On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- 1.
- if
- 2.
- if
3. Existence Results for the Problem (1) and (2)
4. Example
5. Ulam–Hyers Stability Results for the Problem (1) and (2)
6. Example
7. Existence Results for the Problem (1) and (75)
8. Asymmetric Cases
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Britton, N.F. Essential Mathematical Biology; Springer: London, UK, 2003. [Google Scholar]
- Ma, Y.; Ji, D. Existence of Solutions to a System of Riemann-Liouville Fractional Differential Equations with Coupled Riemann-Stieltjes Integrals Boundary Conditions. Fractal Fract. 2022, 6, 543. [Google Scholar] [CrossRef]
- Theswan, S.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions. Symmetry 2022, 14, 1948. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Valerio, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited, North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Soviet Math. Dokl. 1969, 10, 398–400. [Google Scholar]
- Ciegis, R.; Bugajev, A. Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control. 2012, 17, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.; Alzabut, J.; Baleanu, D.; Samei, M.E.; Zada, A. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021, 2021, 1–46. [Google Scholar] [CrossRef]
- Rahmani, A.; Du, W.S.; Khalladi, M.T.; Kostić, M.; Velinov, D. Proportional Caputo Fractional Differential Inclusions in Banach Spaces. Symmetry 2022, 14, 1941. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Positive Solutions for a Fractional Differential Equation with Sequential Derivatives and Nonlocal Boundary Conditions. Symmetry 2022, 14, 1779. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Nieto, J.J. Existence and uniqueness results for a nonlinear coupled system involving caputo fractional derivatives with a new kind of coupled boundary conditions. Appl. Math. Lett. 2021, 116, 107018. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized liouville–caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Alzabut, J.; Hussain, A.; Subramanian, M.; Rezapour, S. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021, 2021, 1–23. [Google Scholar] [CrossRef]
- Baleanu, D.; Alzabut, J.; Jonnalagadda, J.; Adjabi, Y.; Matar, M. A coupled system of generalized sturm–liouville problems and langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives. Adv. Differ. Equ. 2020, 2020, 1–30. [Google Scholar] [CrossRef]
- Muthaiah, S.; Baleanu, D. Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives. Axioms 2020, 9, 44. [Google Scholar] [CrossRef]
- Saeed, A.M.; Abdo, M.S.; Jeelani, M.B. Existence and Ulam–Hyers stability of a fractional-order coupled system in the frame of generalized Hilfer derivatives. Mathematics 2021, 9, 2543. [Google Scholar] [CrossRef]
- Ahmad, D.; Agarwal, R.P.; Rahman, G.U.R. Formulation, Solution’s Existence, and Stability Analysis for Multi-Term System of Fractional-Order Differential Equations. Symmetry 2022, 14, 1342. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations. Symmetry 2022, 14, 738. [Google Scholar] [CrossRef]
- Awadalla, M.; Abuasbeh, K.; Subramanian, M.; Manigandan, M. On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions. Mathematics 2022, 10, 1681. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. A new approach to generalized fractional derivatives. arXiv 2011, arXiv:1106.0965. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Krasnoselskiı, M. Two remarks on the method of successive approximations, uspehi mat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadalla, M.; Subramanian, M.; Abuasbeh, K.; Manigandan, M. On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions. Symmetry 2022, 14, 2273. https://doi.org/10.3390/sym14112273
Awadalla M, Subramanian M, Abuasbeh K, Manigandan M. On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions. Symmetry. 2022; 14(11):2273. https://doi.org/10.3390/sym14112273
Chicago/Turabian StyleAwadalla, Muath, Muthaiah Subramanian, Kinda Abuasbeh, and Murugesan Manigandan. 2022. "On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions" Symmetry 14, no. 11: 2273. https://doi.org/10.3390/sym14112273
APA StyleAwadalla, M., Subramanian, M., Abuasbeh, K., & Manigandan, M. (2022). On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions. Symmetry, 14(11), 2273. https://doi.org/10.3390/sym14112273