =

√
g(r)
f (r)

δ
µ
u −

g(r)
2

δ
µ
r , mµ =

1√
2r2

(
δ

µ
θ +

i
sin θ

δ
µ
ϕ

)
(23)

with δ
µ
ν the Kronecker Delta.

Subsequently, with complex coordinate transformations u′ = u − ia cos θ and
r′ = r + ia cos θ, the tetrad is then rewritten as

l′µ = δ
µ
r , n′µ =

√
g(r′)
f (r′) δ

µ
u − g(r′)

2 δ
µ
r , (24)

m′µ = 1√
2(r′−ia cos θ)2

(
ia sin θ

(
δ

µ
u − δ

µ
r

)
+ δ

µ
θ + i

sin θ δ
µ
ϕ

)
(25)

where a is introduced as the spin parameter of the axisymmetric black hole. Then, the
new inverse metric is constructed by g′µν = −l′µn′ν − l′νn′µ + m′µm′†ν + m′νm′†µ, whose
explicit formula is

ds2 = − f (r′)du2 − 2

√
f (r′)
g(r′)

dudr′ + 2a sin2 θ

(
f (r′)−

√
f (r′)
g(r′)

)
dudϕ + 2a

√
f (r′)
g(r′)

sin2 θdrdϕ

+ (r′ − ia cos θ)2dθ2 + sin2 θ

[
(r′ − ia cos θ)2 + a2 sin2 θ

(
2

√
f (r′)
g(r′)

− f (r′)

)]
dϕ2.

(26)

The final step is to transform the new metric into the Boyer-Lindquist coordinates
with the transformations

du = dt′ + λ(r)dr, dϕ = dϕ′ + χ(r)dr (27)

where the transformation functions are

λ(r) = − k(r) + a2

g(r)r2 + a2 , χ(r) = − a
g(r)r2 + a2 , k(r) =

√
g(r)
f (r)

r2. (28)
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Thus, the new metric under the Boyer-Lindquist coordinates is

ds2 = −F(r, θ)dt2 − 2a sin2 θ

(√
F(r, θ)

G(r, θ)
− F(r, θ)

)
dtdϕ +

H(r, θ)

∆(r)
dr2 +

H(r, θ)dθ2 + sin2 θ

[
H(r, θ) + a2 sin2 θ

(
2

√
F(r, θ)

G(r, θ)
− F(r, θ)

)]
dϕ2 (29)

with the metric functions

F(r, θ) =
g(r)r2 + a2 cos2 θ

(k(r) + a2 cos2 θ)
2 H(r, θ), G(r, θ) =

g(r)r2 + a2 cos2 θ

H(r, θ)
. (30)

In the above metric, ∆(r) = G(r, θ)H(r, θ) + a2 sin2 θ = g(r)r2 + a2 and H(r, θ) is the
arbitrary undetermined function. As proposed in [64], imposing the additional condition
Grθ = 0 could fix H(r, θ) as H(r, θ) = r2 + a2 cos2 θ.

The metrics (29) and (30) provide the stationary and axisymmetric counterpart of the
spherically symmetric solution (7) by inserting the corresponding f (r) and g(r). It will
reduce to the static case as the spin parameter a vanishes. If the inserted f (r) and g(r) are
solutions with the scalar Q-hair, then (29) and (30) describe the rotating black hole with
scalar Q-hair; otherwise, they correspond to the Kerr–Newmann black hole. Due to the
numerical origin, it is difficult to determine the interior geometry of the solution; however,
we present the samples of ∆(r) and gtt for the outerior geometry in Figure 2, where the
radii with ∆(r) = 0 and gtt = 0 determine the location of the outer horizon and static limit
surface, respectively.

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r

Δ

1 2 3 4 5 6

-0.8

-0.6

-0.4

-0.2

0.0

r

g t
t

Figure 2. The samples of ∆(r) and gtt for the outerior geometry, where we have fix α0 = 0.068, β0 =
√

0.6,
q = 0.008 and a/M = 0.1.

3. Null Geodesic and Celestial Coordinates

In this section, we will investigate the null geodesics and focus on the photons with
circular orbits in the background of (29). The geodesics of photon orbiting in spacetime can
be obtained using the Hamilton–Jacobi approach [74], and the associated equation is

∂S
∂λ

+
1
2

gµν ∂S
∂xµ

∂S
∂xν

= 0 (31)

where S is the Jacobi action of the photon, λ is the affine parameter of the null geodesic
and the momentum pµ is defined by

pµ =
∂S
∂xµ = gµν

dxν

dλ
. (32)
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The spacetime has two Killing vectors ∂t and ∂ϕ, which suggest two motion constants,
i.e., the orbital energy E and orbital angular momentum Lϕ, respectively

E = −gtµ
∂xµ

∂λ
, (33)

Lϕ = gϕµ
∂xµ

∂λ
. (34)

So, the Jacobi action can be separated as follows:

S = −Et + Lϕ ϕ + Sr(r) + Sθ(θ) (35)

where the functions Sr(r) and Sθ(θ) depend only on r and θ, respectively. Substituting the
Jacobi action (35) into the Hamilton-Jacobi Equation (31), we can obtain

(
dSr

dr

)
=

√
R(r)
∆(r)

, (36)(
dSθ

dθ

)
=
√

Θ(θ), (37)

with

R(r) = [Σ(r)E− aLφ]
2 − ∆(r)

[
K+ (Lφ − aE)2

]
(38)

Θ(θ) = K+ a2E2 cos2 θ − L2
φ cot2 θ (39)

where Σ(r) =
√

G
F H + a2 sin2 θ = k(r) + a2 and K is the Cater constant of the motion

related to the Killing–Yano tensor [74] due to the integrability of the system. Furthermore,
by combining the null geodesic condition pµ pµ = 0 with the results (36) and (37), we can
obtain four equations of motion which control the photon orbits.

F(r, θ)

G(r, θ)
∆(r)

dt
dλ

=

[
H(r, θ) + a2 sin2 θ

(
2

√
F(r, θ)

G(r, θ)
− F(r, θ)

)]
E

−aLϕ

(√
F(r, θ)

G(r, θ)
− F(r, θ)

)
, (40)

F(r, θ)

G(r, θ)
∆(r) sin2 θ

dϕ

dλ
= a sin2 θ

(√
F(r, θ)

G(r, θ)
− F

)
E + F(r, θ)Lϕ, (41)

H(r, θ)
dr
dλ

= ±
√

R(r), (42)

H(r, θ)
dθ

dλ
= ±

√
Θ(θ). (43)

To solve the above system of equations, symplectic algorithms are usually used in
celestial mechanics, such as the explicit symplectic algorithms in general relativity [75–78],
explicit symmetric algorithms for an inseparable system [79,80], as well as explicit and
implicit mixed symplectic algorithms [81,82]. Here, we are interested in the shadow cast of
the black hole; so, only the photons with unstable circular orbits are relevant. Therefore,
we focus on the radial equation of motion (42), which is rewritten as(

H(r, θ)
dr
dλ

)2
+ Vorb(r) = 0, (44)
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with the effective potential

Vorb(r)
E2 = −[Σ(r)− aξ]2 + ∆(r)

[
η + (ξ − a)2

]
. (45)

In the formula, we have defined ξ ≡ Lφ/E and η ≡ K/E2 which are known as impact
parameters determining the shape of the black hole shadow, as we will see soon. The
unstable circular photon orbits with radius r = rp should satisfy the following conditions

Vorb(rp) = 0,
∂Vorb(rp)

∂r
= 0,

∂2Vorb(rp)

∂r2 < 0, (46)

from which we can solve out the impact parameters in terms of the metric functions as

ξ(rp) =
Σ(r)∆′(r)− 2∆(r)Σ′(r)

a∆′(r)
|r=rp , (47)

η(rp) =
4a2Σ(r)′2∆(r)−

[(
Σ(r)− a2)∆(r)′ − 2Σ(r)′∆(r)

]2
a2∆(r)′2

|r=rp . (48)

Then, by inserting the above formulas into (43), the condition Θ(θ) ≥ 0 provides an
inequality which in fact determines the photon region of the black hole. This means that for
each point in the region, there exists a light-like geodesic staying in the circular orbit r = rp,
along which ϕ is governed by the equation of motion (41) and θ can oscillate between the
extrema determined by Θ(θ) = 0.

With the impact parameters in hand, we are ready to determine the shadow boundary
of the rotating black holes. To this end, we construct the celestial coordinates (α, β) to
fix the shape of shadow. As shown in Figure 3, the coordinate α denotes the apparent
perpendicular distance of the image as seen from the axis, and the coordinate β denotes the
apparent perpendicular distance of the image from its projection on the equatorial plane.
For the observations at spatial infinity with the Boyer–Lindquist coordinate (r0, θ0), the
shadow boundary in the celestial coordinate can be described by [83–85]

α = lim
r0→∞

(
−r2

0 sin θ0
dϕ

dr

∣∣∣
(r=r0,θ=θ0)

)
, (49)

β = ± lim
r0→∞

(
r2

0
dθ

dr

∣∣∣
(r=r0,θ=θ0)

)
, (50)

where r0 also denotes the distance from the very far observer to the black hole and θ0 is the
inclination between the observer’s line of sight and the black hole’s spin axis. Calculating
dϕ
dr and dθ

dr from the geodesic equations and considering the conditions for the unstable
circular orbits, we can simplify the celestial coordinate as follows:

α(rp) = −
ξ(rp)

sin θ0
, (51)

β(rp) = ±
√

η(rp) + a2 cos2 θ0 − ξ(rp)2 cot2 θ0. (52)

Next, we shall apply the numerical results of the static charged solution with scalar
hair and its rotating generalization into the celestial coordinates (α, β), and analyze the
shadow cast affected by the scalar hair.
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z

y,𝛼

x

source

observer 𝛽

Celestial plane(𝛼𝑟𝑝 , 𝛽𝑟𝑝)

black hole
light ray

Figure 3. Cartoon of the very far distant observer’s celestial plane (the shaded region), and the
celestial coordinates (αrp , βrp ) which can be evaluated by Equations (49) and (50).

4. Black Hole Shadow Cast
4.1. Shadow Cast for Non-Rotating Black Hole with Scalar Q-Hair

We first explore the black hole shadow cast for spherically symmetric spacetime, i.e.,
a = 0 described by the metric (7). By tuning the model parameters, we numerically work
out the corresponding metric functions σ(r) and g(r) for the black holes with scalar Q-hair,
and their prior shift from the RN black hole should be reflected in the black hole shadow
casts.

In this case, we can follow the steps in the review [7] for the spherical static black hole
to derive the radius of the photo sphere and shadow boundary. Therefore, the radius of the
photo sphere, rs, satisfies

f ′(rs)rs − 2 f (rs) = 0 (53)

and the radius of shadow cast is given by

Rs =

√
r2

s
f (rs)

, (54)

showing that the shadow cast is a perfect circle.
We show the shadow casts for black holes with scalar Q-hair in Einstein–Maxwell-

scalar gravity for various parameters (α0, β0, q) in Figure 4. The parameters (α0, β0, q) could
correspond to different configurations of various fields for the solutions, which then have a
different shadow cast as shown in the figure. In detail, increasing the coupling q enlarges
the shadow size of the black hole with scalar Q-hair, but increasing the parameters α0 or
β0 makes the shadow size smaller. Moreover, it is obvious that q has a more profound
impact than α0 and β0, which is reasonable because α0 or β0 indicates higher order coupling
between the fields. In addition, the shadow cast of a black hole with scalar Q-hair is always
smaller than that of a black hole RN black hole, which is denoted by the dashed circle in
each plot. Since the charge in the RN black hole could decrease the shadow size [86], we
can further conclude that the shadow size of a non-rotating black hole with scalar Q-hair is
smaller than that of the Schwarzschild black hole.
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Figure 4. The shadows of non-rotating case for different q, α0 and β0. In the left plot, we fix α0 = 0.068
and β0 =

√
0.6. In the middle plot, we fix q = 0.008 and β0 =

√
0.6. In the right plot, α0 = 0.068 and

q = 0.008 are fixed. The black dashed cycle in each plot represents the shadow of black hole without
scalar hair which is RN black hole.

4.2. Shadow for the Rotating Black Hole with Scalar Q-Hair

Now, we turn on the spin parameter and figure out the shadow casts for the rotating
black holes with scalar Q-hair which we constructed in Section 2.2. It should be noted that
in our case, the rotating solutions are only available for small spin parameter a and large a
will destroy their stability, because the numeric can only provide the static profiles outside
the black hole horizon. The results are shown in Figures 5 and 6. It is shown in Figure 5
that the shadow becomes more distorted as a increases, which is the same as that in Kerr
and KN black holes. As shown in Figure 6 with a/M = 0.1, the shadow size diminishes for
larger α0 or β0; yet, it is enhanced by the coupling parameter q. In addition, the size of a
rotating charged black hole with scalar Q-hair is always smaller than that of a KN black
hole denoted by the dashed curves. Moreover, since the shadow size of KN black hole is
smaller than that of a Kerr black hole [7,8], the size of a rotating charged black hole with
scalar Q-hair will also be smaller than that of a Kerr black hole. These influences of the
model parameters on the shadow size are similar to that in the static case.

a/M=0.1
a/M=0.15
a/M=0.2

-2 0 2 4
-4

-2

0

2

4

α/M

β
/M

Figure 5. The shadows cast of rotating charged black hole with scalar hair for different a, where we
have a fixed α0 = 0.068, β0 =

√
0.6 and q = 0.008.
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Figure 6. The shadows cast of rotating charged black hole with scalar hair for a/M = 0.1 with different q
(fixing α0 = 0.068, β0 =

√
0.6), α0 (fixing q = 0.008, β0 =

√
0.6) and β0 (fixing α0 = 0.068, q = 0.008),

respectively. The black dashed curve in each plot is the shadow cast of Kerr-Newmann black hole.

Then, to carefully study the effect of parameters on the shadow cast, it is important
to connect them with astronomical observables which could be easily measured and are
helpful to test black hole parameters. Here, we consider the following two characterized
observables: Rs, the radius of the reference circle for the distorted shadow, and δs, the
deviation of the left edge of the shadow from the reference circle boundary. To define the
black hole observables, we indicate the top, bottom, right and left of the shadow cast as
(Xt, Yt), (Xb, Yb), (Xr, 0) and (Xl , 0), respectively, and (X′l , 0) as the leftmost edge of the
reference circle. Thus, the characterized observables are defined via [87]

Rs =
(Xt − Xr)2 + Y2

t
2 | Xr − Xt |

, δs =
| Xl − X′l |

Rs
. (55)

For the shadow of the non-rotating case, we have δs = 0 because the shadow is a
perfect circle such that Xl = X′l . The results of Rs and δs related with each plot in Figure 6
are listed in Tables 1–3. With the increase in q, the shadow size increases while the distortion
becomes smaller, but when the parameter α0 or β0 increases, the shadow size decreases
while the distortion becomes larger. The results indicate that q has a competitive relation
with α0 or β0 in the influence of shadow observables. We discuss the possible interpretation
of these results in the conclusion section.

Table 1. The shadow radius Rs and the distortion δs for samples of q with α0 = 0.068 and β0 =
√

0.6.

q 0.08 0.077 0.075

Rs 3.7703 3.5507 3.1894

δs 0.0116 0.01490 0.0213

Table 2. The shadow radius Rs and the distortion δs for samples of α0 for q = 0.008 and β0 =
√

0.6.

α0 0.068 0.054 0.048

Rs 3.7703 3.8356 3.9230

δs 0.0116 0.0062 0.0039

Table 3. The shadow radius Rs and the distortion δs for samples of β0 with q = 0.008 and α0 = 0.068.

β0
√

0.7
√

0.6
√

0.5

Rs 3.6526 3.7703 3.8657

δs 0.0127 0.0116 0.0106

5. Closing Remarks

In the Einstein–Maxwell-scalar theory with the self-interacted scalar field minimally
coupled with a Maxwell field and gravity field, the spherical statically charged black hole
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with scalar Q-hair was constructed via circumvention of the black hole no-hair theorem
in [55,56]. In this paper, starting from the null geodesic, we studied the optical feature
of these black holes with scalar Q-hair as well as their rotating counterpart which we
constructed with the use of the Newman–Janis approach.

We mainly focused on the shadow cast of the non-rotating and rotating black holes
with scalar Q-hairs. Compared to RN and KN black holes, the charged black holes with
scalar Q-hair in the current model always have a smaller shadow size. This feature is similar
to the finding for the Kerr black hole with scalar hair in [47,48]. The possible interpretation
could be as follows. The presence of the scalar field provides the repulsive force which
could balance the black hole’s attraction, such that the cohesive scalar hairs can be formed
surrounding the black hole. Nevertheless, the presence of scalar hairs seems to lead the
center black hole to shrink because they carry a part of the total energy of the entire sector.

Moreover, we found that the model parameters have a significant affect on shadow
observables. Increasing the charge parameter q would increase the shadow size but decrease
the shadow distortion in an axisymmetric black hole with scalar Q-hair, whereas increased
interacting parameters α0 as well as β0 would decrease their shadow size but increase
the shadow distortion. This implies that the larger q results in stronger repulsive forces
as coulombic force is stronger, but a larger α0 or β0 leads to weaker repulsive forces to
compete with gravity. In-depth studies about the effect of model parameters on shadow
distortion should be undertaken.

One interesting direction is to test the nature of supermassive black holes in M87*
and SgrA* modeled with the black hole with scalar hair in the current model. This will be
beneficial in terms of the following two aspects: (i) With the help of EHT observation, it
may provide a possible way to diagnose gravity with scalar field from GR by the black hole
shadow. (ii) Compared with the EHT observation, the black hole shadow could shed light
on the test of the no-hair theorem of black holes.
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