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Abstract

:

With the gradual popularization of autonomous driving technology, how to obtain traffic sign information efficiently and accurately is very important for subsequent decision-making and planning tasks. Traffic sign detection and recognition (TSDR) algorithms include color-based, shape-based, and machine learning based. However, the algorithms mentioned above are insufficient for traffic sign detection tasks in complex environments. In this paper, we propose a traffic sign detection and recognition paradigm based on deep learning algorithms. First, to solve the problem of insufficient spatial information in high-level features of small traffic signs, the parallel deformable convolution module (PDCM) is proposed in this paper. PDCM adaptively acquires the corresponding receptive field preserving the integrity of the abstract information through symmetrical branches thereby improving the feature extraction capability. Simultaneously, we propose sub-pixel convolution attention module (SCAM) based on the attention mechanism to alleviate the influence of scale distribution. Distinguishing itself from other feature fusion, our proposed method can better focus on the information of scale distribution through the attention module. Eventually, we introduce GSConv to further reduce the computational complexity of our proposed algorithm, better satisfying industrial application. Experimental results demonstrate that our proposed methods can effectively improve performance, both in detection accuracy and mAP@0.5. Specifically, when the proposed PDCM, SCAM, and GSConv are applied to the Yolov5, it achieves 89.2% mAP@0.5 in TT100K, which exceeds the benchmark network by 4.9%.
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1. Introduction


As part of intelligent transportation system, autonomous driving is largely regarded as a promising technology for reducing traveling time, traffic load, and guaranteeing traveling safety, thereby reducing the incidence of traffic accidents. Traffic sign detection has gradually become a fundamental perception task involved in the development of intelligent transportation systems and autonomous vehicles. The research motivation of this paper is to improve the detection accuracy of traffic sign detection task in autonomous driving and empower autonomous driving to be realistic. Traffic signs can generally be divided into warning signs, instruction signs, and prohibition signs, all of which contain rich semantic information. The use of simple geometric shapes and bright colors make it easy for the human eye to acquire traffic sign information; however, the eyes of traffic sign detection systems: vision-based sensors are highly susceptible to the size of traffic signs and other external environmental factors, which affect the driving safety seriously of autonomous vehicles.



The current traffic sign detection technology has the following several deficiencies: first, the size of traffic signs occupies a small proportion of the real road scene, which is difficult for traffic sign detection systems to capture accurate traffic sign information. Taking the traffic sign dataset Tsinghua-Tencent 100k Dataset (TT100k [1]) as an example, the proportion of the pixel range of traffic signs is only 0.2% of the image pixel [2], illustrated in Figure 1. Second, there exist large-scale or small-scale traffic signs in the same image, difference in scale can easily cause false or missed detections of the detector, furthermore, seriously affecting the detection accuracy. Eventually, the deployment of traffic sign detection technology requires not only high accuracy but a high inference speed to satisfy the real-time detection in complex traffic environments.



To alleviate the above problems, we propose a PSG-Yolov5 traffic sign detection algorithm based on Yolov5 (5th version of You Only Look Once [3]). Experiments indicate that our proposed traffic sign detector achieves relatively ideal detection and classification accuracy. The main contributions of this paper are as follows:




	
In order to eliminate the problem that most small-scale traffic signs’ spatial information can only exist in the shallow network and cannot be transmitted to the deep network through the feature extraction process, we propose a plug-and-play adaptive feature extraction module, parallel deformable convolution module (PDCM), as shown in Section 3.2. The proposed method divides the input features equally in the channel dimension [4], with each branch extracting the features individually. By introducing deformable convolution, the traffic sign detector can improve the feature extraction capability and modeling capability of CNNs, better preserving the spatial information of small-scale traffic signs.



	
Inspired by the sub-pixel convolution in [5], we propose SCAM in this paper. Our proposed SCAM can more effectively utilize the rich semantic information of high-level feature maps, better capturing the correlation between adjacent feature layers, filtering out redundant information, and making the output feature map pay more attention to the traffic sign information of the corresponding scale. It can also alleviate the aliasing effect caused by feature fusion [6].



	
We build our traffic sign detection model by referring to [7], which further reduces the computational complexity of our proposed algorithm, making our proposed traffic sign detector industrially applicable.



	
We optimize our traffic sign detector and integrate it with Robot Operating System (ROS) [8], deploying our proposed traffic sign detector to the Nvidia Jetson Xavier. We provide a concrete reference for industrial applications of traffic sign detection systems on edge devices.








The rest of the article is organized as follows: we present a brief overview of related work and methods concerning traffic sign detection in Section 2. Section 3 provides details of our research. In Section 4 we present the experimental results, and finally, in Section 5 we summarize all the work and provide conclusions.




2. Related Work


Traffic sign detection (TSD), as a branch of target detection, has gradually become a hot research topic in recent years. The research history of traffic sign detection can be broadly divided into traditional algorithms and deep learning algorithms.



2.1. Traditional Algorithms


Traditional TSD can be divided into color-based, shape-based, and machine learning based. Color-based and shape-based detection techniques mainly utilize specific image colors and shapes to manually extract features, such as SIFT [9] (scale invariant feature transform) features, HOG [10] [Histograms of Oriented Gradient] features, these traffic sign detection techniques mainly extract visual information in candidate regions, cropping and extracting traffic signs in the images, and match marker signs by templates. Takaki Masanari [9], and others use SIFT method to detect traffic signs. However, color-based and shape-based methods are susceptible to weather conditions, lighting, and other environmental factors [11]. Machine learning methods are used to extract invariant or similar visual features from traffic signs, detect the traffic signs in the image, then use classification algorithms to classify them and hence understand the semantic information contained in the traffic signs. Classical classification algorithms include template matching algorithms and support vector machines (SVMs), random forests, etc. However, after nearly decades of research, the performance of algorithms for traffic sign detection by manually designed features has reached a bottleneck.




2.2. Deep Learning Algorithms


Deep learning came to researchers’ attention in 2012 with the introduction of AlexNet [12], a convolutional neural network (CNN) approach to detecting traffic signs. Deep learning algorithms can independently train and learn network models based on labeled object datasets, and along with the development of parallel computing devices, the dataset has been accompanied by further expansion, allowing for further robust algorithms to be applied in the TSD field. The algorithms can be roughly divided into one-stage and two-stage detection algorithms depending on whether candidate frames are generated.



2.2.1. Two-Stage Algorithms


Two-stage detection algorithms mainly include R-CNN [13], Fast-RCNN [14], Faster R-CNN [15], Mask R-CNN [16], and Cascade R-CNN [17]. Due to the complexity of the traffic sign detection task, CAO [18] proposed a multi-scale fusion detection method based on Faster R-CNN and verified the robustness of their algorithm; TANG [2] proposed a feature aggregation network to enhance the feature extraction capability. In general, the accuracy of two-stage detection algorithms is higher than one-stage. Although the above-mentioned algorithms enhance the detection capability of the model to a certain degree. The limitations of their methods are unable to meet the real-time requirements, therefore, improvements for one-stage detection algorithms are very valuable for research.




2.2.2. One-Stage Algorithms


One-stage detection algorithms are represented by SSD [19], YOLO [3], etc. He [20] applied SPP to collect features at different scales learning multi-scale features more comprehensively, which obtained 97% accuracy with an average inference speed of 19.3 ms per frame on the CCTSDB dataset. The M-Yolo traffic sign detection model proposed by Liu [21], achieves an accuracy of 93.5% on the CCTSDB dataset by introducing network structures such as FOCUS [22] and SPPF, etc. The above improvements increase the detection accuracy as much as possible while keeping inference speed, reaching an accuracy sufficient to rival algorithms such as Faster R-CNN with less inference time. In summary, the state-of-the-art Yolo algorithm is very suitable for the recognition of traffic sign detection due to its outstanding real-time performance, generalization ability, and its remarkable performance of fine-grained instances, etc. Although the above researchers’ one-stage models had improved the detection accuracy, there is still some room for further improvement in small-scale traffic signs detection and multi-scale feature fusion process.






3. Traffic Sign Detection with PSG-Yolov5


In Chapter 3 we present the structure of our proposed module in detail. Section 3.1 introduces the overall architecture of our model, Section 3.2 introduces our proposed PDCM module, Section 3.3 introduces our proposed SCAM module, Section 3.4 briefly describes the GSConv convolution structure we introduce, and finally we introduce the loss functions used in this paper.



3.1. Architecture of PSG-Yolov5


In this section, we present our proposed PSG-Yolov5 network model architecture, illustrated in Figure 2. The first is a plug-and-play parallel deformable convolution module (PDCM) embedded in the generic feature extraction backbone network, which adaptively changes the perceptive field to enhance the feature extraction capability. PDCM can reduce the loss of spatial information caused by the backbone network during feature extraction. The second part is in the feature fusion phase, in which we propose the sub-pixel convolution attention module (SCAM). Our proposed SCAM module focuses on aggregating adjacent high-level feature layers (P3 and P4). First, sub-pixel convolution is used to perform up-sampling operations to alleviate the aliasing effects [6] during cross-scale feature fusion. Second, we introduce spatial attention and channel attention to capture the correlation between adjacent feature layers. For example, P2 contains rich spatial information and focuses more on small-scale objects, and P4 contains rich semantic information and focuses more on large-scale objects. How to make better use of multi-scale features is very meaningful to improving the performance of the traffic sign detection algorithm. In this paper, we also refer to the GSConv proposed in [7] as shown in Section 3.4, while keeping the accuracy almost constant and reducing the complexity of our PSG-Yolov5. It requires both high accuracy and speed of inference in traffic sign detection systems. In general, the larger the number of parameters, the higher the accuracy and the slower the inference speed; however, the introduction of GSConv reconciles the contradiction between accuracy and inference speed. The third part is the prediction stage, in which PSG-Yolov5 contains three prediction heads, as shown as Head1–Head3 in Figure 2.




3.2. Parallel Deformable Convolution Module


As shown in Figure 3, we propose a parallel and symmetrical deformable convolution module, which can enhance the spatial information extraction capability of the backbone network by adaptively changing the shape of convolutional kernel. Because the shallow neural network structure is rich in spatial information, we apply our proposed module to the shallow network to effectively improve the modeling capability of CNNs when capturing small-scale traffic signs. In PDCM, we first equally split the input feature map in the channel dimension, and then independently change the perceptive field size through two identical separate branches. Then, we concatenate the two branches in channel dimension, and finally, we shuffle the resulting feature map to obtain the output feature map. C1 and C2 in Figure 3 represent the number of channels of input and output feature maps respectively, and H, W are the height and width of the tensor, respectively.



After feature extraction and concatenation, we obtain a feature map containing rich spatial information about the multi-scale traffic signs, after which we apply a channel shuffling to the feature map. As shown in Figure 3, the feature map with channel size C2 is obtained. The output feature map of the parallel deformable convolution module is shown as Equation (1).    f  s h u f f l e    ,    f  D C N    , and    f  C o n v     represent shuffling channels, Deformable Conv function, and standard convolution function respectively. Our proposed parallel deformable convolution module is very effective in improving the accuracy of traffic sign detection as shown in Section 4.


  o u t p u t =  f  s h u f f l e   ( c a t (  f  D C N   (  f  C o n v   (  x  s p l i t 1   ) ) ,  f  D C N   (  f  C o n v   (  x  s p l i t 2   ) ) )  



(1)







3.2.1. Identical and Symmetrical Branch Operation


Since the two branches are identical, we only describe one branch in detail. Each branch is composed of convolution module and deformable convolution network (DCN) operation. As illustrated in Figure 3, Conv in every branch represents the standard convolution operation, k = 1 and s = 1 represent the size of the convolution kernel equaling to 1 and the stride equaling 1 respectively. k and s default to 1 in PDCM unless specially stated. Since CNN models have a fixed geometric structure, such as convolutional layers, pooling layers, etc., which leads to the same perceptive field for all activation units lacking mechanisms to handle geometric variations. Therefore, we refer to deformable convolutional networks [25] and introduce deformable convolution, which is capable of adaptively detecting geometric changes in size, pose, etc. Since small-scale traffic sign recognition and localization are closely related to their shape and pose, DCN is particularly suitable for the recognition of small-scale traffic signs. The Deformable Conv in Figure 3 represents the standard deformable convolution, which is illustrated in Figure 4. The DCN module first obtains offsets from the input feature maps, the convolution kernel shape is then adaptively changed by the learned offsets.



In PSG-Yolov5, the input feature map which size is   X ∈  ℝ  80 × 80 × 256    . We split the input feature map equally and feed it into two separate branches, whose size is   X ∈  ℝ  80 × 80 × 128    . The operation of each branch after splitting is shown as Equation (2). The    f  C onv     and    f  D C N     represent the Conv operation and DCN operation respectively.


   x  b r a n c h 1   =  f  D C N   (  f  C o n v   (  x  s p l i t 1   ) )  



(2)








3.2.2. The Introduction of DCN and Conv Module


Deformable convolutional networks proposed deformable convolution that adaptively changes the size of perceptive field to better capture the spatial information. Deformable convolution adds a 2D offset to the regular grid sampling positioning, which allows spontaneous deformation of the sampling grid. The offset is drawn from the previous feature map. The deformation of the sampling grid depends on the input features in a local, density, and adaptive manner. The sampling grid in deformable convolution is indicated in Figure 4. Equation (3) represents the deformable convolution, where    P 0    represents each position on the output maps;    P n    represents sampling on the input feature map with regular kernel size;   Δ  p n    represents offset for each sample point.



In PDCM, each Conv module consists of three parts, a convolutional-2D layer, a batch normalization-2D layer, and an activation layer. The calculation process is shown in Equation (4), where   σ ( · )   and   Β ( · )   represent the activation function and Batch Normalization layer [20] respectively.


  f (  p 0  ) =   ∑   p n  ∈ R     w (  p n  )   ⋅ x (  p 0  +  p n  + Δ  p n  )  



(3)






   f  C o n v   = σ ( Β (  x  s p l i t 1   ) )  



(4)









3.3. Sub-Pixel Convolution Attention Module


It is well-known that the information contained in low-level and high-level feature maps are complementary for multi-scale detection tasks, and it is valuable to study how to fully utilize the information at different scales for traffic sign detection tasks.



As shown in Figure 5, we propose the sub-pixel convolution attention module (SCAM). In the traffic sign detection task, the high-level feature maps contain rich semantic information, such as {P3, P4} in Figure 5.



Along with the proposed of FPN network [6], which can effectively fuse high-level feature maps, the widely used cross-scale fusion strategy effectively improves detection performance. However, multi-scale feature maps cannot be fused directly due to different scales, interpolation is needed if we wish to effectively utilize the feature maps. We know that direct interpolation-fusion may bring significant aliasing effects, and may seriously affect the classification and localization of traffic sign detection tasks.



Inspired by sub-pixel convolutional networks [5], we introduce sub-pixel convolution to solve the defects caused by nearest neighbor interpolation, and we introduce spatial and channel attention mechanisms to fully utilize the feature layers of different scales. SCAM can adjust the feature layers of different scales to pay more attention to their own corresponding scale information. The overall schematic of the sub-pixel convolution attention module and the changing process of feature dimension is illustrated in Figure 5.



We validate our proposed SCAM in Section 4, and our experimental results show that our approach is effective and brings performance gains with almost negligible computational burden.



3.3.1. Sub-Pixel Convolution


In order to fully utilize the rich semantic information in P4 and P3, we introduce the sub-pixel convolution module by referring to the up-sampling method in super-resolution. As an up-sampling strategy, sub-pixel convolution can modify the input feature’s width and height to turn low-resolution features into high-resolution features through the pixel-shuffle process, which is illustrated in Figure 6, and its mathematical expression is shown in Equation (5).   P S     represents periodic shuffling operator which turns a tensor of shape   H × W × C ⋅  r 2    to   r H × r W × C  ,  r  is an up-sampling factor, in our paper  r  equals to 2,  T  is input feature map.


  P S   ( T )   X , Y , C   =  T   X  /  r  ,  Y  /  r  , C ⋅ r . mod ( Y , r ) + C ⋅ mod ( X , r )    



(5)








3.3.2. Attention Module


We refer to the CBAM attention mechanism [26], of which the channel attention module and spatial attention module are two submodules respectively.



Channel attention: Keeping the channel dimension unchanged and compresses the spatial dimension. In PSG-Yolov5, the introduction of channel attention can make P3 paying more attention to the medium-scale traffic signs, thus excluding the redundant information. The input feature map first goes through two parallel   M a x P o o l   layers and   A v g P o o l     layers, which change the dimension of the feature map from   C × H × W   to   C × 1 × 1  , and then goes through the   S h a r e     M L P   module, which compresses the channel of the feature map to 1/r times of the original, and then expands it to the original channel, and the results of the two branches obtained by the activation function execute the element-wise operation, and then finally by the sigmoid activation function is multiplied with the original feature map. The schematic diagram of channel attention is shown in Figure 7, and the mathematical formula of our channel attention is shown in Equation (6).


   M C  ( P 3 ) = σ ( M L P ( A v g P o o l ( P 3 ) ) + M L P ( M a x P o o l ( P 3 ) ) )  



(6)







Spatial attention: Keeping the spatial dimension unchanged, the channel dimension is compressed to render it more focused on the location information of the target. In our traffic sign detection task, the introduction of the spatial attention module can localize traffic signs more efficiently and alleviate the nuisance caused by uneven sample scales. The spatial attention is shown in Figure 7 and its mathematical equation is shown as Equation (7).


   M s  ( P  4 ″  ) = σ (  f  7 × 7   ( [ A v g P o o l ( P  4 ″  ) ; M a x P o o l ( P  4 ″  ) ] ) )  



(7)









3.4. GSConv Module


Traffic sign detection task in industrial project requires high detection accuracy, in addition, the inference speed is essential. Usually, the higher the number of parameters of the model, the higher detection accuracy will be; however, the pursuit of accuracy is no longer a perfect solution to the traffic sign detection task. To summarize, we refer to GSConv [1] and introduce a lighter convolutional structure to make the number of parameters of our proposed model smaller. We embed the GSConv module into the feature fusion stage so that our model is under a significantly lower number of parameters with slightly lower detection accuracy. We did not use GSConv in the backbone network because it would cause a deeper backbone network layer, and a deeper network would aggravate the resistance to spatial information flow and thus affect the inference speed, which is intolerable in a traffic sign detection system. Figure 8 shows the schematic diagram of the GSConv module. Yolov5: 5th version of Yolo Only Look Once.



GSconv module mainly consists of Conv module, DWConv module, Concat module, and shuffle module, whose mathematical expression is Equation (8),    f  s h u f f l e     means shuffle operation,    f  c o n v     consists of standard convolution, batch normalization [27] operation and activate function,    f  d s c     represents depth-separable convolution (DSC), batch normalization operation and activate function.


   Χ  o u t   =  f  s h u f f l e   ( c a t (  f  c o n v   (  Χ  i n   ) ,  f  d s c   (  f  c o n v   (  Χ  i n   ) ) ) )  



(8)









[image: Symmetry 14 02262 g008 550] 





Figure 8. The structure of the GSConv module. DWConv in the figure means depth-separable convolution (DSC). In Figure 8 the “G” represents the GhostNet [28], “S” represents the shuffle operation, and the “Conv” is standard convolution operation. 






Figure 8. The structure of the GSConv module. DWConv in the figure means depth-separable convolution (DSC). In Figure 8 the “G” represents the GhostNet [28], “S” represents the shuffle operation, and the “Conv” is standard convolution operation.
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3.5. The Loss Function of PSG-Yolov5


The loss function of the target detection task is generally composed of bounding boxes regression loss and classification loss. The commonly used calculation indicator of bounding boxes regression loss is the intersection-over-union ratio (IOU [29]), which compares the predicted bounding boxes with the ground truth bounding boxes. The IOU loss function can continuously correct the localization of the predicted bounding boxes through regression. With continuous research on loss functions, many excellent loss functions have been proposed, such as GIOU [30], DIOU [31], CIOU [32], etc. The mathematical formula expressions of the above four types of loss functions are Equation (9) to Equation (12) respectively.



A and B in the above equations represent the area of ground truth bounding boxes and the area of prediction bounding boxes respectively. C represents the minimum enclosing box of A and B. In Equation (11),    d     represents the Euclidean distance of the opposite corners of the bounding boxes.   ρ ( ⋅ )   represents the calculation expression for Euclidean distance. In Equation (12), the  v  represents the evaluation metric for evaluating the aspect ratio of ground-truth bounding boxes and predicted bounding boxes, and  α  represents the indicator of trade-off.


  L o s  s     I O U           = 1 − I O U , I O U =   A ∩ B   A ∪ B    



(9)






  L o s  s  G I O U   = 1 − I O U +   C − ( A ∪ B )  C   



(10)






  L o s  s  D I O U   = 1 − I O U +    ρ 2  ( b ,  b  g t   )    d 2     



(11)






    L o s  s  C I O U   = 1 − I O U +    ρ 2  ( b ,  b  g t   )    d 2    + α v     v =  4   π 2    ( arctan    w  g t      h  g t     − arctan  w h  ) 2 , α =  v  ( 1 − I O U ) + v           



(12)







The IOU loss function has the advantages of scale invariance and non-negativity; however, when the bounding boxes do not intersect, the IOU equaling 0, and the IOU cannot reflect the distance relationship between the predicted bounding box and the ground truth bounding box. GIOU loss function focuses not only on overlapping regions, but also non-overlapping regions. However, the GIOU loss function converges slowly when doing regression tasks. DIOU introduces the Euclidean distance indicator between center point of predicted bounding box and ground truth bounding box, which can accelerate the model convergence, but does not consider the aspect ratio of the bounding box. CIOU, the aspect ratio of the bounding box is increased, which makes up for the deficiency of the DIOU loss function to a certain extent. The PSG-Yolov5 proposed by us adopts the CIOU bounding boxes loss function.





4. Experimental Results and Analysis


In this chapter we introduce the test dataset we used, the related experimental evaluation indexes, the ablation and comparison experimental results and analysis, we also visualize our experimental results in this chapter.



4.1. Traffic Sign Dataset


We utilize the Tsinghua-Tencent 100K Tutorial [1] as the benchmark dataset to test our proposed PSG-Yolov5 algorithm. The dataset comprises 9176 images, including 6105 training images and 3071 test images. The TT100k dataset consists of 227 categories with 2048 × 2048 image resolution, covering scenes with different weather conditions. Table 1 shows a brief description of the dataset.




4.2. Experimental Configuration and Evaluation Metrics


4.2.1. Experimental Configuration


We use the Pytorch framework to build our PSG-Yolov5. Our experiments were conducted on the Ubuntu18.04 operation system with two Nvidia Tesla V100. The hyper-parameter configuration of PSG-Yolov5 is as follows: epoch is 100; batch size is 16; initial learning rate is 0.01 and final learning rate is 0.01; the momentum and weight decay are 0.937 and 0.0005. The optimizer is SGD [33] optimizer. The Nvidia Jetson Xavier’s operation system is Linux Ubuntu 18.04.




4.2.2. Experimental Evaluation Metrics


There exist multiple metrics to evaluate algorithms in target detection tasks. Commonly used include, precision(P), which indicates the proportion of predicted positive samples. Recall(R), which indicates the proportion of all predicted positive samples. AP (average-precision), which indicates the average accuracy of different recall points. Mean average-precision(mAP), is the average of AP(average-precision) of multiple categories. The mathematical expressions of the evaluation index mentioned above are illustrated in (13) to (14). TP and TN represent positive and negative samples with correct prediction respectively, FP and FN represent positive and negative samples with incorrect prediction respectively. In our experiments, the mAP@0.5 is the average precision of the traffic sign categories when the accuracy evaluation IOU threshold is set to 0.5.


  P =   T P   T P + F P   , R =   T P   T P + F N    



(13)






  A  P c  =  1   N c      ∑   r c  ∈  R c     p (  r c  )   , m A P =  1 N   ∑  ( A  P c  )    



(14)









4.3. Experimental Results


4.3.1. Ablation Experiments


We evaluate the effectiveness of our proposed individual modules, including the PDCM, SCAM, and GSConv convolutional module on the publicly available traffic sign dataset TT100k. The results are illustrated in Table 2. In the Table 2 and following tables, red represents the percentage decline in performance compared to the baseline, and green represents the percentage increase.



According to mAP@0.5 and Param evaluation metric in Table 2, the introduced GSConv convolution module leads to a 0.7% decrease in mAP@0.5, while our proposed PDCM structure and SCAM structure improve by 1.9% and 2.0%, respectively, and when we apply both of our proposed modules to the benchmark model the mAP@0.5 improves by 4.9%. Although the GSConv convolutional module we introduce causes a decrease in mAP@0.5, the number of parameters also decreases by 3.9%, and the inference speed is also important in the traffic sign detection task, so the decrease of slight performance is tolerable. In summary, in terms of performance improvement alone, our proposed PSG-Yolov5 is fully validated on the TT100k dataset, and its performance improvement is obvious. After that, we tested our proposed model on Nvidia Tesla V100 and Nvidia Jetson Xavier for FPS (frames per second), respectively, the results as shown in Table 3.




4.3.2. Comparative Experiments


In order to fully verify PSG-Yolov5 algorithm we propose in this paper, we carried out a full comparison experiment with other researchers and some advanced algorithms on TT100k dataset, and the comparison results are shown in Table 4. According to the results of comparative experiments, our proposed PSG-Yolov5 achieves relatively excellent results in both mAP@0.5 and FPS.



According to the data in Table 4, the traffic sign detection algorithm based on Cascade-RCNN of TANG [2] achieved 93.6% mAP@0.5, but its FPS was only 2.3, which could not satisfy the needs of real-time detection on embedded platforms. We also tested on the advanced Yolo series algorithm: YOLOX [40], which has lower parameters and GFLOPs, but the accuracy is not comparable to PSG-Yolov5.



In summary, our proposed algorithm perfectly achieves the balance between mAP@0.5 and FPS with slight increase in computational complexity. The inference speed is maintained while obtaining a relatively high accuracy and we tested it on an embedded platform to respond to the real-time requirements. Figure 9 shows some of the detection results of our proposed traffic detection model.




4.3.3. Visualization of Results


To further verify the practicality of our proposed method, we refer to Grad-CAM [41] and generate the heatmaps based on the benchmark model and the PSG-Yolov5, respectively, as shown in Figure 10. Based on the information acquired by heatmaps, we can comprehend that the detection results of PSG-Yolov5 are more based on the traffic signs themselves without relying too much on the external environment, so it is less influenced by the external environment and more robust compared to the benchmark model.



We can conclude from Figure 10 that the detection results of our proposed PSG-Yolov5 are based more on the traffic signs themselves rather than on other external factors. In realistic roads, the task of traffic sign detection is very easily affected by weather factors. It will become unreasonable to rely too much on the external environment for traffic sign detection under weather conditions such as rain, fog etc. This also proves from the side that our proposed algorithm has a certain robustness.






5. Conclusions


To address the problems of small target detection, information loss during multi-scale fusion, and the real-time performance of traffic sign detection algorithm, we propose the PSG-Yolov5 traffic sign detection algorithm based on Yolov5l. In this work, we propose the PDCM module, which can enhance the feature extraction ability of the model and improve the detection performance of small-scale traffic signs; our proposed SCAM module can fuse multi-scale features more efficiently and alleviate the influence of scale distribution; we also introduce the GSConv module to reduce the computational complexity of our proposed PSG-Yolov5 traffic sign detection algorithm. Through comparison experiments and ablation experiments in TT100k dataset, we can conclude that our proposed algorithm achieves significant results in terms of detection accuracy (mAP@0.5 equals 89.2%, which improves by 4.9% compared to the benchmark) and real-time detection (FPS equals 85.5). The algorithm proposed in this paper has achieved satisfying results on the TT100k dataset; however, the robustness of our algorithm in complex natural environments such as rain, snow, and fog has not yet been verified. In future, we plan to conduct research on traffic sign detection facing complex natural environments, and explore a robust TSD system.
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Figure 1. (a–d) Some images from the TT100k dataset, the traffic signs’ pixel value occupying only a small fraction of the image. 






Figure 1. (a–d) Some images from the TT100k dataset, the traffic signs’ pixel value occupying only a small fraction of the image.



[image: Symmetry 14 02262 g001]







[image: Symmetry 14 02262 g002 550] 





Figure 2. The structure of PSG-Yolov5 consists of three main parts: (1) the backbone network, CSPNet [23], with an embedded PDCM (shown in Section 3.2) for enhanced feature extraction capability of small objects. (2) The fusion network, PANet [24], with the addition of SCAM (shown in Section 3.3), is used to perform multi-scale feature fusion. (3) Prediction head, which outputs feature maps containing multi-scale information. 
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Figure 3. The structure of parallel deformable convolution module. The module consists of a split operation, convolution operation; deformable convolution module; concatenate; and shuffle. It is primarily used to enhance the spatial information extraction and modeling capability of the backbone network by adaptively changing the size of perceptive field. 
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Figure 4. The structure of DCN and introduction of sampling grid [25]. (a) is standard sampling grid, (b–d) represent the deformable sampling gride. The green circles represent the original sampling grid, and the blue circles represent the sampling points after learning offsets. 
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Figure 5. Schematic of SCAM. The high-level feature map P4′ (shown in Figure 2) first goes through sub-pixel convolution, and the size change is illustrated in the figure. After this P4′ and P3 are input to the attention module at the same time. 
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Figure 6. The structure of sub-pixel convolution. The channel of the low-resolution feature map is first expanded by the channel extension (a standard 1 × 1 convolution) operation, and the high-resolution feature map is obtained by the pixel shuffle operation. 
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Figure 7. The structure of Spatial and Channel Attention. P3, P4″ represent the feature maps captured by the backbone extraction network and P4′ after sub-pixel convolution module (shown in Figure 5) respectively.   M a x P o o l   and   A v g P o o l   represent the maximum pooling and average pooling. 






Figure 7. The structure of Spatial and Channel Attention. P3, P4″ represent the feature maps captured by the backbone extraction network and P4′ after sub-pixel convolution module (shown in Figure 5) respectively.   M a x P o o l   and   A v g P o o l   represent the maximum pooling and average pooling.



[image: Symmetry 14 02262 g007]







[image: Symmetry 14 02262 g009 550] 





Figure 9. Some detection results on TT100k datasets. 
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Figure 10. Heatmap visualization of selected detection results of PSG-Yolov5 and the benchmark model (Yolov5l) on the TT100k dataset. (a–d) denote the heatmap visualization of our proposed PSG-Yolov5, and (a’–d’) denote the heatmap visualization based on Yolov5l. 
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Table 1. Statistical tables for the TT100k dataset.
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	Benchmark Datasets
	Tsinghua-Tencent 100K





	Images
	9176 (6105 for training, 3071 for testing)



	Categories
	227



	Resolution
	2048 × 2048



	GT Boxes
	16,527
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Table 2. PSG-Yolov5 ablation experiments on TT100k dataset.
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	Method
	P/%
	R/%
	mAP@0.5/%
	Param/M
	GFlOPs





	Yolov5l (baseline)
	86.1
	75.2
	84.3
	46.3
	108.4



	Yolov5l + GSConv
	83.4 (−2.7)
	76.4 (+1.2)
	83.6 (−0.7)
	44.5 (−1.8)
	106.1



	Yolov5l + GSconv + PDCM
	86.2 (+0.1)
	78.3 (+3.2)
	86.2 (+1.9)
	47.1 (+0.8)
	107.3



	Yolov5l + GSconv + SCAM
	83.4 (−2.7)
	81.2 (+6.0)
	86.3 (+2.0)
	45.6 (−0.7)
	106.9



	Yolov5l + GSconv + PDCM + SCAM
	86.3 (+0.2)
	82.4 (+6.2)
	89.2 (+4.9)
	48.4 (+2.1)
	108.3
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Table 3. FPS detected by Nvidia Tesla V100 and Nvidia Jetson Xavier respectively.
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Method

	
FPS (Image Size = 640 × 640)




	
Nvidia Tesla V100

	
Nvidia Jetson Xavier






	
Yolov5l

	
91.7

	
24.6




	
Yolov5l + GSConv

	
94.3

	
25.1




	
Yolov5l + GSconv + PDCM

	
89.3

	
23.5




	
Yolov5l + GSconv + SCAM

	
90.9

	
24.1




	
Yolov5l + GSconv + PDCM + SCAM

	
85.5

	
23.1
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Table 4. Comparison with other researchers tested on TT100k.
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	Method
	Parameters/M
	GFLOPs
	mAP@0.5/%
	FPS





	CUI [34]
	-
	-
	77.6
	-



	Gan [35]
	-
	-
	87.9
	31.3



	TANG [2]
	-
	-
	93.6
	2.3



	CAO [18]
	40.08
	123.28
	44.4
	26



	Wu [36]
	-
	-
	79.4
	41.7



	Yolov3
	59.58
	158.00
	61.7
	27.0



	YoloX-s
	9.01
	27.03
	68.6
	59



	Mobilenet-SSD
	25.067
	29.20
	32.0
	22



	Wu [37]
	-
	-
	82.9
	65



	Improved-Yolov4 [38]
	-
	-
	82.3
	84.5



	ReYolo [39]
	-
	-
	68.3
	188.3



	ours
	48.4
	108.3
	89.2
	85.5
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