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Abstract

:

The artificial rabbits optimization (ARO) algorithm is a recently developed metaheuristic (MH) method motivated by the survival strategies of rabbits with bilateral symmetry in nature. Although the ARO algorithm shows competitive performance compared with popular MH algorithms, it still has poor convergence accuracy and the problem of getting stuck in local solutions. In order to eliminate the effects of these deficiencies, this paper develops an enhanced variant of ARO, called Lévy flight, and the selective opposition version of the artificial rabbit algorithm (LARO) by combining the Lévy flight and selective opposition strategies. First, a Lévy flight strategy is introduced in the random hiding phase to improve the diversity and dynamics of the population. The diverse populations deepen the global exploration process and thus improve the convergence accuracy of the algorithm. Then, ARO is improved by introducing the selective opposition strategy to enhance the tracking efficiency and prevent ARO from getting stuck in current local solutions. LARO is compared with various algorithms using 23 classical functions, IEEE CEC2017, and IEEE CEC2019 functions. When faced with three different test sets, LARO was able to perform best in 15 (65%), 11 (39%), and 6 (38%) of these functions, respectively. The practicality of LARO is also emphasized by addressing six mechanical optimization problems. The experimental results demonstrate that LARO is a competitive MH algorithm that deals with complicated optimization problems through different performance metrics.
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1. Introduction


Most practical applications of problem processing often go to the appropriate solution of an optimization problem by their very nature [1]. Therefore, the optimization problem has been a problem that has received much attention from the beginning, and the exploration of various efficient methods for complicated optimization problems (COPs) has captured the attention of scholars in many fields. Among them, the traditional mathematical optimization method as an optimization strategy requires that the associated objective function needs meet convexity and separability. This property requirement guarantees that it approximates the optimal solution theoretically. However, traditional mathematical strategies are complicated in dealing with highly complex and demanding optimization problems [2]. Newton’s method and the branch-and-bound method are typical deterministic algorithms. Although such algorithms are superior to metaheuristic nature-inspired algorithms in solving some single-parameter tests in terms of functional tests, deterministic algorithms tend to fall into local optimal solutions when faced with more demanding objective functions and constraint functions. Deterministic methods may not be effective when facing multimodal, discrete, non-differentiable, or non-convex problems, or with a comprehensive search space. In addition, deterministic algorithms sometimes require a derivative. Therefore, deterministic algorithms often do not work in solving engineering problems [3].



MH techniques have recently attracted more scholarly attention because of their unique idea of providing a suitable candidate to handle various complex and realistic optimization problems. In general, MH methods have some available advantages over traditional mathematical optimization methods: MH algorithms are an efficient search, low-complexity global optimization method, and different solutions can be searched for in each iteration, making these other solutions highly competitive in obtaining optimal solutions [4].



Depending on the object of construction, experts tend to classify MH algorithms into four parts: evolution-based algorithms, group-intelligence-based algorithms, physical- or chemical-based algorithms, and human-behavior-based algorithms (HBAs) [5]. Evolution-based algorithms imitate the natural evolutionary laws of the biological world; examples of this category include genetic algorithms [6], evolutionary strategies [7], differential evolution [8] which is a variation, crossover, and selection-based garlic algorithm, and evolutionary planning (EP) [9].



Group-intelligence-based (GIB) algorithms are often motivated by the cooperative conduct of various plants and animals in natural environments that live in groups and work together to find food/prey. This GIB category includes aphid–ant mutualism (AAM) [10], bottlenose dolphin optimizer (BDO) [11], beluga whale optimization (BWO) [12], capuchin search algorithm (CapSA) [13], sand cat swarm optimization (SCSO) [14], manta ray foraging optimization algorithm (MRFO) [15], black widow optimization algorithm (BWOA) [16], and chimp optimization algorithm (CHOA) [17].



A physical- or chemical-based algorithm simulates the physical laws and chemical phenomena of biological nature, usually following a generic set of rules to discriminate the influence of interactions between candidate solutions. The type includes the gravitational search algorithm [18], a popular physical- or chemical-based algorithm motivated by Newton’s law of gravity. According to some gravitational force, subjects are attracted to each other according to the law of gravitation. Examples include atom search optimization [19], ion motion algorithm [20], equilibrium optimizer [21], and water cycle algorithm (WCA) [22].



In the last case of the four types, HBAs are exploited by taking advantage of various characteristics associated with humans. The main types of this category include human mental search [23], poor and rich optimization algorithm [24], and teaching learning-based optimization [25].



Dealing with COPs usually consists of two steps: exploration and exploitation. Exploration and exploitation are two opposite strategies. The algorithm searches for a better solution in the global discovery domain in the exploration step. In the development step, the algorithm tends to locate the best solution found so far by exploring the vicinity of the candidate solutions. The trade-off between exploration and exploitation is considered one of the most common problems in current metaheuristic algorithms [26]. This general problem forces the optimization search process to utilize one of the search mechanisms at the expense of the other strategy. In this context, many scholars have proposed algorithms to balance such mechanisms. For example, Zamani proposed a quantum-based avian navigation optimizer algorithm inspired by the navigation behavior of migratory birds [27]. In addition, Nadimi-Shahraki introduced the proposed multi-trial vector approach and archiving mechanism to the differential evolution algorithm, thus proposing a diversity-maintained differential evolution algorithm [28]. ARO was suggested as a newly developed metaheuristic technique with steps inspired by the laws of rabbit survival in the natural world [29].



Regarding the no-free-lunch theory [30], no nature-inspired method can optimally handle every realistic COP [31]. The above facts imply that optimization methods are applied to solve specific COPs but may not be valid for solving other COPs, and experimental results tend to reveal that artificial rabbits optimization has poor convergence accuracy and tends to get stuck in local solutions when handling complicated or high-latitude issues. Therefore, based on the importance of the above two reasons, this paper suggests a hybrid artificial rabbit optimization with Lévy flight and selective opposition strategy, called enhanced ARO algorithm (LARO). LARO is a variant of the ARO algorithm. First, to enhance the worldwide finding capability of ARO, the Lévy flight strategy is fully utilized [32]. The Lévy flight strategy helps LARO to design local solution avoidance and international exploration. Secondly, local exploitation of LARO is achieved by using a selective opposition strategy with improved convergence accuracy [33]. The innovative points and the major contributions of this paper are given below:




	(i)

	
The Lévy flight strategy is introduced in the random hiding phase to improve the diversity and dynamics of the population, which further improves the convergence accuracy of ARO.




	(ii)

	
The introduced selection opposition strategy extends the basic opposition strategy and adaptively re-updates the algorithm to improve the ability to jump out of the local optimum.




	(iii)

	
Numerical experiments are tested on 23 standard test functions, the CEC2017 test set, and the CEC2019 test set.




	(iv)

	
LARO is implemented and tested on six engineering design cases.









The remainder of this study is organized as given below. Section 2 describes the ARO mathematical model. The Lévy flight strategy, selective opposition strategy, and LARO algorithm are introduced in Section 3. Section 4 presents the numerical results and discussion of the proposed algorithm, mainly applied to 23 benchmark functions and the CEC2019 test set. An application of LARO to six real engineering problems is described in Section 5. Section 6 concludes this research work and discusses future prospects.




2. Artificial Rabbits Optimization (ARO)


The ARO algorithm is proposed mainly by referring to two laws of rabbit survival in the natural world: detour foraging and random hiding [29]. Among them, detour foraging is an exploration strategy to prevent detection by natural predators by having rabbits eat the grass near the nest. Random hiding is a strategy in which rabbits move to other burrows, mainly to hide further. The beginning of any search algorithm relies on the initialization process. Considering that the size of the design variable has dimension d, the size of the artificial rabbit colony is N, and the upper and lower limits are ub and lb. Then the initialization is done as follows.


    z →   i , k   = r ⋅ ( u  b k  − l  b k  ) + l  b k  , k = 1 , 2 , ⋯ , d  



(1)




where     z →   i , k     denotes the position of the jth dimension of the ith rabbit and r is a random number that we are given along with it.



The metaheuristic algorithm mainly considers the two processes of exploration and exploitation, while detour foraging mainly considers the exploration phase. Detour foraging is the tendency of each rabbit to stir around the food source and explore another rabbit location randomly chosen in the group to obtain enough food. The updated formula for detour foraging is given below.


    v →  i  ( t + 1 ) =   z →  j  ( t ) + R ⋅ (   z →  i  ( t ) −   z →  j  ( t ) ) + r o u n d ( 0.5 ⋅ ( 0.05 +  r 1  ) ) ⋅  n 1  ,  



(2)






  R = l ⋅ C  



(3)






  l = ( e −  e    (   t − 1    T  max     )  2    ) ⋅ sin ( 2 π  r 2  )  



(4)






  C ( k ) =  {      1   i f   k = = G ( l )       0     e l s e           k = 1 , … , d     a n d   l = 1 , … , [  r 3  ⋅ d ]  



(5)






  G = randp ( d )  



(6)






   n 1  ~ N ( 0 , 1 )  



(7)




where     v →   i , k   ( t + 1 )   denotes the new position of the artificial rabbit, i,j = 1, …, N.     z →  i    denotes the position of the ith artificial rabbit, and     z →  j    represents artificial rabbits at other random positions. Tmax is the maximum number of iterations. [·] symbolizes the ceiling function, which represents rounding to the nearest integer, and randp represents a stochastic arrangement from 1 to d random permutation of integers. r1, r2, and r3 are stochastic numbers from 0 to 1. L represents the running length, which is movement speed when detour foraging. n1 obeys the standard normal distribution. The perturbation is mainly reflected by the normal distribution random number of n1. The perturbation of the last term of Equation (2) can help ARO avoid local extremum and perform a global search.



Random hiding is mainly modeled after the exploration stage of the algorithm, where rabbits usually dig several burrows around their nests and randomly choose one to hide in to reduce the probability of being predated. We first define the process by which rabbits randomly generate burrows. The ith rabbit produces the jth burrow by:


    b →   i , j   ( t ) =   z →  i  ( t ) + H ⋅ g ⋅   z →  i  ( t ) ,  



(8)






  H =    T  max   − t + 1    T  max     ⋅  n 2   



(9)






   n 2  ~ N ( 0 , 1 )  



(10)






  g ( k ) =  {      1   i f   k = = j       0     e l s e                 k = 1 , … d  



(11)




where i = 1, …, N and j = 1, …, d, and n2 follows the standard normal distribution. H denotes the hidden parameter that decreases linearly from 1 to 1/Tmax with stochastic perturbations. Figure 1 shows the change in the value of an over the course of 1000 iterations. In the figure, the H value trend generally decreases, thus maintaining a balanced transition from exploration to exploitation throughout the iterations.



The update formula for the random hiding method is shown below.


    v →  i  ( t + 1 ) =   z →  i  ( t ) + R ⋅ (  r 4  ⋅   b →   i , r   ( t ) −   z →  i  ( t ) ) ,  



(12)






   g r  ( k ) =  {      1   i f   k = = [  r 5  ⋅ d ]       0           e l s e             k = 1 , … , d  



(13)






    b →   i , r   ( t ) =   z →  i  ( t ) + H ⋅  g r  ⋅   z →  i  ( t )  



(14)




where     v →   i , k   ( t + 1 )   is the new position of the artificial rabbit,    b →   i , r   ( t )   represents a randomly selected burrow among the d burrows generated by the rabbit for hiding, and r4 and r5 represent the random number given by us in the interval 0 to 1. R is given by Equations (3)–(6).



After the two update strategies are implemented, we renew the position of the ith artificial rabbit by Equation (15).


    z →  i  ( t + 1 ) =  {        z →  i  ( t )   i f   f (   z →  i  ( t ) ) ≤ f (   v →  i  ( t + 1 ) )         v →  i  ( t + 1 )   e l s e   f (   z →  i  ( t ) ) > f (   v →  i  ( t + 1 ) )        



(15)







This equation represents an adaptive update. The rabbit automatically chooses whether to stay in its current position or move to a new one based on the adaptation value.



For an optimization algorithm, populations prefer to perform the exploration phase in the early stages and an exploitation phase in the middle and late stages. ARO relies on the energy of the rabbits to design a finding scheme: the rabbits’ energy decreases over time, thus simulating the exploration to exploitation transition. The definition of the energy factor in the artificial rabbits algorithm we give is:


  A ( t ) = 4 ⋅ ( 1 −  t   T  max     ) ⋅ ln  1 r   



(16)




where r is a given random number and r is the random number in (0, 1). Figure 2 shows the change in the value of an over the course of 1000 iterations. Analysis of the information in the figure shows that the trend in the value of A’s is that the overall situation is decreasing, thus maintaining a balanced transition from exploration to exploitation throughout the iterations. Algorithm 1 gives the pseudo-code of the fundamental artificial rabbits optimization. Figure 3 provides the flow chart of ARO.



	Algorithm 1: The framework of artificial rabbits optimization



	 1: The parameters of artificial rabbits optimization including the size of artificial rabbits N, and TMax.



	 2: Random initializing a set of rabbits zi and calculate fi.



	 3: Find the best rabbits.



	 4: While t ≤ TMax do



	 5:  For i = 1 to N do



	 6:   Calculate the energy factor A by Equation (16).



	 7:   If A > 1 then



	 8:    Random choose a rabbits from all individuals.



	 9:    Compute the R using Equations (3)–(6).



	 10:     Perform detour foraging strategy by Equation (2).



	 11:     Calculate the fitness value of the rabbit’s position fi.



	 12:     Updated the position of rabbit by Equation (15).



	 13:    Else



	 14:     Generate d burrows and select one randomly according to Equation (14).



	 15:     Perform random hiding strategy by Equation (12).



	 16:     Calculate the fitness value of the rabbit’s position fi.



	 17:     Updated the position of rabbit by Equation (15).



	 18:    End if



	 19:   End for



	 20:   Search for the best artificial rabbit.



	 21:   t = t + 1.



	 22: End while



	 23: Output the most suitable artificial rabbit.









3. Hybrid Artificial Rabbits Optimization


Hybrid optimization algorithms are widely used in practical engineering due to targeted improvements to the original algorithm that enhance the different performances of the algorithm. For example, Liu proposed a new hybrid algorithm that combines particle swarm optimization and single layer neural network to achieve the complementary advantages of both and successfully implemented in wavefront shaping [34]. Islam effectively solves the clustered vehicle routing problem by combining particle swarm optimization (PSO) and variable neighborhood search (VNS), fusing the diversity of solutions in PSO and bringing solutions to local optima in VNS [35]. Devarapalli proposed a hybrid modified grey wolf optimization–sine cosine algorithm that effectively solves the power system stabilizer parameter tuning in a multimachine power system [36]. To mitigate the poor accuracy and ease of falling into local solutions of the original ARO algorithm, we propose a hybrid, improved LARO algorithm by introducing a Lévy flight strategy and selective opposition in the ARO algorithm and applying the proposed algorithm to engineering optimization problems. Among them, Lévy flight is employed to boost the algorithm’s accuracy. The selective opposition strategy helps the algorithm jump out of local solutions.



3.1. Lévy Flight Method


The Lévy flight method is often introduced in improved algorithms and proposed algorithms, mainly to provide dynamism to the algorithm updates, where the Lévy flight operator is mentioned primarily for generating a regular random number, which is characterized as a small number in most cases and a large random number in few cases. This arbitrary number generation law can help various update strategies to provide dynamics and jump out of local solutions. Lévy distribution is defined by the following equation. Figure 4 provides Levy’s flight path in two-dimensional space [32].


   Levy (  t  ) ~  u =  t  − 1 − γ   ,   0 < γ ≤ 2 ,  



(17)




where t is the step length, which can be calculated by Equation (18). The formulas for solving the step size of the Lévy flight are given in Equations (18)–(21).


  t =  u  | v  |  1 / γ     ,  



(18)






   u ~ N ( 0 ,  σ u 2  )   ,   v ~ N ( 0 ,  σ v 2  )   



(19)






   σ u  =    (    Γ ( 1 + β ) ⋅ sin ( π ⋅ β / 2 )   Γ ( ( 1 + β / 2 ) ⋅ β ⋅  2  ( β − 1 ) / 2   )    )    1 / β   ,  



(20)






   σ v  = 1 ,  



(21)




where σu and σv are defined as given in Equations (20) and (21). Both u and v obey Gaussian distributions with mean 0 and variance σu2 and σv2, as shown in Equation (19). Γ denotes a standard Gamma function, while β denotes a correlation parameter, which is usually set to 1.5.



In the random hiding phase, we replace the r4 random numbers with the random numbers generated by the Lévy flight strategy. Since the random hiding stage is an exploitation stage, we introduce Lévy flight in this strategy to avoid ARO from falling into local candidate solutions in the exploitation phase. Additionally, it helps the algorithm improve the convergence accuracy and the flexibility of the random hiding stage. The following equation provides the random hidden phase based on the Lévy flight, where α is a parameter fixed to 0.1.


    v →  i  ( t + 1 ) =   z →  i  ( t ) + R ⋅ ( α ⋅ l e v y ( β ) ⋅   b →   i , r   ( t ) −   z →  i  ( t ) ) , i = 1 , … , N  



(22)








3.2. Selective Opposition (SO) Strategy


SO is a modified idea of opposition-based learning (OBL) [33]. The idea of SO is to modify the size of the rabbits far from the optimal solution by using new opposition-based learning to bring it closer to the rabbit in the optimal position. In addition, the selective opposition strategy tends to be affected by a linearly decreasing threshold. When the rabbits deploy SO, selective opposition assists the rabbits in achieving a better situation in the development phase by changing the proximity dimension of different rabbits [37]. The updates are as follows.



First, we define a threshold value. The threshold value will be decreased until the limit case is reached. As shown in the following equation, SO checks the distance of each candidate rabbit location from the current rabbit dimension to the best rabbit location for all candidate rabbit locations.


  d  d i  =  |   z  i b e s t , j   −  z  i , j    |   



(23)




where ddj is the difference distance of all dimensions of each rabbit. When ddj is greater than the Threshold (TS) value we define, the far and near rabbit positions are calculated. Then, all difference distances for all rabbit positions are listed.


  s r c = 1 −   6 ⋅   ∑  j = 1      ( d  d j  )  2      d  d j  ⋅ ( d  d j 2  − 1 )    



(24)







The src is proposed mainly to measure the correlation between the current rabbit and the optimal rabbit position. Assuming that src < 0 and the far dimension (df) is larger than the close dimensions (dc), the rabbit’s position will be updated by Equation (25).


   Z  d f  ′  = l  b  d f   + u  b  d f   −  Z  d f    



(25)







Algorithm 2 gives the pseudo-code for selective opposition (SO).



	Algorithm 2: Selective Opposition (SO)



	 1: The parameters of selective opposition including: initial generation (t), rabbit size (N), the maximum generation (TMax), dimension (d), dc = [], and df = [].



	 2: TS = 2 − [t·(2/TMax)].



	 3: For i = 1 to N do



	 4:  If Zi ≠ Zibest then



	 5:   For j = 1 to d do



	 6:    ddj = |zibest,j-zi,j|{ddj = the discrepancy distance of the jth dimension}



	 7:    If ddj < TS then



	 8:     Determine the far dimensions (df).



	 9:     Calculate far distance dimensions (df).



	 10:     Else



	 11:      Determine the close dimensions (dc).



	 12:      Calculate close distance dimensions (dc).



	 13:     End if



	 14:    End for



	 15:    Summing over all ddj.



	 16:      s r c = 1 −   6 ⋅   ∑  j = 1      ( d  d j  )  2      d  d j  ⋅ ( d  d j 2  − 1 )    .



	 17:    If src ≤ 0 and size(df) > size(dc) then



	 18:     Perform Z′df = LBdf + UBdf − Zdf.



	 19:    End if



	 20:   End if



	 21: End for









3.3. Detailed Implementation of LARO


Two modifications, namely Lévy flight and selective opposition, are included in ARO. These modifications suitably help the ARO algorithm to increase the convergence and population variety while obtaining more qualitative candidate solutions. The detailed procedures of LARO are shown below.



Step1: Suitable parameters for LARO are supplied: the size of artificial rabbit N, the dimensionality of the variables d, the upper and lower bounds ub and lb of the problem variables, and all iterations TMax;



Step2: Randomly select a series of rabbit locations and calculate their fitness values. Find the rabbit with the best position;



Step3: Calculate the value of the energy factor A by Equation (16). If A > 1, select an arbitrary rabbit from all groups of rabbits;



Step4: Calculate the value of R by using Equations (3)–(6). Perform detour foraging strategy by means of Equation (2). Then calculate the adaptation value of the updated rabbit position and update the rabbit position by means of Equation (15);



Step5: If A ≤ 1, randomly generate burrows and randomly select one according to Equation (14). The new position of the rabbit is updated by a random hiding strategy based on the improved Lévy flight strategy of Equation (22). The corresponding fitness is calculated and then the rabbit’s position is updated by Equation (15);



Step6: The distance of each candidate rabbit position from the current rabbit dimension to the best rabbit position is calculated by Equation (23);



Step7: If ddj > Threshold, determine the near size df and count the number of df. If ddj ≤ Threshold, determine the far dimension dc and count the number of dc. Then calculate src from the calculated ddj by Equation (24);



Step8: If src <= 0 and df > dc, execute Equation (25) and re-update the rabbit’s position;



Step9: If the iterations exceed the maximum case, the optimal result is exported.



To better introduce the proposed LARO algorithm in this study, the pseudo-code of LARO is offered in Algorithm 3. Among them, line 15 is the Lévy flight strategy improved with the random hiding strategy. Lines 20–40 are the selective opposition strategy. Figure 5 illustrates the flowchart of the LARO algorithm.



	Algorithm 3: The algorithm composition of LARO



	 1: The parameters of artificial rabbits optimization: the size of artificial rabbits N, TMax, the sensitive parameter α, β, dc = [], and df = [].



	 2: Random initializing a set of rabbits zi and calculate fi.



	 3: Find the best rabbits.



	 4: While t ≤ TMax do



	 5:  For i =1 to N do



	 6:   Compute the energy factor A using Equation (16).



	 7:   If A > 1 then



	 8:    Random choose a rabbits from all individuals.



	 9:    Compute the R using Equations (3)–(6).



	 10:     Perform detour foraging strategy by Equation (2).



	 11:     Calculate the fitness value of the rabbit’s position fi.



	 12:     Updated the position of rabbit by Equation (15).



	 13:    Else



	 14:     Generate d burrows and select one randomly according to Equation (14).



	 15:     Perform random hiding strategy by Equation (22).



	 16:     Calculate the fitness value of the rabbit’s position fi.



	 17:     Updated the position of rabbit by Equation (15).



	 18:    End if



	 19:   End for



	 20:   TS = 2 − [t·(2/TMax)].



	 21:   For i = 1 to N do



	 22:    If Zi ≠ Zibest then



	 23:     For j = 1 to d do



	 24:      ddj = |zibest,j-zi,j|{ddj = the discrepancy distance of the jth dimension}



	 25:      If ddj < TS then



	 26:       Determine the far dimensions (df).



	 27:       Calculate far distance dimensions (df).



	 28:      Else



	 29:       Determine the close dimensions (dc).



	 30:       Calculate close distance dimensions (dc).



	 31:      End if



	 32:     End for



	 33:     Summing over all ddj.



	 34:       s r c = 1 −   6 ⋅   ∑  j = 1      ( d  d j  )  2      d  d j  ⋅ ( d  d j 2  − 1 )    .



	 35:     If src ≤ 0 and size(df) > size(dc) then



	 36:      Perform Z′df = LBdf + UBdf − Zdf.



	 37:     End if



	 38:    End if



	 39:   End for



	 40:   Updated the position of rabbit by Equation (15).



	 41:   Search for the best rabbits bestj.



	 42:   t = t + 1.



	 43: End while



	 44: Output the most suitable artificial rabbit.









3.4. In-Depth Discussion of LARO Complexity


The estimation of LARO complexity is mainly done by adding the selective opposition part to the ARO base algorithm. At the same time, the Lévy strategy only improves how ARO is updated without increasing the complexity. Calculating the complexity is an effective method when assessing the complexity of solving real problems. The complexity is associated with the size of artificial rabbits N, d, and TMax. The total complexity of the artificial rabbits algorithm is as follows [29].


    O ( A R O )   = O ( 1 + N +  T  M a x   N + 0.5  T  M a x   N d + 0.5  T  M a x   N d )      = O (  T  M a x   N d +  T  M a x   N + N )    



(26)







The selective opposition strategy focuses on the consideration of all dimensions of all rabbit locations. Therefore, the complication of the LARO algorithm is:


  O ( L A R O ) = O ( 2  T  M a x   N d +  T  M a x   N + N )  



(27)









4. Numerical Experiments


To numerically experimentally validate the capabilities of the LARO algorithm, two basic suites were selected: 23 benchmark test functions [26] and ten benchmark functions from the standard CEC2019 test suite [26]. We selected some optimized metaheuristic algorithms to compare with our proposed LARO, including arithmetic optimization algorithm (AOA) [38], grey wolf optimization (GWO) [39], coot optimization algorithm (COOT) [40], golden jackal optimization (GJO) [41], weighted mean of vectors (INFO) [42], moth–flame optimization (MFO) [43], multi-verse optimization (MVO) [44], sine cosine optimization algorithm (SCA) [45], salp swarm optimization algorithm (SSA) [46], and whale optimization algorithm (WOA) [47]. The LARO algorithm was compared with all the different search algorithms subjected to Wilcoxon rank sum and Friedman’s mean rank test. The full algorithm was run 20 times separately. In addition, to better demonstrate the experiments, we tested the best, worst, mean, and standard deviation (STD) values for this period. The main parameters of the other relevant algorithms we provide are in Table 1.



4.1. Experimental Analysis of Exploration and Exploitation


Differences between candidate solutions in different dimensions and the overall direction tend to influence whether the group tends to diverge or aggregate. When growing to separate, the differences among all candidate individuals in all dimensions will come to the fore. This situation means that all candidate individuals will explore the domain in a particular manner. This approach will allow the optimization method to analyze the candidate solution space more extensively through the transient features. Alternatively, when a trend toward aggregation is generated, the candidate solutions explore the room based on a broad synergistic situation, reducing the variability of all candidate individuals and exploiting the exploration region of candidate solutions in a detailed manner. Maintaining the right synergy between this divergent discovery pattern and the aggregated development pattern is necessary to ensure optimization capability.



For the experimental part, we draw on the dimensional diversity metric suggested by Hussain et al. in [48] and calculate corresponding exploration and exploitation ratios. We selected the CEC2019 test set and provided the exploration and exploitation analysis graphs for some of the CEC2019 test functions in Figure 6.



From the figure, we can find that LARO starts from exploration in all the test functions and then gradually transitions to the exploitation stage. In the test functions of cec03 and cec09, we find that LARO can still maintain an efficient investigation rate in the middle and late iterations, and in the face of cec04, cec07, and cec08, LARO will quickly shift to an efficient discovery rate in the mid-term, ending the iteration with an efficient exploration situation. This discovery process shows that the more efficient exploration rate early in LARO guarantees a reasonable full-range finding capability to prevent getting stuck in current local solutions. In contrast, the middle step is smooth over the low, and the more efficient development rate in the later period guarantees that it can be exploited with higher accuracy after high exploration.




4.2. Comparative Analysis of Populations and Maximum Iterations


The population size and the maximum iterations affect the performance of the population-based metaheuristic algorithm. Therefore, in this section, we perform a sensitivity analysis of LARO involving the size of the initial population as well as the maximum iterations. This study considers the two most commonly used combinations of population and maximum iterations: (1) the size of artificial rabbit colonies is 50, and Tmax = 1000, (2) the size of artificial rabbit colonies is 100, and Tmax = 500, and LARO for the experiments conducted in case (1) is defined as LARO1, and LARO in case (2) is LARO2. The performance and running time of LARO1 and LARO2 are compared in the experiments with 23 test functions.



Table 2 provides a comparison of LARO with two different parameters in 23 benchmark functions. From the numerical results, it can be found that both parameters of ARO used almost similar running times. However, the convergence accuracy of LARO1 is better than that of LARO2, which indicates that LARO, with the case 1 parameter, can provide better convergence accuracy with the same guaranteed running cost. Therefore, the results show that the performance of LARO is affected by the population size and the number of iterations. The best performance was returned when the population size was set to 50, and the maximum number of iterations was 1000.




4.3. Analysis of Lévy Flight the Jump Parameter α


According to the mechanism of the Lévy flight strategy, we replace the r4 random numbers with the random numbers generated by the Lévy flight strategy. Thus, ARO is prevented from falling into local candidate solutions in the utilization phase. Additionally, the jump parameter α will affect the change of the updated position. In general, a larger jump parameter α, which increases the step size of the Lévy flight strategy, can ensure that the algorithm jumps out of the local solution, but it may also cause the optimal solution information not to be preserved. If the value is too small, it will affect the sensitivity of the Lévy flight strategy and, thus, the accuracy of the algorithm. Therefore, the jump parameter α has a great impact on the performance of LARO.



This section discusses the impact of the jump parameter α on the performance of the algorithm, and 10 test functions of CEC2019 are used to explore the impact of the jump parameter. The relevant jump parameters take four different values of 0.1, 0.01, 0.5, and 0.5, and three value intervals [0.01, 0.05], [0.05, 0.1], and [0.1, 0.5], respectively. The numerical intervals indicate the random number within each provided interval. The mean values of the solutions obtained by LARO for the CEC2019 test function over 20 independent trials are provided in Table 3. For a clearer view of the effect of the jump parameter α on LARO performance, Figure 7 provides the convergence curves for the ten test functions.



By analyzing Table 3, it can be observed that the average rank is the smallest when the jump parameter α = 0.1 at 3.2. and the best average values are obtained for five test functions (cec01, cec05, cec07, cec08, cec10). The value of the jump parameter α is a more in-between suitable value, indicating that the value balances the information of retaining the optimal solution and jumping out of the local solution. Figure 7 provides an iterative plot of the seven jump parameters. From the graph, it can be found that the LARO algorithm has a faster convergence rate, as well as a higher iteration accuracy for the jump parameter α = 0.1. Therefore, LARO can show the best performance when the jump parameter α is taken at 0.1.




4.4. Experiments on the 23 Classical Functions


To evaluate the strength of LARO in traversing the solution space, finding the optimal candidate solution, and getting rid of local solutions, we used 23 benchmark functions, where the unimodal test benchmarks (F1–F7) were used to examine the ability of LARO to develop accuracy. The multimodal benchmark set (F8–F13) was used to test the capability of LCAHA for spatial exploration. The fixed-dimensional multimodal test benchmarks (F14–F23) are mainly used to verify LARO’s excellent ability to handle low-dimensional spatial investigation. The dimensions of F01–F11 are 30, while the dimensions of F14–F23 are all different because they are fixed-dimensional multimodal test functions (the dimensions of F14–F23 functions are 2, 4, 2, 2, 2, 3, 6, 4, 4, 4, 4).



Table 4 shows LARO’s experimental and statistical results, the original ARO, and ten other search algorithms. Five relevant evaluation metrics (best, worst, average, standard, and ranking) were selected for this experiment. Additionally, we used Friedman ranking test results for all algorithms based on the mean value. In addition, the statistical presentation of the Wilcoxon test for LARO and other selected MH algorithms is shown in Table 4. When calculating the significance level, we let the default value of the significance level be set to 0.05. In addition, “+” denotes that a particular MH algorithm converges better than LARO. “−” denotes the opposite effect. “=” suggests that the impact of convergence in a given test problem is the same as the convergence of a particular MH algorithm.



Analysis of the table shows that the proposed LARO has a Friedman rank of 1.6957 and is in the first place. Next is ARO, with 2.3478 ranked seconds. Figure 8 provides the average rank of the 12 comparison algorithms. LARO provides the best case among all algorithms on the 16 tested functions. In more detail, LARO ranked first in two unimodal functions (F1 and F3) and obtained the best results in four multimodal functions (F9, F10, F11, F13), respectively. Additionally, the best case was obtained in eight fixed-dimensional functions (F14, F16, F17, F18, F19, F20, F21, and F23). In addition to this, LARO shows strong competitiveness in some functions (F4, F8, F15, F22). Moreover, LARO and some other algorithms offer the best case when facing some of the tested functions. For example, ARO, GJO, INFO, and LARO obtain the best average solution when facing the F9 and F11 functions. In addition, ARO shows a notable ability to successfully solve three and seven problems in the face of unimodal and multimodal functions. Thus, it can be seen that LARO mainly improves the ability of the original algorithm to deal with unimodal problems while somewhat enhancing the ability to deal with multimodal and fixed-dimensional problems.



By analyzing the experimental results and tests, it can be seen that LARO improves the convergence ability of the algorithm by introducing a Lévy flight strategy in the random hiding phase, which leads to a good convergence effect and accuracy of LARO when facing unimodal problems without multiple solutions. In addition, due to the introduction of the selective opposition strategy in ARO, LARO can effectively filter the optimal solution among multiple local solutions when dealing with multimodal problems and fixed-dimensional problems. This result is because the selective opposition strategy helps the algorithm to jump out of the local solutions adaptively. Experimental results also demonstrate that LARO has better convergence than other algorithms and ARO when dealing with multimodal and fixed-dimension problems. Therefore, it can be shown that LARO is a reliable optimization method in terms of performance. However, it is also found that LARO tends to break the balance between exploration and exploration in the overall iterative process, affecting the algorithm’s performance.



In Table 5, we give the p-values of 11 MH algorithms, LARO algorithm, and the Wilcoxon test to check whether LARO outperforms other MH algorithms. The Wilcoxon test results for ARO, AOA, GWO, COOT, GJO, and INFO algorithms are 2/16/5, 1/1/21, 0/1/22, 0/11/12, 3/2/18, and 3/12/8. The Wilcoxon test results for MFO, MVO, SCA, SSA, and WOA were 1/5/17, 0/1/22, 0/1/22, 1/7/15, and 2/3/18, respectively.



Figure 9 offers the convergence plots of the twelve different methods on the 23 benchmark functions, where the X-axis of the plot represents the iterations, and the Y-axis represents the degree of adaptation (some test functions (F1, F2, F3, F4, F5, F6, F7, F10, F11, F12, F13, F14, F15) are represented as logarithms of 10). The results in the figure demonstrate that LARO has a high-speed convergence rate and convergence accuracy when dealing with a part of the functions (F1, F2, F3, F4, F5) in the face of F1–F7 unimodal functions. Additionally, LARO continues to improve accuracy near the optimal solution later in the iteration. This analysis shows its reliable performance in getting rid of the local key. For the F8–F23 functions, we can see that LARO exhibits a characteristic that transitions rapidly between the early search and late development phases and converges near the optimal position at the beginning of the iteration. Then, LARO progressively determines the best marquee position and updates the answer to confirm the previous search results. Figure 10 illustrates box plots of 12 different MH algorithms for showing the distribution of means in various problems. In most of the issues tested, the distribution of LARO is more concentrated and downward than the other algorithms. This finding also illustrates the consistency and stability of LARO. Overall, LARO can handle the 23 basic test sets very well.




4.5. Experiments on the CEC2017 Classical Functions


In this section, the proposed LARO is simulated in CEC2017 for 29 of these test functions. LARO and the other comparison methods are executed 20 times individually, with the same relevant parameters set in Section 4.4. Cec01 and cec03–cec30 have a problem dimension of 10. Numerical results include the output of ARO [29], BWO [12], CapSA [13], GA [49], PSO [50], RSA [51], WSO [52], GJO [41], E-WOA [53], WMFO [54], and CSOAOA [26] outputs. As shown in Table 6, the evaluation methods of all 29 tested functions are compared by the proposed LARO algorithm. In addition, the results of Friedman’s statistical test are given in the last part of the table. In this case, Friedman’s statistical test ranking is given based on the mean value.



As shown in Table 6, the average rank of Friedman for LARO is 1.8621, while the average rank of WOS and ARO are 2.6897 and 2.7241, respectively. Therefore, LARO’s final ranking is the first. The results show that LARO provides a good output profile on 29 tested functions. LARO can succeed on 11 functions (cec05, cec07, cec09, cec11, cec15, cec17, cec18, cec20, cec22, cec23, cec28, cec30). In addition, LARO was able to obtain better optimization results and average values for the ten tested functions (cec01, cec03, cec06, cec08, cec10, cec14, cec19, cec21, cec27, cec29). The numerical results show that the proposed LARO exhibits excellent performance in the unimodal problem, indicating that the LARO algorithm again converges quickly. The performance of LARO for multimodal functions also illustrates that the introduced selective opposition effectively helps the algorithm to jump out of local solutions. In the face of composition and hybrid functions, LARO demonstrates excellent optimization ability, indicating the effectiveness of the Lévy flight strategy in improving the accuracy of the algorithm, while WSO and ARO can successfully solve six (cec01, cec08, cec10, cec12, cec13, cec29) and four functions (cec06, cec14, cec19, cec26), respectively.




4.6. Experiments on CEC2019 Test Functions


In this section, the proposed LARO has experimented with ten functions in CEC2019 [26]. The LARO algorithm is executed 20 times individually, and the parameters given are consistent with those of the numerical experiments in Section 4.3. Among them, the dimensionality of the functions cec01–cec03 is different from the others, with 9, 16, and 18 for cec01–cec03, respectively, while the problem dimensionality of cec04–cec10 is 10 [55]. The numerical results in agreement with AOA [38], GWO [39], COOT [40], GJO [41], INFO [42], MFO [43], MVO [44], SCA [45], SSA [46], WOA [47] are compared. As shown in Table 7, the four relevant evaluation methods are compared by the proposed LARO algorithm in all ten tested functions. In addition, the Wilcoxon and the Friedman statistical test results are given in the last part of the table. The experimental results conclude that LARO is superior in handling these challenging optimization function problems. LARO ranks first with an average ranking of 1.3636. In addition, LARO performs as the optimal case in seven of the ten CEC2019 functions (cec01, cec04, cec05, cec06, cec07, cec08, cec10), and ARO shows the best results in the other three functions (cec02, cec03, cec09). Numerical experimental results demonstrate that the LARO algorithm can accurately approach the optimal solution and is highly competitive with other MH methods for various types of problems. Moreover, experimental results likewise demonstrate that the LARO algorithm enhances the variety of the population and the accuracy of solving the problem due to the addition of the Lévy flight and the selective opposition, which effectively avoids local optimal solutions.



The convergence plots of the MH method in Figure 11 show the high quality and high accuracy of the LARO solutions and the significant convergence speed, such as cec01, cec02, cec03, cec04, cec05, cec06, cec7, cec08, cec10. Box plots and radar plots of the test function runs in CEC2019 are provided in Figure 12 and Figure 13, respectively, where these box-line plots provide very small widths, indicating the stability and superiority of LARO. In comparison, the radar plot demonstrates that LARO has the smallest ranking among all the tested functions. In Table 8, we give the p-values of 11 MH methods, the LARO algorithm, and the Wilcoxon test to check whether LARO outperforms other MH algorithms. The Wilcoxon test results for AROO, AOA, GWO, COOT, GJO, and INFO algorithms are 2/7/1, 0/0/10, 0/2/8, 0/1/9, 0/0/ The Wilcox test results for MFO, MVO, SCA, SSA, and WOA are 0/0/10, 0/1/9, 0/0/10, 0/1/9, and 0/0/10, respectively.




4.7. Impact Analysis of Each Improvement


The experiments in this section focus on numerical experiments of LARO with the compared algorithms on three standard test sets (23 benchmark test functions, CEC2017, CEC2019). This section summarizes the impact of different improvement strategies on the algorithm performance.



The introduction of the Lévy flight strategy in ARO is mainly used to solve the problem of low convergence accuracy of the original ARO. In contrast, single-peaked functions (e.g., F01–F07) are often used to test the convergence accuracy of the algorithm due to characteristics such as the absence of multiple solutions and the ease of exploration to the vicinity of the optimal solution. In the numerical experiments of 23 benchmark test functions, LARO ranks 1, 3, 1, 2, 3, 5, and 3 among the F01–F07 single-peaked functions, respectively. Except for F05–F06, the convergence accuracy of LARO is higher than that of the original ARO. In addition, in the numerical experiments of CEC2017, LARO ranks better than the original in both cec01 and cec03 ARO. Therefore, the Lévy flight strategy helps ARO to improve convergence accuracy successfully.



The selective backward learning strategy is introduced mainly to help ARO to jump out of the local solution in time. The multi-peaked functions (e.g., F08–F13, cec04–cec10 of CEC2017, and cec01–cec10 of CEC2019) are prone to fall into the vicinity of local solutions during the search process due to the existence of multiple solutions, which affects the convergence performance of the algorithm. Therefore, the algorithm’s ability to iterate over the multi-peaked functions reflects its ability to jump out of local solutions. In the numerical experiments with 23 benchmark test functions, LARO ranks 2, 1, 1, 1, 1, 3, and 1 for functions F08–F13, respectively. Except for F12, LARO’s optimization average is higher than the original ARO. In addition, LARO ranks 3, 1, 2, 1, 2, 1, 1, and 2 against cec04–cec10 of CEC2017, respectively. Except for cec06, the optimized average value of LARO is higher than that of the original ARO, and when facing the test set of CEC2019, the average ranking of LARO is 1.3636, which is higher than ARO at 1.9091. Therefore, LARO converges better than the original ARO when dealing with multi-peaked functions, which indicates that the selective backward learning strategy helps LARO to better jump out of the local solution.





5. Application of LARO in Semi-Real Mechanical Engineering


This subsection uses six practical mechanical engineering applications. There are many constraint treatments for optimization problems, such as penalty functions, co-evolutionary, adaptive, and annealing penalties [56]. Among them, penalty functions are the most used treatment strategy because they are simple to construct and easy to operate. Therefore, this paper uses the penalty function strategy to handle the optimization constraints of these six mechanical engineering optimization models, for the engineering optimization problem with minimization constraints defined as:



Minimize:


  f (  x ¯  ) ,  x ¯  = [  x 1  ,  x 2  , … ,  x n  ]  



(28)







Subject to:


   {       g i  (  x ¯  ) ≤ 0 , i = 1 , 2 , … , m        h j  (  x ¯  ) = 0 , j = 1 , 2 , … , k        



(29)




where m is the number of inequality constraints and k is the number of equation constraints.   x ¯   is the design variable of the engineering problem with dimension n. For the case with boundary constraints, a boundary requirement exists for all dimensional variables:


  l  b i  ≤  x i  ≤ u  b i  , i = 1 , 2 , … n  



(30)




where lb and ub are the lower and upper bounds of the n-dimensional variable and n is the number of dimensions of the variable.



Therefore, the mathematical description of the engineering optimization problem after constraint weighting is


  f (  x ¯  ) = f (  x ¯  ) + α   ∑  i = 1  m   max {  g i  (  x ¯  ) , 0 }   + β   ∑  j = 1  k   max {  h j  (  x ¯  ) , 0 }    



(31)




where α is the weight of the inequality constraint and β is the weight of the equation constraint. Considering the optimization process to satisfy the inequality and equation constraints, we require α and β to be large values. This paper sets them to 1 × 105 [38]. Therefore, the objective function is severely penalized (the value of the objective function increases) when the optimization solution exceeds any constraint. This mechanism will allow the algorithm to avoid illegal solutions inadvertently computed during the iterative process.



LARO and all the comparison algorithms were executed 30 times. The relevant parameters were a maximum iteration of 1000 and a population size of 50. In addition, for the solution of the practical engineering applications, we used the same comparison algorithms as in the numerical experiments, including AOA [38], GWO [39], COOT [40], GJO [41], INFO [42], MFO [43], MVO [44], SCA [45], SSA [46], WOA [47].



5.1. Welded Beam Design Problem (WBD)


The WBD requires that the design cost of the WBD be guaranteed to be minimal under various restraints. The schematic structural diagram of the WBD is provided in Figure 14. Four main relevant independent variables are obtained for the WBD: the welding thickness (h), rod attachment length (l), rod height (t), and rod thickness (b) [38]. The given variables are required to satisfy seven constraints. The model of the WBD is given below.


   z →  = [  z 1  ,  z 2  ,  z 3  ,  z 4  ] = [ h , l , t , b ]  



(32)







Minimize:


  f ( z ) = 1.10471  z 1 2   z 2  + 0.04811  z 3   z 4  ( 14.0 +  z 2  ) ,  



(33)







Variable:


   0.1 ≤  z 1  ≤ 2 ,   0.1 ≤  z 2  ≤ 10 ,   



(34)






   0.1 ≤  z 3  ≤ 10 ,   0.1 ≤  z 4  ≤ 2 ,   



(35)







Subject to:


   g 1  ( z ) = τ ( z ) −  τ  max   ≤ 0 ,  



(36)






   g 2  ( z ) = σ ( z ) −  σ  max   ≤ 0 ,  



(37)






   g 3  ( z ) = δ ( z ) −  δ  max   ≤ 0 ,  



(38)






   g 4  ( z ) =  z 1  −  z 4  ≤ 0 ,  



(39)






   g 5  ( z ) = P −  P C  ( z ) ≤ 0 ,  



(40)






   g 6  ( z ) = 0.125 −  z 1  ≤ 0 ,  



(41)






   g 7  ( z ) = 1.10471  z 1 2  + 0.04811  z 3   z 4  ( 14.0 +  z 2  ) − 5.0 ≤ 0 ,  



(42)




where,


  τ ( z ) =     (  τ ′  )  2  + 2  τ ′   τ ″     z 2   R  +   (  τ ″  )  2    ,  



(43)






   τ ′  =  P   2   x 1   x 2    ,  τ ″  =   M R  J  ,  



(44)






  M = P ( L +    z 2   2  ) ,  



(45)






  R =      z 2 2   4  +   (    z 1  +  z 3   2  )  2    ,  



(46)






  J = 2  {    2  z 1   z 2     [     z 2 2   4  +    (     z 1  +  z 3   2   )   2   ]   }  ,  



(47)






  σ ( z ) =   6 P L    z 4   z 3 2    , δ ( z ) =   6 P  L 3    E  z 3 2   z 4    ,  



(48)






   P c  ( z ) =        z 3 2   z 4 6    36     4.013 E      L 2     (  1 −    z 3    2 L      E  4 G      )    ,  



(49)






  P = 6000   l b , L = 14   i n ,  δ  max   = 0.25   i n , E = 30 ×  1 6    p s i ,  



(50)






  G = 12 ×   10  6    p s i ,  τ  max   = 13600   p s i ,  σ  max   = 30000   p s i  



(51)







Table 9 provides the output results and best-fit cases for the search methods, and Table 10 documents the statistical output of the search methods. The combined evaluation of these two tables indicates that LARO obtained: the best outcomes for LARO with the same conditioning parameters. LARO has the best optimal value of the average. LARO obtains better results under the same conditioning parameters for the average and STD metrics, and, regarding the worst score metric, LARO performs well compared to different methods. The output results suggest that the LARO algorithm has good applicability for solving the WBD problem. Figure 15 provides the convergence iterations of LARO and the compared algorithms for the WBD problem. The figure shows that the proposed LARO has the best convergence and converges to the vicinity of the optimal solution in the early iterations. In comparison, the AOA has the worst convergence effect and convergence accuracy.




5.2. Pressure Vessel Design Problem (PVD)


The structure of the PVD is illustrated in Figure 16. The ultimate aim of the PVD is to keep the total cost of the three aspects of the cylindrical vessel to a minimum. Both edges of the vessel are capped while the top is hemispherical. The PVD has four relevant design variables, including the shell (Ts), the thickness of the head (Th), the radius of entry (R), and the length of the cylindrical section (L) [38]. The mathematical model (four constraints) of the PVD is presented as follows.


   z →  = [  z 1  ,  z 2  ,  z 3  ,  z 4  ] = [  T s  ,  T h  , R , L ]  



(52)







Minimize:


  f (  x →  ) = 0.6224  z 1   z 3   z 4  + 1.7781  z 2   z 3 2  + 3.1661  z 1 2   z 4  + 19.84  z 1 2   z 3  ,  



(53)







Variable range:


  0 ≤  z 1  ,  z 2  ≤ 99 ,  



(54)






  10 ≤  z 3  ,  z 4  ≤ 200 .  



(55)







Subject to:


   g 1  ( z ) = −  z 1  + 0.0193  z 3  ≤ 0 ,  



(56)






   g 2  ( z ) = −  z 2  + 0.00954  z 3  ≤ 0 ,  



(57)






   g 3  ( z ) = − π  z 3 2   z 4  −  4 3  π  z 3 3  + 1 , 296 , 000 ≤ 0 ,  



(58)






   g 4  ( z ) =  z 4  − 240 ≤ 0 ,  



(59)







Table 11 provides the output results of the different search methods and the suitable average solution for solving the PVD problem. Table 12 documents the statistical outputs of the different methods of solving the PVD problem. By analyzing and evaluating two data, we find that LARO obtains suitable results for LARO with the same conditioning parameters. LARO has the suitable optimal value for the average value. LARO obtains the best case for the average and STD metrics compared to different search methods. The experimental output suggests that the LARO algorithm performs well in completing the PVD problem. Figure 17 provides the convergence iterations of LARO and the comparison algorithms in the PVD problem. From the results, it can be seen that LARO converges to the optimal solution. Compared to the other algorithms, LARO has the fastest convergence rate. SCA and SSA have poor convergence in the early stages, while AOA has poor convergence throughout. The results show that LARO has an advantage over the other algorithms in solving the PVD problem.




5.3. Tension/Compression String Design (TCS)


The most crucial objective of the TCS is to fit the mass optimally. The TCS includes three relevant design variables: wire diameter (d), number of active coils (N), and average coil diameter (D) [38]. A schematic representation of the TCS problem is displayed in Figure 18. The design model of the TCS is given below.


   z →  = [  z 1  ,  z 2  ,  z 3  ] = [ d , D , N ]  



(60)







Minimize:


  f ( z ) = (  z 3  + 2 )  z 2   z 1 2   



(61)







Variable range:


  0.05 ≤  z 1  ≤ 2 ,   0.25 ≤  z 2  ≤ 1.3 ,   2 ≤  z 3  ≤ 15 ,  



(62)







Subject to:


   g 1  ( z ) = 1 −    z 3   z 2 3    71785  z 1 4    ≤ 0 ,  



(63)






   g 2  ( z ) =   4  z 2 2  −  z 1   z 2    12566 (  z 2   z 1 3  −  z 1 4  )   +  1  5108  z 1 2    − 1 ≤ 0 ,  



(64)






   g 3  ( z ) = 1 −   140.45  z 1     z 2 2   z 3    ≤ 0 ,  



(65)






   g 4  (  x →  ) =    z 1  +  z 2    1.5   − 1 ≤ 0 .  



(66)







Table 13 provides the experimental results of all search methods and the best decision variables and the best average objective function values for solving the TCS problem, and provides the four constraint values for all algorithms, and Table 14 gives the statistical results for all search algorithms in solving the TCS problem. By analyzing and evaluating both data, we can find that LARO obtains better experimental results than other comparative algorithms. LARO has the best optimal, average, worst, and STD values. The numerical experimental results suggest that the LARO algorithm is a superior performance method for dealing with TCS. Figure 19 provides the convergence iterations of LARO and the comparison algorithms in the TCS problem. The vertical coordinates in the figure are the log values of the fitness values. From the results, it can be seen that LARO converges to the optimal solution. Compared to other algorithms, LARO has faster convergence. SSA has poor convergence in the early stage, while MVO has poor convergence throughout the process compared to different algorithms. The results show that LARO has an advantage over the other algorithms in solving the TCS problem.




5.4. Gear Train Design (GTD)


The ultimate requirement of the GTD problem is to make the gear set with the most appropriate gear ratio cost to prepare the composite gear train. Figure 20 illustrates a schematic diagram of the GTD problem. There are four relevant integer variables for the GTD, where the four variables stand for the size of the teeth of four other gears [26]. These design variables represent the number of teeth on the gears and are denoted as Ta, Tb, Tc, and Td. The mathematical model of the GTD is given below.


   z →  = [  z 1  ,  z 2  ,  z 3  ,  z 4  ] = [  T a  ,  T b  ,  T c  ,  T d  ]  



(67)







Minimize:


  f (  x →  ) =   (  1  6.931   −    z 1   z 2     z 3   z 4    )  2   



(68)







Variable range:


  12 ≤  z 1  ,  z 2  ,  z 3  ,  z 4  ≤ 60 ,  



(69)







Table 15 provides the experimental results for all search algorithms and the best average solution for the GTD problem. Table 16 presents the statistical output for the different search methods in solving the GTD. The analysis shows that LARO gives better experimental results compared to other search algorithms. LARO provides the best optimal, average, worst, and STD value. Numerical experiments show that the LARO algorithm can obtain good accuracy in solving the GTD problem. Figure 21 provides the convergence iteration results of LARO and the comparison algorithm on the GTD problem. The vertical coordinates in the figure are the log values of the adaptation values. From the results, it can be seen that LARO converges to the optimal solution. LARO’s convergence speed and accuracy are reasonable compared to other algorithms. SSA, GWO, INFO, and LARO all have good convergence, while AOA has poor convergence throughout the process compared to different algorithms. The results show that LARO has an advantage over other algorithms in solving the GTD problem.




5.5. Speed Reducer Design (SRD)


The ultimate aim of the SRD is to ensure that the weight of the mechanical equipment is minimized while satisfying the 11 constraints. The schematic design diagram of the SRD is shown in Figure 22. The SRD has seven relevant variables, including the bending stress of the gear teeth, the covering stress, the transverse deflection of the shaft, and the stress in the shaft, used to control the facilities of the SRD problem [38]. Here, z1 is the tooth width, z2 is the tooth mode, and z3 is the discrete design variable representing the teeth in the pinion. Similarly, z4 is the length of the first axis between the bearings and z5 is the length of the second axis between the bearings. The sixth and seventh design variables (z6 and z7) are the diameters of the first and second shafts, respectively. The design model of the SRD (11 constraints and objective functions) is given below.


   z →  = [  z 1  ,  z 2  ,  z 3  ,  z 4  ,  z 5  ,  z 6  ,  z 7  ] = [ b , m , p ,  l 1  ,  l 2  ,  d 1  ,  d 2  ]  



(70)







Minimize:


    f (  x →  ) = 0.7854  z 1   z 2 2  ( 3.3333  z 3 2  + 14.9334  z 3  − 43.0934 )           − 1.508  z 1  (  z 6 2  +  z 7 2  ) + 7.4777 (  z 6 3  +  z 7 3  ) ,    



(71)







Variable range:


   2.6 ≤  z 1  ≤ 3.6 ,   0.7 ≤  z 2  ≤ 0.8 ,   



(72)






   17 ≤  z 3  ≤ 28 ,   7.3 ≤  z 4  ≤ 8.3 ,   



(73)






   7.8 ≤  z 5  ≤ 8.3 ,   2.9 ≤  z 6  ≤ 3.9 ,   5 ≤  z 7  ≤ 5.5 .   



(74)







Subject to:


   g 1  ( z ) =   27    z 1   z 2 2   z 3    − 1 ≤ 0 ,  



(75)






   g 2  ( z ) =   397.5    z 1   z 2 2   z 3 2    − 1 ≤ 0 ,  



(76)






   g 3  ( z ) =   1.93  z 4 3     z 2   z 3   z 6 4    − 1 ≤ 0 ,  



(77)






   g 4  (  x →  ) =   1.93  z 5 3     z 2   z 3   z 7 4    − 1 ≤ 0 ,  



(78)






   g 5  ( z ) =       (   745  z 4     z 2   z 3    )  2  + 16.9 ×   10  6      110.0  z 6 3    − 1 ≤ 0 ,  



(79)






   g 6  ( z ) =       (   745  z 4     z 2   z 3    )  2  + 157.5 ×   10  6      85.0  z 6 3    − 1 ≤ 0 ,  



(80)






   g 7  ( z ) =    z 2   z 3    40   − 1 ≤ 0 ,  



(81)






   g 8  ( z ) =   5  z 2     z 1    − 1 ≤ 0 ,  



(82)






   g 9  ( z ) =    z 1    12  z 2    − 1 ≤ 0 ,  



(83)






   g  10   ( z ) =   1.5  z 6  + 1.9    z 4    − 1 ≤ 0 ,  



(84)






   g  11   ( z ) =   1.1  z 7  + 1.9    z 5    − 1 ≤ 0 ,  



(85)







Table 17 shows the most suitable outputs from LARO and the different selection comparison methods in dealing with the SRD problem. Table 18 gives the statistics of all search algorithms. It can be found that LARO outperforms the different search algorithms in terms of optimal performance. LARO has the best optimal, worst, average, and STD values for the same maximum iterations, while the smaller STD also indicates that LARO has good robustness. Therefore, LARO is effective in optimizing SRD solutions. Figure 23 provides the results of the convergence iterations of the LARO and comparison algorithms on the SRD problem. The vertical coordinates in the figure are the log values of the adaptation values. From the results, it can be seen that LARO converges to the optimal solution. The convergence speed and convergence accuracy of LARO are good compared to other algorithms. All the algorithms converge to near the optimal solution in the early iteration. The results show that LARO is an excellent algorithm for solving the SRD problem.




5.6. Tubular Column Design (TCD)


The TCD problem is to ensure that the cost of designing a homogeneous column with a tubular cross-section is minimized under the condition that six constraints are satisfied with suitable compressive loads [4]. The schematic design diagram of the TCD is illustrated in Figure 24. Two material-related conditions to be established for the TCD problem include yield stress σy = 500 kgf/cm2 and modulus of elasticity E = 0.85 × 106 kgf/cm2. The mathematical model of the TCD problem is given below.


   z →  = [  z 1  ,  z 2  ] = [ d , t ]  



(86)







Minimize:


  f ( z ) = 9.8  z 1   z 2  + 2  z 1   



(87)







Variable range:


   2 ≤  z 1  ≤ 14 ,   0.2 ≤  z 2  ≤ 0.8 ,   



(88)







Subject to:


   g 1  ( z ) =  P  π    z 1   z 2   σ y    − 1 ≤ 0 ,  



(89)






   g 2  ( z ) =   8 P  L 2     π 3  E    z 1   z 2  (  z 1 2  +  z 2 2  )   − 1 ≤ 0 ,  



(90)






   g 3  ( z ) =   2.0    z 1    − 1 ≤ 0 ,  



(91)






   g 4  ( z ) =    z 1    14   − 1 ≤ 0 ,  



(92)






   g 5  ( z ) =   0.2    z 2    − 1 ≤ 0 ,  



(93)






   g 6  ( z ) =    z 2   8  − 1 ≤ 0 .  



(94)







Table 19 presents the most suitable outputs obtained by the LARO and other selection comparison algorithms for the TCD problem. Table 20 gives the statistics of all search algorithms dealing with the TCD. It can be noticed that LARO outperforms the different search methods in terms of optimal performance. LARO has the best optimal, worst, average, and STD values for the same maximum iterations, while the smaller STD also indicates that LARO has good robustness. Therefore, LARO is effective in optimizing the solution of TCD problems. Figure 25 provides the results of the convergence iterations of the LARO and comparison algorithms on the TCD problem. From the results, it can be seen that LARO converges to the optimal solution. LARO converges faster compared to the other algorithms. MVO converges poorly in the early stages, while AOA and WOA converge poorly throughout the process compared to the different algorithms. The results show that LARO has an advantage over the other algorithms in solving the TCD problem.





6. Conclusions


In this study, an effective metaheuristic method called the enhanced ARO algorithm (LARO) is proposed. LARO is a variant of the ARO algorithm. To boost the global finding ability of ARO, the avoidance of local solutions and international exploration of LARO are designed by making full use of the Lévy flight strategy. In addition, local exploitation of LARO is achieved by using the selective opposition strategy. The most remarkable feature of LARO is that it has a straightforward structure and high computational accuracy, often requiring only the basic parameters (i.e., population size and termination conditions) for solving optimization problems. We tested the performance of LARO with 23 test functions, the CEC2019 test suite, and six mechanical engineering design problems. The experimental results show that LARO can obtain the optimal average solution in 16 of the 23 classical test functions and obtain the smallest average rank (2.3478). Additionally, LARO obtains the best solutions for five and seven functions in CEC2017 and CEC2019, respectively. The conclusion shows that the strategies for improved ARO are very effective in improving the optimization performance. However, there is still room for further improvement in the exploration ability of LARO when facing the CEC2017 test functions. In the mechanical optimization problem, all six practical problems are complex problems with multiple nonlinear constraints and multiple local solutions, and the output results show that LARO can obtain the best decision variables and objective function values. Because of its excellent convergence, exceptional exploration ability, and lack of need to fine-tune the initial parameters, LARO has excellent potential to handle optimization problems with various characteristics.



In future work, this study will expand the versions of the ARO algorithm to include the ARO algorithm for opposing learning initialization, the multi-objective ARO algorithm, the binary ARO algorithm, and the discrete version of the ARO algorithm [57,58,59,60,61,62]. In addition, we will focus on applying LARO to various complex real-world engineering optimization problems, such as hyperparametric optimization of machine learning algorithms, urban travel recommendations in intelligent cities, job-shop scheduling problems, image segmentation, developable surface modeling [63], and smooth path planning for mobile robots.
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Figure 1. The change of H over the course of 1000 iterations. 
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Figure 2. The change of A over the course of 1000 iterations. 
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Figure 3. Flow chart of ARO. 
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Figure 4. Lévy flight path of 500 times movements in a two-dimensional space. 
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Figure 5. Flowchart for the LARO algorithm. 
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Figure 6. The exploration and exploitation diagrams of LARO. 
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Figure 7. Iteration plot of seven parameters in CEC2019. 
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Figure 8. The average rank of the twelve algorithms. 
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Figure 9. Convergence plots of LARO and different MH methods on 23 test functions. 
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Figure 10. Box plot of LARO and ARO, AOA, GWO, COOT, GJO, INFO, MFO, MVO, SCA, SSA, WOA on 23 test functions. 
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Figure 11. Convergence plots of LARO and other search methods on the CEC2019 test functions. 
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Figure 12. Box plot of LARO and ARO, AOA, GWO, COOT, GJO, INFO, MFO, MVO, SCA, SSA, WOA on CEC2019 test functions. 
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Figure 13. Radar chart of ARO, AOA, GWO, COOT, GJO, INFO, MFO, MVO, SCA, SSA, WOA, and LARPO on CEC2019. 
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Figure 14. WBD structure. 
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Figure 15. Convergence iteration plot of LARO and comparison algorithms in WBD problem. 
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Figure 16. PVD structure. 






Figure 16. PVD structure.



[image: Symmetry 14 02282 g016]







[image: Symmetry 14 02282 g017 550] 





Figure 17. Convergence iteration plot of LARO and comparison algorithms in PVD problem. 
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Figure 18. TCS structure. 
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Figure 19. Convergence iteration plot of LARO and comparison algorithms in TCS problem. 
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Figure 20. GTD structure. 
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Figure 21. Convergence iteration plot of LARO and comparison algorithms in GTD problem. 
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Figure 22. SRD structure. 
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Figure 23. Convergence iteration plot of LARO and comparison algorithms in SRD problem. 
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Figure 24. TCD structure. 






Figure 24. TCD structure.



[image: Symmetry 14 02282 g024]







[image: Symmetry 14 02282 g025 550] 





Figure 25. Convergence iteration plot of LARO and comparison algorithms in TCD problem. 






Figure 25. Convergence iteration plot of LARO and comparison algorithms in TCD problem.



[image: Symmetry 14 02282 g025]







[image: Table] 





Table 1. Suitable parameters for different algorithms.
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	Methods
	Parameters
	Value Situation





	AOA [38]
	µ
	0.499



	
	a
	a5



	GWO [39]
	Convergence parameter (a)
	Linear decrease from 2 to 0



	WOA [47]
	A
	Drop from 2 to 0



	
	b
	2



	SSA [46]
	Leader position update probability
	c3 = 0.5



	INFO [42]
	c
	2



	
	d
	4



	MVO [43]
	Wormhole Existence Probability WEPMax
	1



	
	Wormhole Existence Probability WEPMin
	0.2



	SCA [44]
	A
	2
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Table 2. Comparison of LARO with two different parameters in 23 benchmark functions.
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Functions

	
Algorithms

	
Mean

	
STD

	
Time

	
Functions

	
Algorithms

	
Mean

	
STD

	
Time






	
F01

	
LARO1

	
2.17E-181

	
0

	
7.22299

	
F13

	
LARO1

	
0.00110

	
0.00338

	
22.00742




	
LARO2

	
4.78E-91

	
1.39E-90

	
7.38622

	
LARO2

	
0.00059

	
0.00247

	
19.16593




	
F02

	
LARO1

	
1.45E-96

	
6.15E-96

	
6.97114

	
F14

	
LARO1

	
0.99800

	
0

	
31.32199




	
LARO2

	
1.90E-49

	
3.98E-49

	
6.97564

	
LARO2

	
0.99800

	
0

	
29.23997




	
F03

	
LARO1

	
5.18E-146

	
1.97E-145

	
16.08589

	
F15

	
LARO1

	
0.00031

	
2.97E-16

	
5.84512




	
LARO2

	
5.48E-73

	
2.11E-72

	
14.75086

	
LARO2

	
0.00031

	
2.37E-08

	
6.53547




	
F04

	
LARO1

	
8.57E-75

	
3.61E-74

	
7.35237

	
F16

	
LARO1

	
−1.03163

	
2.16E-16

	
5.51881




	
LARO2

	
1.10E-37

	
2.49E-37

	
6.88073

	
LARO2

	
−1.03163

	
2.10E-16

	
6.22799




	
F05

	
LARO1

	
0.00470

	
0.00436

	
7.95983

	
F17

	
LARO1

	
0.39789

	
0

	
5.33003




	
LARO2

	
0.03234

	
0.03371

	
7.86360

	
LARO2

	
0.39789

	
0

	
6.17085




	
F06

	
LARO1

	
5.06E-06

	
6.23E-06

	
6.85314

	
F18

	
LARO1

	
3

	
5.94E-16

	
5.36706




	
LARO2

	
0.00014

	
0.00012

	
6.81894

	
LARO2

	
3

	
6.28E-16

	
5.99102




	
F07

	
LARO1

	
0.00021

	
0.00014

	
10.94454

	
F19

	
LARO1

	
−3.86278

	
2.28E-15

	
6.59347




	
LARO2

	
0.00032

	
0.00021

	
10.75831

	
LARO2

	
−3.86278

	
2.28E-15

	
6.07269




	
F08

	
LARO1

	
−1.15E+04

	
334.44374

	
8.30804

	
F20

	
LARO1

	
−3.29227

	
0.05282

	
6.68436




	
LARO2

	
−1.15E+04

	
299.32023

	
8.43271

	
LARO2

	
−3.32200

	
4.44E-16

	
7.05183




	
F09

	
LARO1

	
0

	
0

	
7.25003

	
F21

	
LARO1

	
−10.15320

	
3.36E-15

	
11.62110




	
LARO2

	
0

	
0

	
7.61304

	
LARO2

	
−10.15320

	
2.79E-15

	
7.59196




	
F10

	
LARO1

	
8.88E-16

	
0

	
8.25929

	
F22

	
LARO1

	
−10.06901

	
1.49339

	
9.18435




	
LARO2

	
8.88E-16

	
0

	
7.80431

	
LARO2

	
−10.40294

	
3.58E-15

	
8.20396




	
F11

	
LARO1

	
0

	
0

	
8.49955

	
F23

	
LARO1

	
−10.53636

	
0.00024

	
8.69545




	
LARO2

	
0

	
0

	
8.82418

	
LARO2

	
−10.53641

	
1.58E-15

	
9.09290




	
F12

	
LARO1

	
2.43E-07

	
2.89E-07

	
20.03895

	

	

	

	

	




	
LARO2

	
6.01E-06

	
2.89E-06

	
20.26232
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Table 3. Performance analysis of jump parameter α in CEC2019.
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Function

	
Index

	
Algorithms




	
α = 0.1

	
α = 0.01

	
α = 0.05

	
α = 0.5

	
α = [0.01, 0.05]

	
α = [0.05, 0.1]

	
α = [0.1, 0.5]






	
cec01

	
Mean

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
Rank

	
1

	
1

	
1

	
1

	
1

	
1

	
1




	
cec02

	
Mean

	
4.2462

	
4.2195

	
4.2553

	
4.2226

	
4.1176

	
4.2233

	
4.2304




	
Rank

	
6

	
2

	
7

	
3

	
1

	
4

	
5




	
cec03

	
Mean

	
1.7488

	
1.5887

	
1.5539

	
1.5272

	
1.6122

	
1.7864

	
1.6667




	
Rank

	
6

	
3

	
2

	
1

	
4

	
7

	
5




	
cec04

	
Mean

	
12.8513

	
11.0993

	
12.6871

	
16.1851

	
13.7460

	
13.8487

	
13.8736




	
Rank

	
3

	
1

	
2

	
7

	
4

	
5

	
6




	
cec05

	
Mean

	
1.0747

	
1.1089

	
1.1029

	
1.0880

	
1.0876

	
1.0790

	
1.0776




	
Rank

	
1

	
7

	
6

	
5

	
4

	
3

	
2




	
cec06

	
Mean

	
1.5055

	
1.5995

	
1.6011

	
1.4881

	
1.4857

	
1.4156

	
1.4059




	
Rank

	
5

	
6

	
7

	
4

	
3

	
2

	
1




	
cec07

	
Mean

	
386.6686

	
437.5734

	
464.3752

	
450.1384

	
467.1603

	
489.9973

	
465.0378




	
Rank

	
1

	
2

	
4

	
3

	
6

	
7

	
5




	
cec08

	
Mean

	
3.0415

	
3.3443

	
3.0979

	
3.2720

	
3.2620

	
3.4022

	
3.5178




	
Rank

	
1

	
5

	
2

	
4

	
3

	
6

	
7




	
cec09

	
Mean

	
1.1386

	
1.1156

	
1.1255

	
1.1151

	
1.1143

	
1.1186

	
1.1130




	
Rank

	
7

	
4

	
6

	
3

	
2

	
5

	
1




	
cec10

	
Mean

	
18.0553

	
20.0059

	
19.9964

	
20.0029

	
20.0859

	
21.0005

	
20.0014




	
Rank

	
1

	
5

	
2

	
4

	
6

	
7

	
3




	
Mean rank

	
3.2

	
3.6

	
3.9

	
3.5

	
3.4

	
4.7

	
3.6




	
Final ranking

	
1

	
4

	
6

	
3

	
2

	
7

	
4
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Table 4. Statistical outcomes of the different MH methods on the 23 test functions.
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Function

	
Index

	
Algorithms




	
ARO

	
AOA

	
GWO

	
COOT

	
GJO

	
INFO

	
MFO

	
MVO

	
SCA

	
SSA

	
WOA

	
LARO






	
F1

	
Best

	
1.21E-138

	
9.28E-10

	
5.04E-73

	
1.68E-93

	
7.76E-132

	
9.34E-56

	
1.60E-06

	
0.0009

	
2.20E-07

	
5.37E-09

	
1.09E-186

	
6.69E-199




	
Worst

	
2.30E-127

	
9.90E-07

	
2.39E-69

	
2.23E-18

	
9.04E-127

	
4.43E-55

	
1.00E+04

	
0.0049

	
0.0073

	
1.10E-08

	
6.38E-173

	
2.12E-177




	
Mean

	
1.74E-128

	
4.73E-07

	
3.70E-70

	
1.12E-19

	
9.55E-128

	
3.11E-55

	
1.00E+03

	
0.0023

	
0.0010

	
8.60E-09

	
4.09E-174

	
1.08E-178




	
STD

	
5.61E-128

	
2.34E-07

	
7.22E-70

	
4.99E-19

	
2.29E-127

	
9.13E-56

	
3.08E+03

	
0.0009

	
0.0019

	
1.60E-09

	
0

	
0




	
Rank

	
3

	
9

	
5

	
7

	
4

	
6

	
12

	
11

	
10

	
8

	
2

	
1




	
F2

	
Best

	
1.06E-74

	
2.49E-13

	
4.85E-42

	
1.57E-47

	
1.47E-143

	
7.02E-29

	
2.94E-20

	
0.0054

	
2.91E-24

	
4.52E-06

	
7.23E-118

	
4.88E-105




	
Worst

	
2.80E-67

	
0.0006

	
1.55E-40

	
7.37E-18

	
8.09E-137

	
2.40E-28

	
1.43E-18

	
0.0216

	
3.94E-20

	
8.69E-06

	
4.13E-105

	
1.84E-95




	
Mean

	
2.19E-68

	
0.0001

	
3.81E-41

	
3.68E-19

	
6.36E-138

	
1.58E-28

	
2.79E-19

	
0.0130

	
3.20E-21

	
6.09E-06

	
2.10E-106

	
9.20E-97




	
STD

	
6.66E-68

	
0.0002

	
4.24E-41

	
1.65E-18

	
1.82E-137

	
3.66E-29

	
3.93E-19

	
0.0039

	
9.22E-21

	
1.28E-06

	
9.22E-106

	
4.11E-96




	
Rank

	
4

	
11

	
5

	
9

	
1

	
6

	
8

	
12

	
7

	
10

	
2

	
3




	
F3

	
Best

	
2.19E-115

	
7.27E-08

	
9.95E-24

	
1.69E-108

	
5.66E-150

	
1.41E-55

	
7.16E-12

	
0.0024

	
2.53E-20

	
4.86E-10

	
1.02E+03

	
9.25E-160




	
Worst

	
4.64E-98

	
0.0005

	
1.70E-18

	
3.75E-17

	
3.30E-136

	
3.43E-54

	
7.83E-08

	
0.0274

	
4.50E-09

	
2.26E-09

	
2.52E+04

	
8.97E-145




	
Mean

	
2.99E-99

	
0.0001

	
1.35E-19

	
1.87E-18

	
2.21E-137

	
7.44E-55

	
6.93E-09

	
0.0152

	
2.35E-10

	
1.31E-09

	
9.94E+03

	
6.05E-146




	
STD

	
1.06E-98

	
0.0001

	
4.11E-19

	
8.38E-18

	
7.66E-137

	
7.17E-55

	
1.99E-08

	
0.0085

	
1.00E-09

	
5.18E-10

	
7.06E+03

	
2.09E-145




	
Rank

	
3

	
10

	
5

	
6

	
2

	
4

	
9

	
11

	
7

	
8

	
12

	
1




	
F4

	
Best

	
2.49E-59

	
0.0012

	
8.10E-19

	
1.00E-50

	
3.15E-102

	
3.80E-29

	
2.24E-10

	
0.0149

	
8.01E-14

	
9.04E-06

	
2.09E-05

	
6.58E-83




	
Worst

	
1.51E-51

	
0.0386

	
8.67E-17

	
1.10E-18

	
2.48E-94

	
9.71E-29

	
4.81E-06

	
0.0558

	
3.26E-09

	
1.97E-05

	
83.8975

	
1.08E-74




	
Mean

	
8.18E-53

	
0.0082

	
9.98E-18

	
5.69E-20

	
1.34E-95

	
7.06E-29

	
3.41E-07

	
0.0289

	
5.72E-10

	
1.49E-05

	
26.7587

	
5.69E-76




	
STD

	
3.36E-52

	
0.0095

	
1.86E-17

	
2.46E-19

	
5.54E-95

	
1.69E-29

	
1.09E-06

	
0.0109

	
1.01E-09

	
2.60E-06

	
27.7544

	
2.40E-75




	
Rank

	
3

	
10

	
6

	
5

	
1

	
4

	
8

	
11

	
7

	
9

	
12

	
2




	
F5

	
Best

	
0.0006

	
26.3419

	
25.1729

	
12.7342

	
5.9635

	
1.00E-15

	
0.5337

	
0.3466

	
6.3912

	
1.0423

	
25.9605

	
0.0002




	
Worst

	
0.0090

	
27.8627

	
27.9110

	
164.4579

	
8.7006

	
3.82E-08

	
9.00E+04

	
420.5066

	
8.0566

	
326.6321

	
26.9912

	
0.0259




	
Mean

	
0.0029

	
26.9276

	
26.6522

	
33.4068

	
6.8759

	
4.47E-09

	
4.68E+03

	
43.9598

	
7.0330

	
48.0257

	
26.5465

	
0.0057




	
STD

	
0.0023

	
0.3875

	
0.6903

	
31.0189

	
0.7159

	
1.08E-08

	
2.01E+04

	
100.2646

	
0.3919

	
81.8641

	
0.3124

	
0.0069




	
Rank

	
2

	
8

	
7

	
9

	
4

	
1

	
12

	
10

	
5

	
11

	
6

	
3




	
F6

	
Best

	
2.65E-07

	
0.3379

	
8.71E-06

	
3.83E-05

	
1.56E-06

	
0

	
0

	
0.0011

	
0.1184

	
2.99E-10

	
0.0017

	
8.78E-07




	
Worst

	
2.57E-06

	
0.8442

	
0.9951

	
0.0009

	
0.4997

	
4.93E-32

	
4.50E-31

	
0.0039

	
0.5995

	
9.36E-10

	
0.0073

	
1.50E-05




	
Mean

	
1.09E-06

	
0.5939

	
0.2872

	
0.0003

	
0.1376

	
6.16E-33

	
6.39E-32

	
0.0023

	
0.2553

	
6.36E-10

	
0.0041

	
4.77E-06




	
STD

	
6.58E-07

	
0.1378

	
0.2839

	
0.0002

	
0.1512

	
1.16E-32

	
1.13E-31

	
0.0008

	
0.1261

	
1.80E-10

	
0.0015

	
4.17E-06




	
Rank

	
4

	
12

	
11

	
6

	
9

	
1

	
2

	
7

	
10

	
3

	
8

	
5




	
F7

	
Best

	
2.92E-05

	
3.42E-08

	
0.0001

	
0.0001

	
6.24E-06

	
7.13E-05

	
0.0005

	
0.0002

	
0.0001

	
0.0005

	
2.56E-05

	
1.02E-05




	
Worst

	
0.0006

	
6.65E-05

	
0.0013

	
0.0090

	
0.0002

	
0.0013

	
0.0066

	
0.0035

	
0.0024

	
0.0118

	
0.0025

	
0.0004




	
Mean

	
0.0002

	
2.38E-05

	
0.0005

	
0.0021

	
6.19E-05

	
0.0003

	
0.0026

	
0.0012

	
0.0006

	
0.0045

	
0.0006

	
0.0002




	
STD

	
0.0002

	
2.11E-05

	
0.0003

	
0.0023

	
5.14E-05

	
0.0003

	
0.0014

	
0.0008

	
0.0006

	
0.0031

	
0.0006

	
0.0001




	
Rank

	
4

	
1

	
6

	
10

	
2

	
5

	
11

	
9

	
8

	
12

	
7

	
3




	
F8

	
Best

	
−1.18E+04

	
−6.15E+03

	
−7.74E+03

	
−8.96E+03

	
−2.77E+03

	
−4.19E+03

	
−4.19E+03

	
−3.83E+03

	
−2.64E+03

	
−3.30E+03

	
−1.26E+04

	
−1.21E+04




	
Worst

	
−1.02E+04

	
−4.95E+03

	
−4.93E+03

	
−7.04E+03

	
−1.84E+03

	
−3.36E+03

	
−2.52E+03

	
−2.43E+03

	
−2.05E+03

	
−2.23E+03

	
−8.37E+03

	
−1.08E+04




	
Mean

	
−1.09E+04

	
−5.49E+03

	
−6.35E+03

	
−7.90E+03

	
−2.32E+03

	
−3.63E+03

	
−3.38E+03

	
−3.16E+03

	
−2.30E+03

	
−2.80E+03

	
−1.20E+04

	
−1.16E+04




	
STD

	
4.52E+02

	
3.84E+02

	
7.00E+02

	
5.59E+02

	
2.58E+02

	
2.08E+02

	
3.78E+02

	
3.27E+02

	
1.55E+02

	
2.95E+02

	
1.18E+03

	
3.94E+02




	
Rank

	
3

	
6

	
5

	
4

	
11

	
7

	
8

	
9

	
12

	
10

	
1

	
2




	
F9

	
Best

	
0

	
0

	
0

	
0

	
0

	
0

	
3.9798

	
3.9804

	
0

	
6.9647

	
0

	
0




	
Worst

	
0

	
4.39E-07

	
11.5726

	
1.71E-13

	
0

	
0

	
44.8440

	
22.8853

	
0.3257

	
41.7882

	
5.68E-14

	
0




	
Mean

	
0

	
1.10E-07

	
1.0975

	
8.53E-15

	
0

	
0

	
17.9128

	
12.0401

	
0.0163

	
15.0239

	
2.84E-15

	
0




	
STD

	
0

	
1.55E-07

	
2.9474

	
3.81E-14

	
0

	
0

	
10.3395

	
5.8096

	
0.0728

	
7.9590

	
1.27E-14

	
0




	
Rank

	
1

	
7

	
9

	
6

	
1

	
1

	
12

	
10

	
8

	
11

	
5

	
1




	
F10

	
Best

	
8.88E-16

	
7.48E-08

	
7.99E-15

	
8.88E-16

	
8.88E-16

	
8.88E-16

	
4.44E-15

	
0.0088

	
8.88E-16

	
5.88E-06

	
8.88E-16

	
8.88E-16




	
Worst

	
8.88E-16

	
0.0003

	
1.87E-14

	
1.54E-11

	
4.44E-15

	
8.88E-16

	
7.99E-15

	
0.0228

	
7.99E-15

	
2.0133

	
7.99E-15

	
8.88E-16




	
Mean

	
8.88E-16

	
0.0001

	
1.40E-14

	
8.04E-13

	
3.91E-15

	
8.88E-16

	
4.62E-15

	
0.0178

	
4.80E-15

	
0.5489

	
4.09E-15

	
8.88E-16




	
STD

	
0

	
8.13E-05

	
2.33E-15

	
3.43E-12

	
1.30E-15

	
0

	
7.94E-16

	
0.0035

	
1.59E-15

	
0.8664

	
2.28E-15

	
0




	
Rank

	
1

	
10

	
8

	
9

	
4

	
1

	
6

	
11

	
7

	
12

	
5

	
1




	
F11

	
Best

	
0

	
1.15E-06

	
0

	
0

	
0

	
0

	
0.0271

	
0.1110

	
0

	
0.0836

	
0

	
0




	
Worst

	
0

	
0.0123

	
0.0404

	
2.22E-16

	
0

	
0

	
0.3173

	
0.5909

	
0.7448

	
0.7018

	
0.0372

	
0




	
Mean

	
0

	
0.0006

	
0.0027

	
1.11E-17

	
0

	
0

	
0.1347

	
0.3030

	
0.0381

	
0.2650

	
0.0034

	
0




	
STD

	
0

	
0.0028

	
0.0094

	
4.97E-17

	
0

	
0

	
0.0818

	
0.1209

	
0.1664

	
0.1495

	
0.0104

	
0




	
Rank

	
1

	
6

	
7

	
5

	
1

	
1

	
10

	
12

	
9

	
11

	
8

	
1




	
F12

	
Best

	
1.11E-08

	
0.4017

	
0.0054

	
7.28E-07

	
8.14E-07

	
4.71E-32

	
4.71E-32

	
2.93E-05

	
0.0300

	
3.35E-12

	
0.0001

	
3.24E-08




	
Worst

	
2.49E-07

	
0.5290

	
0.0581

	
0.1037

	
0.0593

	
4.93E-32

	
0.9329

	
0.3122

	
0.1082

	
0.3712

	
0.0201

	
1.16E-06




	
Mean

	
6.05E-08

	
0.4541

	
0.0253

	
0.0052

	
0.0298

	
4.79E-32

	
0.1088

	
0.0313

	
0.0655

	
0.0688

	
0.0016

	
3.27E-07




	
STD

	
5.65E-08

	
0.0331

	
0.0158

	
0.0232

	
0.0218

	
8.02E-34

	
0.2527

	
0.0960

	
0.0205

	
0.1336

	
0.0044

	
3.40E-07




	
Rank

	
2

	
12

	
6

	
5

	
7

	
1

	
11

	
8

	
9

	
10

	
4

	
3




	
F13

	
Best

	
7.63E-08

	
2.8252

	
1.91E-05

	
7.71E-05

	
3.30E-06

	
1.35E-32

	
1.35E-32

	
0.0001

	
0.0798

	
1.39E-11

	
0.0027

	
1.95E-07




	
Worst

	
0.0439

	
2.9661

	
0.4064

	
0.0364

	
0.3992

	
0.0439

	
0.0110

	
0.0118

	
0.3257

	
0.0110

	
0.1943

	
7.23E-06




	
Mean

	
0.0039

	
2.9528

	
0.2462

	
0.0091

	
0.1081

	
0.0033

	
0.0016

	
0.0015

	
0.2240

	
0.0016

	
0.0522

	
1.81E-06




	
STD

	
0.0102

	
0.0408

	
0.1180

	
0.0092

	
0.1023

	
0.0101

	
0.0040

	
0.0034

	
0.0648

	
0.0040

	
0.0605

	
1.90E-06




	
Rank

	
6

	
12

	
11

	
7

	
9

	
5

	
3

	
2

	
10

	
4

	
8

	
1




	
F14

	
Best

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980

	
0.9980




	
Worst

	
0.9980

	
12.6705

	
12.6705

	
0.9980

	
12.6705

	
2.9821

	
1.9920

	
0.9980

	
2.9821

	
0.9980

	
10.7632

	
0.9980




	
Mean

	
0.9980

	
8.4157

	
5.2933

	
0.9980

	
4.9158

	
1.1469

	
1.0974

	
0.9980

	
1.4941

	
0.9980

	
2.6117

	
0.9980




	
STD

	
0

	
4.4965

	
5.0354

	
2.88E-16

	
4.2395

	
0.4857

	
0.3060

	
5.24E-12

	
0.8814

	
1.02E-16

	
3.5461

	
0




	
Rank

	
1

	
12

	
11

	
1

	
10

	
7

	
6

	
5

	
8

	
1

	
9

	
1




	
F15

	
Best

	
0.0003

	
0.0003

	
0.0003

	
0.0003

	
0.0003

	
0.0003

	
0.0006

	
0.0003

	
0.0004

	
0.0003

	
0.0003

	
0.0003




	
Worst

	
0.0003

	
0.0207

	
0.0204

	
0.0012

	
0.0012

	
0.0012

	
0.0023

	
0.0204

	
0.0015

	
0.0012

	
0.0014

	
0.0003




	
Mean

	
0.0003

	
0.0031

	
0.0024

	
0.0004

	
0.0004

	
0.0004

	
0.0010

	
0.0066

	
0.0009

	
0.0007

	
0.0006

	
0.0003




	
STD

	
2.47E-19

	
0.0051

	
0.0062

	
0.0002

	
0.0003

	
0.0002

	
0.0004

	
0.0093

	
0.0004

	
0.0003

	
0.0003

	
1.29E-16




	
Rank

	
1

	
11

	
10

	
4

	
5

	
3

	
9

	
12

	
8

	
7

	
6

	
2




	
F16

	
Best

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316




	
Worst

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316




	
Mean

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316

	
−1.0316




	
STD

	
2.22E-16

	
7.42E-12

	
3.08E-09

	
4.04E-14

	
1.70E-08

	
2.28E-16

	
2.28E-16

	
6.22E-08

	
1.79E-05

	
6.02E-15

	
1.97E-11

	
2.28E-16




	
Rank

	
1

	
8

	
9

	
5

	
10

	
1

	
1

	
11

	
12

	
5

	
7

	
1




	
F17

	
Best

	
0.3979

	
0.4960

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979




	
Worst

	
0.3979

	
2.5958

	
0.3979

	
0.3979

	
0.3981

	
0.3979

	
0.3979

	
0.3979

	
0.3994

	
0.3979

	
0.3979

	
0.3979




	
Mean

	
0.3979

	
1.3108

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3979

	
0.3984

	
0.3979

	
0.3979

	
0.3979




	
STD

	
0

	
0.6557

	
4.30E-07

	
7.30E-08

	
3.92E-05

	
0

	
0

	
7.31E-08

	
0.0004

	
4.68E-15

	
8.28E-08

	
0




	
Rank

	
1

	
12

	
9

	
6

	
10

	
1

	
1

	
8

	
11

	
5

	
7

	
1




	
F18

	
Best

	
3

	
3

	
3.0000

	
3

	
3.0000

	
3

	
3

	
3.0000

	
3.0000

	
3

	
3.0000

	
3




	
Worst

	
3

	
30

	
3.0000

	
3

	
3.0000

	
3

	
3

	
3.0000

	
3.0000

	
3

	
3.0000

	
3




	
Mean

	
3

	
11.1

	
3.0000

	
3

	
3.0000

	
3

	
3

	
3.0000

	
3.0000

	
3

	
3.0000

	
3




	
STD

	
6.28E-16

	
12.6944

	
4.15E-06

	
2.78E-14

	
4.45E-07

	
2.88E-16

	
1.45E-15

	
3.93E-07

	
9.62E-06

	
4.37E-14

	
4.46E-06

	
9.56E-16




	
Rank

	
1

	
12

	
10

	
5

	
7

	
1

	
1

	
8

	
11

	
6

	
9

	
1




	
F19

	
Best

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8623

	
−3.8628

	
−3.8628

	
−3.8628




	
Worst

	
−3.8628

	
−3.8628

	
−3.8549

	
−3.8628

	
−3.8549

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8535

	
−3.8628

	
−3.8549

	
−3.8628




	
Mean

	
−3.8628

	
−3.8628

	
−3.8615

	
−3.8628

	
−3.8592

	
−3.8628

	
−3.8628

	
−3.8628

	
−3.8569

	
−3.8628

	
−3.8614

	
−3.8628




	
STD

	
2.28E-15

	
6.30E-07

	
0.0028

	
2.03E-15

	
0.0040

	
2.28E-15

	
2.28E-15

	
1.34E-07

	
0.0034

	
1.51E-14

	
0.0028

	
2.28E-15




	
Rank

	
1

	
8

	
9

	
1

	
11

	
1

	
1

	
7

	
12

	
6

	
10

	
1




	
F20

	
Best

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.3220

	
−3.1559

	
−3.3220

	
−3.3220

	
−3.3220




	
Worst

	
−3.2031

	
−3.2031

	
−3.1981

	
−3.2031

	
−2.8404

	
−3.2031

	
−3.1376

	
−3.2024

	
−2.6213

	
−3.1989

	
−3.0867

	
−3.2031




	
Mean

	
−3.2982

	
−3.2804

	
−3.2739

	
−3.2982

	
−3.1169

	
−3.2625

	
−3.2322

	
−3.2565

	
−3.0157

	
−3.2261

	
−3.2356

	
−3.3101




	
STD

	
0.0488

	
0.0582

	
0.0605

	
0.0488

	
0.1234

	
0.0610

	
0.0634

	
0.0608

	
0.1298

	
0.0492

	
0.0768

	
0.0366




	
Rank

	
2

	
4

	
5

	
3

	
11

	
6

	
9

	
7

	
12

	
10

	
8

	
1




	
F21

	
Best

	
−10.1532

	
−10.1532

	
−10.1531

	
−10.1532

	
−10.1524

	
−10.1532

	
−10.1532

	
−10.1532

	
−6.1684

	
−10.1532

	
−10.1532

	
−10.1532




	
Worst

	
−2.6305

	
−5.1007

	
−5.0552

	
−10.1532

	
−5.0551

	
−2.6305

	
−2.6305

	
−5.1007

	
−0.8798

	
−2.6305

	
−2.6303

	
−10.1532




	
Mean

	
−9.7771

	
−7.8795

	
−9.3905

	
−10.1532

	
−9.3888

	
−9.7771

	
−7.3843

	
−8.8900

	
−3.9983

	
−8.7666

	
−8.6480

	
−10.1532




	
STD

	
1.6821

	
2.5788

	
1.8621

	
3.40E-13

	
1.8613

	
1.6821

	
3.2457

	
2.2446

	
1.7187

	
2.5157

	
3.0870

	
3.51E-15




	
Rank

	
3

	
10

	
5

	
2

	
6

	
3

	
11

	
7

	
12

	
8

	
9

	
1




	
F22

	
Best

	
−10.4029

	
−10.4029

	
−10.4029

	
−10.4029

	
−10.4025

	
−10.4029

	
−10.4029

	
−10.4029

	
−7.6292

	
−10.4029

	
−10.4029

	
−10.4029




	
Worst

	
−3.7243

	
−3.7243

	
−10.4021

	
−10.4029

	
−4.4596

	
−2.7659

	
−2.7659

	
−2.7659

	
−0.9097

	
−2.7519

	
−5.0877

	
−10.4017




	
Mean

	
−10.0690

	
−9.2076

	
−10.4026

	
−10.4029

	
−10.1033

	
−8.9235

	
−7.5987

	
−9.3755

	
−4.2828

	
−10.0204

	
−9.8710

	
−10.4029




	
STD

	
1.4934

	
2.4737

	
0.0002

	
3.97E-13

	
1.3284

	
3.0418

	
3.2662

	
2.5480

	
2.0099

	
1.7108

	
1.6359

	
0.0003




	
Rank

	
5

	
9

	
3

	
1

	
4

	
10

	
11

	
8

	
12

	
6

	
7

	
2




	
F23

	
Best

	
−10.5364

	
−10.5364

	
−10.5363

	
−10.5364

	
−10.5363

	
−10.5364

	
−10.5364

	
−10.5364

	
−10.2588

	
−10.5364

	
−10.5364

	
−10.5364




	
Worst

	
−10.5364

	
−2.4217

	
−10.5355

	
−10.5364

	
−10.5304

	
−2.4217

	
−2.4217

	
−5.1756

	
−0.9487

	
−2.8711

	
−2.4217

	
−10.5364




	
Mean

	
−10.5364

	
−8.7521

	
−10.5360

	
−10.5364

	
−10.5337

	
−8.6684

	
−8.9409

	
−9.4642

	
−5.0736

	
−9.8851

	
−8.1094

	
−10.5364




	
STD

	
1.82E-15

	
3.2104

	
0.0002

	
2.30E-13

	
0.0014

	
3.3361

	
2.9057

	
2.2000

	
1.6543

	
2.0392

	
3.4234

	
3.43E-15




	
Rank

	
1

	
9

	
4

	
3

	
5

	
10

	
8

	
7

	
12

	
6

	
11

	
1




	
Mean rank

	
2.3478

	
9.0870

	
7.2174

	
5.1739

	
5.8696

	
3.7391

	
7.3913

	
8.8261

	
9.5217

	
7.7826

	
7.0870

	
1.6957




	
Final ranking

	
2

	
11

	
7

	
4

	
5

	
3

	
8

	
10

	
12

	
9

	
6

	
1




	
+/=/−

	
2/16/5

	
1/1/21

	
0/1/22

	
0/11/12

	
3/2/18

	
3/12/8

	
1/5/17

	
0/1/22

	
0/1/22

	
1/7/15

	
2/3/18

	
−/−/−
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Table 5. Statistical output and associated p-values on 23 test functions.
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	p-Value
	ARO
	AOA
	GWO
	COOT
	GJO
	INFO
	MFO
	MVO
	SCA
	SSA
	WOA





	F1
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	1.25E-05/−



	F2
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/+
	6.79E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/+



	F3
	6.80E-08/−
	6.79E-08/−
	6.79E-08/−
	6.80E-08/−
	2.06E-06/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−



	F4
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/+
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.79E-08/−
	6.80E-08/−



	F5
	0.3507/=
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/+
	6.79E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−



	F6
	0.0001/+
	6.80E-08/−
	4.87E-07/−
	6.80E-08/−
	0.0020/−
	4.85E-08/+
	6.68E-08/+
	6.80E-08/−
	6.80E-08/−
	6.80E-08/+
	6.80E-08/−



	F7
	0.9676/=
	4.54E-07/+
	0.0001/−
	6.67E-06/−
	1.92E-05/+
	0.2733/=
	6.80E-08/−
	6.01E-07/−
	0.0013/−
	6.80E-08/−
	0.0256/−



	F8
	0.0003/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.74E-08/−
	6.72E-08/−
	6.80E-08/−
	6.80E-08/−
	6.79E-08/−
	0.0002/+



	F9
	NaN/=
	9.42E-06/−
	0.0198/−
	0.3421/=
	NaN/=
	NaN/=
	7.98E-09/−
	8.01E-09/−
	0.3421/=
	7.95E-09/−
	0.3421/+



	F10
	NaN/=
	8.01E-09/−
	3.84E-09/−
	9.90E-08/−
	8.64E-08/−
	NaN/=
	7.43E-10/−
	8.01E-09/−
	8.30E-09/−
	7.98E-09/−
	2.17E-06/−



	F11
	NaN/=
	8.01E-09/−
	0.1626/=
	0.3421/=
	NaN/=
	NaN/=
	8.01E-09/−
	8.01E-09/−
	0.0009/−
	8.01E-09/−
	0.1626/=



	F12
	1.81E-05/+
	6.80E-08/−
	6.80E-08/−
	1.06E-07/−
	1.23E-07/−
	6.13E-08/+
	0.0012/−
	6.80E-08/−
	6.80E-08/−
	0.0071/−
	6.80E-08/−



	F13
	0.8604/=
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	2.56E-07/−
	0.0001/−
	0.0002/−
	6.80E-08/−
	6.80E-08/−
	0.0002/−
	6.80E-08/−



	F14
	NaN/=
	9.32E-08/−
	6.41E-05/−
	NaN/=
	2.71E-06/−
	0.1626/=
	0.1624/=
	NaN/=
	7.72E-09/−
	NaN/=
	0.0045/−



	F15
	NaN/=
	8.01E-09/−
	7.79E-09/−
	0.0004/−
	7.98E-09/−
	0.3421/=
	6.80E-09/−
	7.95E-09/−
	8.01E-09/−
	2.97E-08/−
	8.01E-09/−



	F16
	NaN/=
	NaN/=
	2.53E-05/−
	NaN/=
	7.93E-09/−
	NaN/=
	NaN/=
	2.99E-08/−
	8.01E-09/−
	NaN/=
	NaN/=



	F17
	NaN/=
	8.01E-09/−
	8.01E-09/−
	0.1626/=
	8.01E-09/−
	NaN/=
	NaN/=
	7.99E-09/−
	8.01E-09/−
	NaN/=
	0.0002/−



	F18
	NaN/=
	0.0093/−
	8.01E-09/−
	NaN/=
	8.01E-09/−
	NaN/=
	NaN/=
	8.01E-09/−
	7.99E-09/−
	NaN/=
	8.01E-09/−



	F19
	NaN/=
	8.01E-09/−
	8.01E-09/−
	NaN/=
	8.01E-09/−
	NaN/=
	NaN/=
	8.01E-09/−
	8.01E-09/−
	NaN/=
	8.01E-09/−



	F20
	0.3939/=
	8.54E-07/−
	6.38E-07/−
	0.3939/=
	2.91E-08/−
	0.0068/−
	0.0001/−
	2.61E-07/−
	1.51E-08/−
	4.09E-06/−
	1.93E-07/−



	F21
	0.3421/=
	8.01E-09/−
	8.01E-09/−
	NaN/=
	8.01E-09/−
	0.3421/=
	0.0009/−
	8.01E-09/−
	8.01E-09/−
	0.0196/−
	8.01E-09/−



	F22
	1/=
	1.50E-07/−
	2.78E-07/−
	0.3421/=
	1.86E-08/−
	0.1379/=
	0.0028/−
	1.75E-07/−
	1.13E-08/−
	1/=
	1.75E-07/−



	F23
	NaN/=
	8.01E-09/−
	8.01E-09/−
	NaN/=
	8.01E-09/−
	0.0198/−
	0.0198/−
	8.01E-09/−
	8.01E-09/−
	0.1626/=
	8.01E-09/−



	+/=/−
	2/16/5
	1/1/21
	0/1/22
	0/11/12
	3/2/18
	3/12/8
	1/5/17
	0/1/22
	0/1/22
	1/7/15
	2/3/18
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Table 6. Statistical outcomes of the different search methods on the CEC2017 test functions.
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Function

	
Algorithms




	
Index

	
LARO

	
ARO

	
BWO

	
CapSA

	
RSA

	
WSO

	
GJO

	
PSO

	
GA

	
E-WOA

	
WMFO

	
CSOAOA






	
cec01

	
AVE

	
822.7731

	
1155.6589

	
9.20E+07

	
1987.7279

	
1.03E+10

	
343.4283

	
2.48E+08

	
1.39E+08

	
4.41E+07

	
5.21E+09

	
2.43E+10

	
4.78E+05




	
STD

	
868.5412

	
1306.0545

	
3.87E+07

	
1757.9178

	
3.66E+09

	
893.9934

	
3.17E+08

	
3.43E+08

	
5.58E+07

	
4.34E+09

	
7.66E+09

	
1.05E+06




	
Rank

	
2

	
3

	
7

	
4

	
11

	
1

	
9

	
8

	
6

	
10

	
12

	
5




	
cec03

	
AVE

	
300.0046

	
300.0177

	
1290.6426

	
300.0000

	
9725.5951

	
300.0103

	
2256.8681

	
300.0786

	
1.82E+05

	
1.67E+04

	
6.20E+06

	
397.3366




	
STD

	
0.0134

	
0.0492

	
325.1198

	
1.24E-07

	
3043.9470

	
0.0280

	
2505.1808

	
0.1975

	
5.92E+05

	
6.62E+03

	
1.17E+07

	
151.6787




	
Rank

	
2

	
4

	
7

	
1

	
9

	
3

	
8

	
5

	
11

	
10

	
12

	
6




	
cec04

	
AVE

	
402.5610

	
404.3365

	
410.8631

	
400.0000

	
1059.8248

	
401.5091

	
441.9227

	
447.2097

	
477.4278

	
694.0931

	
3366.0150

	
404.4857




	
STD

	
1.8729

	
1.4857

	
2.4854

	
1.10E-05

	
506.3864

	
1.5468

	
25.7778

	
89.9889

	
50.4126

	
131.8941

	
1568.4437

	
1.3019




	
Rank

	
3

	
4

	
6

	
1

	
11

	
2

	
7

	
8

	
9

	
10

	
12

	
5




	
cec05

	
AVE

	
507.3202

	
510.4546

	
525.6527

	
518.5186

	
585.3797

	
509.0703

	
531.3297

	
528.7659

	
543.3536

	
577.9511

	
663.3490

	
515.2876




	
STD

	
2.6297

	
5.3525

	
4.2007

	
7.8720

	
13.2798

	
5.4537

	
11.0190

	
10.3710

	
15.8263

	
21.9652

	
36.9435

	
7.4489




	
Rank

	
1

	
3

	
6

	
5

	
11

	
2

	
8

	
7

	
9

	
10

	
12

	
4




	
cec06

	
AVE

	
600.0014

	
600.0012

	
604.9375

	
601.1525

	
645.8434

	
600.3361

	
605.6297

	
605.8022

	
635.5544

	
647.6467

	
705.6071

	
600.2195




	
STD

	
0.0021

	
0.0027

	
1.2290

	
2.8209

	
7.8591

	
0.8400

	
4.5783

	
4.8637

	
11.3938

	
13.8161

	
15.7671

	
0.2002




	
Rank

	
2

	
1

	
6

	
5

	
10

	
4

	
7

	
8

	
9

	
11

	
12

	
3




	
cec07

	
AVE

	
724.8801

	
725.0783

	
737.1078

	
731.7659

	
806.3894

	
729.3690

	
745.4072

	
731.0701

	
776.8818

	
815.2582

	
1203.7555

	
741.0450




	
STD

	
5.6162

	
5.6710

	
6.2551

	
8.5109

	
10.9819

	
7.8112

	
13.2441

	
8.8893

	
31.9986

	
23.8207

	
109.3032

	
9.4407




	
Rank

	
1

	
2

	
6

	
5

	
10

	
3

	
8

	
4

	
9

	
11

	
12

	
7




	
cec08

	
AVE

	
808.7147

	
813.8299

	
818.0646

	
820.1136

	
856.2384

	
804.3845

	
828.7147

	
823.3905

	
837.1595

	
854.5212

	
950.9072

	
819.7897




	
STD

	
2.4744

	
4.7212

	
4.3031

	
7.4712

	
7.4357

	
2.1384

	
7.7656

	
12.3620

	
11.1249

	
15.4288

	
21.5027

	
4.3114




	
Rank

	
2

	
3

	
4

	
6

	
11

	
1

	
8

	
7

	
9

	
10

	
12

	
5




	
cec09

	
AVE

	
900.1293

	
900.6541

	
915.7054

	
911.2544

	
1477.5334

	
900.3249

	
962.9553

	
924.0709

	
1091.0698

	
1712.3349

	
5670.2241

	
917.3586




	
STD

	
0.2419

	
1.8939

	
7.5101

	
17.7217

	
167.3821

	
0.6134

	
63.1277

	
54.7140

	
191.0585

	
381.5732

	
1788.9473

	
32.5949




	
Rank

	
1

	
3

	
5

	
4

	
10

	
2

	
8

	
7

	
9

	
11

	
12

	
6




	
cec10

	
AVE

	
1333.2841

	
1425.8487

	
1517.7474

	
1582.2125

	
2508.4268

	
1222.8987

	
1920.4328

	
2035.3573

	
1976.5992

	
2401.3452

	
3808.6357

	
1415.7327




	
STD

	
153.5287

	
150.0427

	
132.9630

	
218.1276

	
295.4488

	
211.1734

	
357.3134

	
404.6299

	
281.2993

	
383.0208

	
367.5857

	
195.5798




	
Rank

	
2

	
4

	
5

	
6

	
11

	
1

	
7

	
9

	
8

	
10

	
12

	
3




	
cec11

	
AVE

	
1103.9241

	
1106.2944

	
1128.9591

	
1132.8656

	
2919.6980

	
1108.4846

	
1397.4074

	
1250.7483

	
4878.9851

	
4082.6925

	
4.12E+04

	
1113.7413




	
STD

	
2.0568

	
4.0116

	
8.4656

	
28.0784

	
1220.3271

	
5.0667

	
977.4104

	
206.6429

	
4671.9494

	
5143.4045

	
7.72E+04

	
5.8604




	
Rank

	
1

	
2

	
5

	
6

	
9

	
3

	
8

	
7

	
11

	
10

	
12

	
4




	
cec12

	
AVE

	
7362.3077

	
8907.6028

	
6.51E+05

	
5967.1769

	
2.84E+08

	
1637.4174

	
8.96E+05

	
2.50E+07

	
4.22E+06

	
4.15E+07

	
3.39E+09

	
1.59E+05




	
STD

	
5635.1644

	
7205.5933

	
4.36E+05

	
5347.1860

	
2.75E+08

	
216.8342

	
9.71E+05

	
9.45E+07

	
5.90E+06

	
4.88E+07

	
1.81E+09

	
2.90E+05




	
Rank

	
3

	
4

	
6

	
2

	
11

	
1

	
7

	
9

	
8

	
10

	
12

	
5




	
cec13

	
AVE

	
1495.1186

	
1318.4492

	
1.49E+04

	
1433.9709

	
1.56E+07

	
1315.1106

	
1.23E+04

	
1.01E+04

	
6.08E+04

	
1.72E+04

	
3.90E+08

	
2546.0110




	
STD

	
733.9714

	
15.5138

	
7.51E+03

	
182.3506

	
1.98E+07

	
9.1354

	
7.88E+03

	
1.60E+04

	
1.38E+05

	
1.19E+04

	
3.71E+08

	
2019.8441




	
Rank

	
4

	
2

	
8

	
3

	
11

	
1

	
7

	
6

	
10

	
9

	
12

	
5




	
cec14

	
AVE

	
1407.2627

	
1406.0305

	
1722.5713

	
1455.1041

	
4655.9859

	
1417.4027

	
2591.5071

	
2864.1741

	
1.02E+04

	
2.81E+03

	
5.97E+06

	
1410.5210




	
STD

	
4.3140

	
3.7572

	
311.9721

	
24.1156

	
1706.5656

	
9.6436

	
1687.2328

	
6123.7598

	
1.03E+04

	
1.55E+03

	
5.96E+06

	
4.9376




	
Rank

	
2

	
1

	
6

	
5

	
10

	
4

	
7

	
9

	
11

	
8

	
12

	
3




	
cec15

	
AVE

	
1502.8435

	
1503.8847

	
2474.5922

	
1536.5028

	
7655.4446

	
1511.7791

	
3297.2031

	
1985.8665

	
8896.4395

	
1.38E+04

	
6.44E+07

	
1584.7036




	
STD

	
1.9719

	
3.0724

	
1015.2813

	
45.9443

	
4511.8019

	
9.7082

	
1864.2684

	
1260.1608

	
7789.9250

	
7.26E+03

	
1.04E+08

	
286.2738




	
Rank

	
1

	
2

	
7

	
4

	
9

	
3

	
8

	
6

	
10

	
11

	
12

	
5




	
cec16

	
AVE

	
1681.0383

	
1700.5540

	
1645.5941

	
1791.1364

	
2065.9143

	
1653.2314

	
1829.6800

	
1752.6860

	
1853.5242

	
1990.3877

	
2912.3284

	
1815.4437




	
STD

	
89.8554

	
73.8873

	
36.3768

	
155.7101

	
148.5882

	
64.2038

	
138.0245

	
138.4040

	
109.7768

	
123.0833

	
325.0862

	
132.8314




	
Rank

	
3

	
4

	
1

	
6

	
11

	
2

	
8

	
5

	
9

	
10

	
12

	
7




	
cec17

	
AVE

	
1710.4204

	
1715.6868

	
1740.5664

	
1754.9179

	
1830.7302

	
1739.6489

	
1762.4890

	
1798.3087

	
1783.9662

	
1874.9130

	
2392.9067

	
1736.2611




	
STD

	
8.5866

	
11.3720

	
6.7098

	
48.1189

	
29.9292

	
10.3976

	
15.9251

	
49.1671

	
54.1561

	
105.8992

	
249.2424

	
11.0306




	
Rank

	
1

	
2

	
5

	
6

	
10

	
4

	
7

	
9

	
8

	
11

	
12

	
3




	
cec18

	
AVE

	
1802.0153

	
1803.5385

	
2.09E+04

	
1886.8073

	
7.14E+07

	
1819.7303

	
3.87E+04

	
2.07E+04

	
1.44E+04

	
1.58E+04

	
1.11E+09

	
3106.6477




	
STD

	
1.7139

	
3.3011

	
1.58E+04

	
114.1450

	
2.16E+08

	
14.9707

	
1.09E+04

	
1.94E+04

	
9.04E+03

	
1.21E+04

	
8.18E+08

	
2504.4269




	
Rank

	
1

	
2

	
9

	
4

	
11

	
3

	
10

	
8

	
6

	
7

	
12

	
5




	
cec19

	
AVE

	
1900.9929

	
1900.6600

	
3234.2361

	
1918.0008

	
8.96E+05

	
1902.7298

	
2.19E+04

	
7.53E+03

	
9507.9076

	
7.25E+05

	
1.23E+08

	
1930.8991




	
STD

	
0.8475

	
0.5529

	
1852.0372

	
28.2498

	
4.92E+05

	
2.4025

	
5.32E+04

	
1.84E+04

	
7146.5548

	
1.73E+06

	
2.25E+08

	
83.0316




	
Rank

	
2

	
1

	
6

	
4

	
11

	
3

	
9

	
7

	
8

	
10

	
12

	
5




	
cec20

	
AVE

	
2007.9923

	
2009.4715

	
2035.4837

	
2045.3706

	
2273.1132

	
2022.3897

	
2105.1502

	
2087.8262

	
2104.4795

	
2226.8165

	
2561.8671

	
2016.8935




	
STD

	
8.6332

	
7.8729

	
3.7348

	
27.1370

	
55.3155

	
8.7340

	
57.6261

	
50.9035

	
58.3071

	
68.3003

	
179.7417

	
27.6321




	
Rank

	
1

	
2

	
5

	
6

	
11

	
4

	
9

	
7

	
8

	
10

	
12

	
3




	
cec21

	
AVE

	
2252.4061

	
2256.7777

	
2217.0089

	
2294.8833

	
2319.9113

	
2274.5655

	
2328.4265

	
2309.4987

	
2343.7029

	
2365.4102

	
2464.8377

	
2283.5269




	
STD

	
58.2520

	
57.8941

	
37.4034

	
56.7617

	
55.9856

	
49.7005

	
7.8421

	
56.6547

	
60.0185

	
35.9432

	
27.5057

	
51.9989




	
Rank

	
2

	
3

	
1

	
6

	
8

	
4

	
9

	
7

	
10

	
11

	
12

	
5




	
cec22

	
AVE

	
2297.0035

	
2297.7619

	
2315.3592

	
2306.1043

	
3002.0119

	
2300.9966

	
2339.0118

	
2311.5027

	
2378.5713

	
2842.3513

	
4529.4903

	
2319.1097




	
STD

	
19.1834

	
16.1737

	
2.0610

	
2.8618

	
250.7253

	
0.7424

	
33.7433

	
32.3536

	
41.4632

	
516.2846

	
584.2641

	
7.3529




	
Rank

	
1

	
2

	
6

	
4

	
11

	
3

	
8

	
5

	
9

	
10

	
12

	
7




	
cec23

	
AVE

	
2611.9041

	
2616.1971

	
2622.2634

	
2622.9895

	
2694.3460

	
2617.0344

	
2635.1356

	
2662.0241

	
2678.9789

	
2692.2280

	
2907.2304

	
2616.0528




	
STD

	
5.1923

	
7.2004

	
3.8793

	
9.2004

	
19.1961

	
9.3109

	
15.2658

	
51.9838

	
19.9896

	
40.7824

	
97.3616

	
5.2518




	
Rank

	
1

	
3

	
5

	
6

	
11

	
4

	
7

	
8

	
9

	
10

	
12

	
2




	
cec24

	
AVE

	
2669.8595

	
2694.3331

	
2700.0746

	
2747.9803

	
2858.8428

	
2644.1129

	
2761.8726

	
2791.8194

	
2782.8764

	
2811.5630

	
3037.4102

	
2500.5324




	
STD

	
114.1729

	
99.9286

	
100.6219

	
60.7637

	
52.1016

	
120.9738

	
17.2575

	
32.3088

	
76.7190

	
60.6137

	
104.3361

	
0.4202




	
Rank

	
3

	
4

	
5

	
6

	
11

	
2

	
7

	
9

	
8

	
10

	
12

	
1




	
cec25

	
AVE

	
2919.7572

	
2917.1473

	
2933.7838

	
2932.0474

	
3337.8921

	
2923.8388

	
2938.7048

	
2927.6247

	
3008.3435

	
3250.4673

	
4727.9793

	
2915.9381




	
STD

	
23.9114

	
23.4579

	
18.8070

	
22.7472

	
120.5463

	
22.9220

	
47.4083

	
83.6443

	
39.4223

	
181.1080

	
880.7767

	
22.8398




	
Rank

	
3

	
2

	
7

	
6

	
11

	
4

	
8

	
5

	
9

	
10

	
12

	
1




	
cec26

	
AVE

	
2912.3350

	
2902.9671

	
2934.0831

	
2980.5261

	
4079.5676

	
2915.7621

	
3061.9770

	
3223.6248

	
3503.1009

	
4221.5281

	
5222.1585

	
2907.7708




	
STD

	
39.4393

	
13.2691

	
78.6913

	
126.0442

	
281.2591

	
46.8308

	
208.2813

	
407.6659

	
346.3298

	
393.2302

	
426.7847

	
120.3242




	
Rank

	
3

	
1

	
5

	
6

	
10

	
4

	
7

	
8

	
9

	
11

	
12

	
2




	
cec27

	
AVE

	
3094.4428

	
3096.3048

	
3095.1574

	
3101.5396

	
3177.9799

	
3097.3961

	
3100.0783

	
3133.9845

	
3209.3003

	
3226.3975

	
3482.9544

	
3093.0179




	
STD

	
2.2491

	
4.1114

	
2.3241

	
16.9910

	
50.4451

	
3.9855

	
14.0880

	
30.7557

	
38.7323

	
68.9513

	
208.3466

	
2.6834




	
Rank

	
2

	
4

	
3

	
7

	
9

	
5

	
6

	
8

	
10

	
11

	
12

	
1




	
cec28

	
AVE

	
3126.9366

	
3161.7143

	
3298.2474

	
3271.5503

	
3788.6401

	
3150.7065

	
3398.1036

	
3437.7179

	
3603.9845

	
3526.9242

	
4076.7351

	
3254.7122




	
STD

	
67.5801

	
114.0390

	
129.1247

	
145.5009

	
136.6237

	
106.4742

	
87.7514

	
154.4405

	
162.5968

	
165.7635

	
407.5146

	
139.0270




	
Rank

	
1

	
3

	
6

	
5

	
11

	
2

	
7

	
8

	
10

	
9

	
12

	
4




	
cec29

	
AVE

	
3156.8756

	
3164.7344

	
3177.3593

	
3225.5586

	
3422.4252

	
3152.0410

	
3193.7297

	
3264.3518

	
3307.7829

	
3447.6726

	
4124.6753

	
3182.2187




	
STD

	
13.9195

	
15.6979

	
11.3675

	
59.3761

	
147.8922

	
13.1740

	
38.3279

	
82.4457

	
70.9418

	
143.8086

	
317.0168

	
27.7701




	
Rank

	
2

	
3

	
4

	
7

	
10

	
1

	
6

	
8

	
9

	
11

	
12

	
5




	
cec30

	
AVE

	
8279.3916

	
1.48E+05

	
1.79E+05

	
1.26E+05

	
1.14E+07

	
6.55E+04

	
7.48E+05

	
1.72E+06

	
4.54E+06

	
5.39E+06

	
2.16E+08

	
9.22E+04




	
STD

	
5677.8504

	
3.47E+05

	
2.77E+05

	
2.99E+05

	
3.73E+07

	
2.77E+05

	
9.13E+05

	
2.16E+06

	
3.31E+06

	
6.60E+06

	
1.51E+08

	
2.00E+05




	
Rank

	
1

	
5

	
6

	
4

	
11

	
2

	
7

	
8

	
9

	
10

	
12

	
3




	
Mean rank

	
1.8621

	
2.7241

	
5.4483

	
4.8276

	
10.3793

	
2.6897

	
7.6552

	
7.2414

	
8.9655

	
10.0690

	
12.0000

	
4.1379




	
Final ranking

	
1

	
3

	
6

	
5

	
11

	
2

	
8

	
7

	
9

	
10

	
12

	
4
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Table 7. Statistical outcomes of the different search methods on the CEC2019 test functions.






Table 7. Statistical outcomes of the different search methods on the CEC2019 test functions.





	
Function

	
Index

	
Algorithms




	
ARO

	
AOA

	
GWO

	
COOT

	
GJO

	
INFO

	
MFO

	
MVO

	
SCA

	
SSA

	
WOA

	
LARO






	
F1

	
Best

	
1

	
5.12E+07

	
1

	
1

	
1

	
1

	
1.10E+05

	
8.03E+04

	
1.1597

	
5.62E+04

	
1.71E+03

	
1




	
Worst

	
1

	
2.53E+08

	
1.97E+05

	
3.48E+04

	
1.22E+03

	
1

	
2.02E+07

	
1.36E+06

	
8.30E+06

	
2.99E+06

	
2.27E+07

	
1




	
Mean

	
1

	
1.50E+08

	
1.45E+04

	
4.77E+03

	
73.8930

	
1

	
7.36E+06

	
5.78E+05

	
1.20E+06

	
7.12E+05

	
5.09E+06

	
1




	
STD

	
0

	
4.89E+07

	
4.41E+04

	
9.90E+03

	
270.3287

	
0

	
7.51E+06

	
3.72E+05

	
2.43E+06

	
6.81E+05

	
7.25E+06

	
0




	
Rank

	
1

	
12

	
6

	
5

	
4

	
1

	
11

	
7

	
9

	
8

	
10

	
1




	
F2

	
Best

	
3.6956

	
7.07E+03

	
31.2720

	
4.4266

	
4.1176

	
4.1009

	
220.3923

	
170.7931

	
470.2927

	
181.5879

	
3610.0945

	
4.0581




	
Worst

	
4.3289

	
2.28E+04

	
557.6110

	
5.1682

	
511.4838

	
4.4573

	
8.76E+03

	
651.5037

	
5186.1495

	
2492.1742

	
9352.6034

	
4.3569




	
Mean

	
4.2012

	
1.34E+04

	
282.4243

	
4.8954

	
75.4032

	
4.2881

	
1.95E+03

	
426.7448

	
3063.8568

	
763.7683

	
6258.6962

	
4.2462




	
STD

	
0.1354

	
4.23E+03

	
161.7419

	
0.2301

	
155.6277

	
0.0735

	
2.69E+03

	
122.9275

	
1529.9521

	
707.5083

	
1510.3098

	
0.0656




	
Rank

	
1

	
12

	
6

	
4

	
5

	
3

	
9

	
7

	
10

	
8

	
11

	
2




	
F3

	
Best

	
1.0002

	
1.0000

	
1.4095

	
1.0001

	
1.4738

	
1.4091

	
1.4091

	
1.0004

	
6.0194

	
1.0000

	
2.4098

	
1.4096




	
Worst

	
2.2963

	
7.4860

	
7.7112

	
3.0803

	
7.9002

	
7.7120

	
9.7120

	
11.7116

	
10.7667

	
7.6856

	
6.3092

	
2.7905




	
Mean

	
1.5027

	
5.9894

	
2.9010

	
1.7676

	
4.2363

	
2.0046

	
6.0528

	
7.0826

	
8.5244

	
3.1456

	
4.7440

	
1.7488




	
STD

	
0.2936

	
1.4624

	
2.1050

	
0.5700

	
2.1100

	
1.7895

	
2.4467

	
2.4192

	
1.2749

	
2.0016

	
1.0459

	
0.4476




	
Rank

	
1

	
9

	
5

	
3

	
7

	
4

	
10

	
11

	
12

	
6

	
8

	
2




	
F4

	
Best

	
5.9748

	
17.9783

	
4.3685

	
9.9571

	
12.4412

	
9.9546

	
11.8842

	
8.9610

	
32.1676

	
10.9496

	
23.3010

	
5.9748




	
Worst

	
25.8739

	
98.5047

	
29.1872

	
25.8762

	
38.2053

	
55.7224

	
67.0167

	
34.8318

	
63.4652

	
60.6973

	
109.5274

	
25.8739




	
Mean

	
13.1948

	
51.7232

	
13.6604

	
17.1728

	
23.6225

	
23.9248

	
28.6234

	
17.9337

	
44.8955

	
30.6497

	
52.8681

	
12.8513




	
STD

	
5.3627

	
22.4378

	
5.7726

	
4.5372

	
7.9510

	
11.5911

	
14.0432

	
7.2782

	
7.9633

	
14.0322

	
21.9166

	
5.6119




	
Rank

	
2

	
11

	
3

	
4

	
6

	
7

	
8

	
5

	
10

	
9

	
12

	
1




	
F5

	
Best

	
1.0295

	
63.4709

	
1.1014

	
1.0197

	
1.2417

	
1.0393

	
1.0394

	
1.1584

	
4.2734

	
1.1255

	
1.6358

	
1.0172




	
Worst

	
1.1796

	
162.4614

	
3.7402

	
1.2462

	
12.2916

	
1.3124

	
1.5710

	
1.6776

	
10.2743

	
1.4698

	
3.2060

	
1.1451




	
Mean

	
1.0834

	
99.5302

	
1.6601

	
1.1215

	
3.3635

	
1.1568

	
1.1840

	
1.3015

	
6.8768

	
1.2416

	
1.9146

	
1.0747




	
STD

	
0.0444

	
25.3320

	
0.5639

	
0.0631

	
2.4720

	
0.0860

	
0.1387

	
0.1315

	
1.6355

	
0.0980

	
0.3590

	
0.0295




	
Rank

	
2

	
12

	
8

	
3

	
10

	
4

	
5

	
7

	
11

	
6

	
9

	
1




	
F6

	
Best

	
1.0002

	
9.9422

	
1.1943

	
1.2148

	
1.5455

	
1.2230

	
1.3329

	
1.1446

	
4.6953

	
1.1324

	
5.1549

	
1.0000




	
Worst

	
3.6226

	
13.6628

	
6.7684

	
6.0470

	
6.9893

	
6.1077

	
8.3903

	
4.8063

	
8.1101

	
8.1578

	
11.3601

	
3.7205




	
Mean

	
1.5631

	
11.5779

	
2.6487

	
2.7564

	
4.0616

	
2.9446

	
4.0108

	
2.4997

	
6.7221

	
3.6808

	
7.8918

	
1.5055




	
STD

	
0.8595

	
1.0823

	
1.6038

	
1.3475

	
1.2616

	
1.4091

	
1.8679

	
1.0611

	
1.0922

	
1.7390

	
1.8031

	
0.7416




	
Rank

	
2

	
12

	
4

	
5

	
9

	
6

	
8

	
3

	
10

	
7

	
11

	
1




	
F7

	
Best

	
126.4556

	
783.7085

	
55.0048

	
500.4912

	
515.5437

	
365.0528

	
355.7205

	
298.1040

	
1205.5680

	
527.5808

	
281.0483

	
16.3069




	
Worst

	
825.4110

	
1551.2995

	
1300.9418

	
1427.8328

	
1744.2935

	
1461.9015

	
1587.9233

	
1192.0592

	
1696.1676

	
1690.0135

	
1936.0646

	
916.3734




	
Mean

	
449.8192

	
1130.5116

	
693.0267

	
869.9624

	
995.5096

	
871.7417

	
1076.1407

	
753.1381

	
1386.4741

	
1002.0974

	
1116.1865

	
386.6686




	
STD

	
186.7004

	
240.2304

	
310.3256

	
229.9777

	
315.9565

	
283.0647

	
305.6328

	
212.0728

	
133.1321

	
351.7500

	
402.5621

	
231.7633




	
Rank

	
2

	
11

	
3

	
5

	
7

	
6

	
9

	
4

	
12

	
8

	
10

	
1




	
F8

	
Best

	
2.4227

	
4.1448

	
2.6217

	
3.1559

	
3.2444

	
3.1557

	
3.6285

	
2.8028

	
3.9434

	
3.7487

	
3.7071

	
2.3788




	
Worst

	
3.7115

	
5.4639

	
4.0229

	
4.5897

	
4.5352

	
4.5020

	
4.8170

	
4.9911

	
4.6740

	
5.0188

	
5.0633

	
3.7337




	
Mean

	
3.2039

	
4.9734

	
3.3252

	
3.9339

	
3.9005

	
3.7804

	
4.3742

	
3.9554

	
4.3846

	
4.3860

	
4.6611

	
3.0415




	
STD

	
0.3518

	
0.3363

	
0.3717

	
0.3625

	
0.3488

	
0.3550

	
0.3658

	
0.5442

	
0.2045

	
0.3809

	
0.3024

	
0.3829




	
Rank

	
2

	
12

	
3

	
6

	
5

	
4

	
8

	
7

	
9

	
10

	
11

	
1




	
F9

	
Best

	
1.0196

	
1.4159

	
1.0978

	
1.1280

	
1.0971

	
1.0692

	
1.1023

	
1.0814

	
1.3574

	
1.0377

	
1.1542

	
1.0504




	
Worst

	
1.1224

	
4.4516

	
1.2875

	
1.5646

	
1.4555

	
1.2857

	
1.6253

	
1.2568

	
1.7237

	
1.8722

	
1.9729

	
1.2603




	
Mean

	
1.0818

	
3.2542

	
1.1693

	
1.2653

	
1.2327

	
1.1556

	
1.3485

	
1.1604

	
1.5082

	
1.3141

	
1.3701

	
1.1386




	
STD

	
0.0296

	
0.6902

	
0.0638

	
0.1173

	
0.0808

	
0.0658

	
0.1414

	
0.0527

	
0.1161

	
0.1880

	
0.1972

	
0.0474




	
Rank

	
1

	
12

	
5

	
7

	
6

	
3

	
9

	
4

	
11

	
8

	
10

	
2




	
F10

	
Best

	
20.9808

	
20.9450

	
7.4256

	
1.0001

	
11.7255

	
21.0000

	
21.0000

	
21.0061

	
21.2087

	
20.9985

	
21.0235

	
1.0000




	
Worst

	
21.0054

	
20.9995

	
21.5092

	
21.6509

	
21.5793

	
21.1073

	
21.2712

	
21.3117

	
21.5232

	
21.0000

	
21.4009

	
21.0076




	
Mean

	
20.9985

	
20.9828

	
20.7075

	
18.4406

	
20.5348

	
21.0471

	
21.0929

	
21.0338

	
21.3816

	
20.9999

	
21.1489

	
18.0553




	
STD

	
0.0056

	
0.0102

	
3.1269

	
6.8324

	
2.6525

	
0.0412

	
0.0898

	
0.0669

	
0.0818

	
0.0003

	
0.0969

	
7.1881




	
Rank

	
6

	
5

	
4

	
2

	
3

	
9

	
10

	
8

	
12

	
7

	
11

	
1




	
Mean rank

	
1.9091

	
10.9091

	
5.0000

	
4.2727

	
6.5455

	
4.6364

	
8.3636

	
6.3636

	
10.6364

	
7.5455

	
10.1818

	
1.3636




	
Final ranking

	
2

	
12

	
5

	
3

	
7

	
4

	
9

	
6

	
11

	
8

	
10

	
1




	
+/=/−

	
2/7/1

	
0/0/10

	
0/2/8

	
0/1/9

	
0/0/10

	
0/3/7

	
0/0/10

	
0/1/9

	
0/0/10

	
0/1/9

	
0/0/10

	
−/−/−
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Table 8. Statistical output and associated p-values on the CEC2019 test functions.






Table 8. Statistical output and associated p-values on the CEC2019 test functions.





	p-Value
	ARO
	AOA
	GWO
	COOT
	GJO
	INFO
	MFO
	MVO
	SCA
	SSA
	WOA





	F1
	NaN/=
	8.01E-09/−
	2.99E-08/−
	2.57E-05/−
	0.0002/−
	NaN/=
	7.99E-09/−
	8.01E-09/−
	8.01E-09/−
	8.01E-09/−
	8.01E-09/−



	F2
	0.0531/=
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	5.87E-06/−
	0.0810/=
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−
	6.80E-08/−



	F3
	0.0167/+
	1.20E-06/−
	0.0499/−
	0.4903/=
	2.04E-05/−
	3.73E-05/−
	2.92E-05/−
	1.20E-06/−
	6.80E-08/−
	0.0908/=
	9.17E-08/−



	F4
	0.8285/=
	1.22E-07/−
	0.4092/=
	0.0036/−
	2.58E-05/−
	0.0002/−
	2.58E-05/−
	0.0077/−
	6.73E-08/−
	1.40E-05/−
	7.82E-08/−



	F5
	0.8181/=
	6.80E-08/−
	1.66E-07/−
	0.0114/−
	6.80E-08/−
	0.0006/−
	0.0011/−
	6.80E-08/−
	6.80E-08/−
	1.43E-07/−
	6.80E-08/−



	F6
	0.6949/=
	6.80E-08/−
	0.0007/−
	0.0002/−
	6.92E-07/−
	0.0001/−
	3.99E-06/−
	0.0005/−
	6.80E-08/−
	1.81E-05/−
	6.80E-08/−



	F7
	0.0208/−
	1.92E-07/−
	0.0016/−
	2.36E-06/−
	1.20E-06/−
	1.25E-05/−
	1.20E-06/−
	4.68E-05/−
	6.80E-08/−
	1.20E-06/−
	2.06E-06/−



	F8
	0.1806/=
	6.80E-08/−
	0.0385/−
	1.05E-06/−
	6.92E-07/−
	7.58E-06/−
	1.06E-07/−
	1.10E-05/−
	6.80E-08/−
	6.80E-08/−
	7.90E-08/−



	F9
	7.41E-05/+
	6.80E-08/−
	0.2977/=
	6.61E-05/−
	7.41E-05/−
	0.5428/=
	7.58E-06/−
	0.1988/=
	6.80E-08/−
	0.0003/−
	7.95E-07/−



	F10
	0.3648/=
	0.0015/−
	7.95E-07/−
	7.41E-05/−
	7.58E-06/−
	1.20E-06/−
	7.95E-07/−
	7.90E-08/−
	6.80E-08/−
	0.0009/−
	6.80E-08/−



	+/−/=
	2/7/1
	0/0/10
	0/2/8
	0/1/9
	0/0/10
	0/3/7
	0/0/10
	0/1/9
	0/0/10
	0/1/9
	0/0/10
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Table 9. The output results of search methods and the best average solution for solving the WBD problem.






Table 9. The output results of search methods and the best average solution for solving the WBD problem.





	
Methods

	
Variables

	
Average Value




	
z1

	
z2

	
z3

	
z4






	
AOA

	
0.458604565

	
5.343890233

	
7.07733473

	
0.582699182

	
4.580028691




	
WOA

	
0.213580688

	
3.755905076

	
8.582703553

	
0.275485632

	
2.030078497




	
SCA

	
0.195946114

	
3.347664206

	
9.347897424

	
0.210332519

	
1.779589725




	
SSA

	
0.163373335

	
4.29728193

	
9.060682709

	
0.206031604

	
1.762193145




	
MVO

	
0.193848845

	
3.212754588

	
9.065064873

	
0.205658775

	
1.676674633




	
MFO

	
0.206309461

	
3.005386467

	
8.998268989

	
0.207726916

	
1.66898036




	
GJO

	
0.200505501

	
3.091330062

	
9.041439917

	
0.205824498

	
1.667357263




	
GWO

	
0.204598361

	
3.017498369

	
9.038280088

	
0.205769906

	
1.662180603




	
COOT

	
0.204717093

	
3.013102973

	
9.039712907

	
0.205733798

	
1.661704081




	
INFO

	
0.205729646

	
2.996844583

	
9.036623765

	
0.205729646

	
1.660343027




	
LARO

	
0.20572964

	
2.996844651

	
9.03662391

	
0.20572964

	
1.660343003
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Table 10. The statistical output results of the search methods in solving the WBD problem.






Table 10. The statistical output results of the search methods in solving the WBD problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	2.794423948
	6.845549744
	4.580028691
	0.91504286



	WOA
	1.679641671
	3.086559568
	2.030078497
	0.434995141



	SCA
	1.697528285
	1.854267461
	1.779589725
	0.037930287



	SSA
	1.662402066
	2.101924119
	1.762193145
	0.118760299



	MVO
	1.663463164
	1.704297699
	1.676674633
	0.011127428



	MFO
	1.660343003
	1.803084286
	1.66898036
	0.032089776



	GJO
	1.661661498
	1.681240824
	1.667357263
	0.005566875



	GWO
	1.660983594
	1.664569661
	1.662180603
	0.000980854



	COOT
	1.660411733
	1.667097175
	1.661704081
	0.001993273



	INFO
	1.660343003
	1.660343483
	1.660343027
	1.08E-07



	LARO
	1.660343003
	1.660343003
	1.660343003
	1.61E-12
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Table 11. The output results of the different search methods and suitable average for solving the PVD problem.






Table 11. The output results of the different search methods and suitable average for solving the PVD problem.





	
Methods

	
Variables

	
Average Value




	
z1

	
z2

	
z3

	
z4






	
AOA

	
23.36588368

	
22.25433926

	
61.53559125

	
107.6810327

	
19175.76962




	
MVO

	
15.24826219

	
7.671749955

	
49.48975553

	
107.3562022

	
6308.314027




	
INFO

	
14.57872411

	
7.36326842

	
47.58766135

	
126.8355535

	
6220.150067




	
SSA

	
14.8454006

	
7.375997301

	
48.36652284

	
118.851193

	
6207.171299




	
WOA

	
15.46867282

	
7.297109316

	
49.96403036

	
112.8166863

	
6183.161843




	
COOT

	
14.53850536

	
7.378281368

	
46.86702321

	
129.8317982

	
6174.664451




	
SCA

	
12.80061756

	
6.934700092

	
41.84828537

	
187.0166496

	
6066.462829




	
GJO

	
12.93626745

	
6.44471116

	
42.86942058

	
179.8874482

	
5841.359167




	
MFO

	
12.66209378

	
6.561732656

	
42.01439281

	
180.7348524

	
5836.539712




	
GWO

	
12.0299589

	
5.957082715

	
40.32001823

	
200

	
5654.433575




	
LARO

	
11.79284485

	
5.927148417

	
40.31961872

	
200

	
5654.370337
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Table 12. The statistical output of the different search methods in completing the PVD problem.






Table 12. The statistical output of the different search methods in completing the PVD problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	4187.053145
	39246.47427
	19175.76962
	11415.14805



	MVO
	5902.478907
	6989.797802
	6308.314027
	276.6784548



	INFO
	5654.370337
	7332.841508
	6220.150067
	372.4182866



	SSA
	5593.159652
	6820.410118
	6207.171299
	323.7892186



	WOA
	3239.204029
	7896.968613
	6183.161843
	1062.960652



	COOT
	5654.370337
	6410.086761
	6174.664451
	201.1646918



	SCA
	5400.311322
	6480.192013
	6066.462829
	325.5644391



	GJO
	5654.371874
	7348.583394
	5841.359167
	516.7116594



	MFO
	5654.370337
	6406.492768
	5836.539712
	241.0245654



	GWO
	5654.37137
	5654.727705
	5654.433575
	0.078883037



	LARO
	5654.370337
	5654.370337
	5654.370337
	0










[image: Table] 





Table 13. The output results of the different search methods and suitable average for solving the TCS problem.






Table 13. The output results of the different search methods and suitable average for solving the TCS problem.





	
Methods

	
Variables

	
Constraints

	
Average Value




	
z1

	
z2

	
z3

	
g1

	
g2

	
g3

	
g4






	
AOA

	
0.104108762

	
0.895747796

	
9.974698398

	
−0.727734476

	
−0.483278426

	
−2.066153786

	
−0.333428961

	
0.159056177




	
MVO

	
0.068310124

	
0.905983841

	
2.190034779

	
−0.009015503

	
−0.000527276

	
−4.493836611

	
−0.35047069

	
0.017530118




	
WOA

	
0.058645235

	
0.561075504

	
5.965217771

	
−6.03E-06

	
−3.83E-09

	
−4.298337604

	
−0.58685284

	
0.013873948




	
MFO

	
0.053398387

	
0.406129633

	
10.28537326

	
−7.77E-17

	
−0.001737508

	
−4.100612643

	
−0.693647987

	
0.013015725




	
SSA

	
0.051633058

	
0.360068897

	
12.6417731

	
−5.15E-07

	
−0.004482237

	
−4.005031941

	
−0.72553203

	
0.013008419




	
SCA

	
0.05080346

	
0.334825245

	
13.19661988

	
−0.009149089

	
−0.004520311

	
−3.933453135

	
−0.742914197

	
0.012934593




	
COOT

	
0.053201979

	
0.397112193

	
9.864478444

	
−2.33E-05

	
−1.59E-05

	
−4.113557864

	
−0.699790552

	
0.012806575




	
GJO

	
0.050609914

	
0.331631961

	
13.10680319

	
−0.000992211

	
−0.000352761

	
−3.991490705

	
−0.745172084

	
0.012725811




	
INFO

	
0.05262987

	
0.380756851

	
10.2445935

	
−2.64E-07

	
−1.50E-06

	
−4.093957217

	
−0.711075519

	
0.012716498




	
GWO

	
0.050541414

	
0.329996477

	
13.17162459

	
−0.000408023

	
−0.000169331

	
−3.992540736

	
−0.746308073

	
0.01271224




	
LARO

	
0.051804915

	
0.359516418

	
11.12900459

	
−2.02E-05

	
−1.50E-05

	
−4.063715705

	
−0.724095628

	
0.012665939
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Table 14. The statistical output of the different search methods in completing the TCS problem.






Table 14. The statistical output of the different search methods in completing the TCS problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	0.013150163
	0.622991013
	0.159056177
	0.173444481



	MVO
	0.013867314
	0.018384424
	0.017530118
	0.00099031



	WOA
	0.012666252
	0.017773302
	0.013873948
	0.001345825



	MFO
	0.012665268
	0.015266478
	0.013015725
	0.000614519



	SSA
	0.012704122
	0.01460674
	0.013008419
	0.000441887



	SCA
	0.012802077
	0.013207983
	0.012934593
	0.00012683



	COOT
	0.012665665
	0.013373361
	0.012806575
	0.000194775



	GJO
	0.012683357
	0.012740967
	0.012725811
	1.61E-05



	INFO
	0.012665233
	0.012945697
	0.012716498
	6.46E-05



	GWO
	0.012681434
	0.012731782
	0.01271224
	1.55E-05



	LARO
	0.012665275
	0.012669109
	0.012665939
	9.49E-07
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Table 15. The output results of the different search methods and suitable average for solving the GTD problem.






Table 15. The output results of the different search methods and suitable average for solving the GTD problem.





	
Methods

	
Variables

	
Average Value




	
z1

	
z2

	
z3

	
z4






	
AOA

	
27

	
19

	
49

	
47

	
0.00587623




	
MFO

	
19

	
21

	
47

	
52

	
5.37E-09




	
SCA

	
22

	
20

	
52

	
50

	
1.17E-09




	
WOA

	
17

	
18

	
45

	
45

	
8.45E-10




	
MVO

	
22

	
16

	
49

	
47

	
6.45E-10




	
SSA

	
18

	
17

	
42

	
50

	
6.15E-10




	
COOT

	
18

	
19

	
47

	
48

	
2.98E-10




	
INFO

	
18

	
22

	
49

	
50

	
2.95E-10




	
GJO

	
20

	
20

	
50

	
50

	
1.76E-10




	
GWO

	
18

	
19

	
49

	
47

	
1.66E-10




	
LARO

	
19

	
19

	
47

	
49

	
1.19E-11
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Table 16. The statistical output of the different search methods in completing the GTD problem.






Table 16. The statistical output of the different search methods in completing the GTD problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	1.09E-07
	0.030969704
	0.00587623
	0.007816411



	WOA
	2.31E-11
	2.18E-08
	5.37E-09
	5.89E-09



	MFO
	2.31E-11
	2.36E-09
	1.17E-09
	6.59E-10



	SCA
	2.70E-12
	2.36E-09
	8.45E-10
	8.19E-10



	MVO
	2.70E-12
	1.36E-09
	6.45E-10
	4.78E-10



	GJO
	2.70E-12
	2.36E-09
	6.15E-10
	6.58E-10



	INFO
	2.70E-12
	2.36E-09
	2.98E-10
	5.83E-10



	SSA
	2.31E-11
	1.36E-09
	2.95E-10
	4.25E-10



	GWO
	2.70E-12
	1.36E-09
	1.76E-10
	3.42E-10



	COOT
	2.70E-12
	9.92E-10
	1.66E-10
	3.43E-10



	LARO
	2.70E-12
	2.31E-11
	1.19E-11
	1.04E-11
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Table 17. The output results of the different search methods and suitable average for solving the SRD problem.






Table 17. The output results of the different search methods and suitable average for solving the SRD problem.





	
Methods

	
Variables

	
Average Value




	
z1

	
z2

	
z3

	
z4

	
z5

	
z6

	
z7






	
AOA

	
3.467971409

	
0.723513271

	
21.74751447

	
7.880516747

	
8.061914543

	
3.576430883

	
5.404132188

	
4264.527578




	
WOA

	
3.523843197

	
0.7

	
17.1345532

	
7.702300289

	
7.976748724

	
3.443370435

	
5.319866042

	
3085.450381




	
SCA

	
3.593050846

	
0.700150831

	
17.0002346

	
7.633189151

	
8.058133822

	
3.428687329

	
5.319457954

	
3084.05852




	
MVO

	
3.519000807

	
0.7

	
17

	
7.496881857

	
7.969722319

	
3.428863386

	
5.287122464

	
3030.335706




	
SSA

	
3.515761593

	
0.700000002

	
17

	
7.788164831

	
8.039769946

	
3.413625503

	
5.286767009

	
3029.139433




	
GJO

	
3.505489383

	
0.700118821

	
17.00158842

	
7.6603505

	
7.906273576

	
3.364100739

	
5.288853105

	
3009.67407




	
GWO

	
3.502240237

	
0.700011154

	
17.00068413

	
7.593587258

	
7.889626

	
3.354667829

	
5.287834784

	
3003.700073




	
MFO

	
3.505

	
0.7

	
17

	
7.35

	
7.825

	
3.350640526

	
5.286692041

	
2999.286604




	
COOT

	
3.500000039

	
0.700000001

	
17

	
7.300000174

	
7.8

	
3.350541026

	
5.28668327

	
2996.301629




	
INFO

	
3.5

	
0.7

	
17

	
7.3

	
7.8

	
3.350540949

	
5.28668323

	
2996.301563




	
LARO

	
3.5

	
0.7

	
17.00002328

	
7.300000374

	
7.8

	
3.350540931

	
5.286683226

	
2996.301563




	
AOA

	
3.467971409

	
0.723513271

	
21.74751447

	
7.880516747

	
8.061914543

	
3.576430883

	
5.404132188

	
4264.527578
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Table 18. The statistical output of the different search methods in completing the SRD problem.






Table 18. The statistical output of the different search methods in completing the SRD problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	3227.920049
	6010.091558
	4264.527578
	742.9424323



	WOA
	3012.692509
	3392.408954
	3085.450381
	90.75866975



	SCA
	3047.198643
	3133.520817
	3084.05852
	23.93469942



	MVO
	3003.777974
	3072.80323
	3030.335706
	18.55650452



	SSA
	3002.149409
	3094.789692
	3029.139433
	23.381985



	GJO
	3000.131855
	3029.622228
	3009.67407
	6.744875293



	GWO
	2999.778235
	3009.290864
	3003.700073
	2.904547932



	MFO
	2996.301563
	3035.578647
	2999.286604
	9.103443233



	COOT
	2996.301564
	2996.301848
	2996.301629
	9.34E-05



	INFO
	2996.301563
	2996.301563
	2996.301563
	4.00E-08



	LARO
	2996.301563
	2996.301563
	2996.301563
	9.54E-10
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Table 19. The output results of the different search methods and suitable average for solving the TCD problem.






Table 19. The output results of the different search methods and suitable average for solving the TCD problem.





	
Methods

	
Variables

	
Average Value




	
z1

	
z2






	
AOA

	
6.012282217

	
0.315448278

	
30.15798064




	
WOA

	
5.489385602

	
0.292558846

	
26.70565649




	
SCA

	
5.470272666

	
0.292197171

	
26.60424231




	
GJO

	
5.453519738

	
0.291625884

	
26.49283541




	
GWO

	
5.452340993

	
0.291660602

	
26.4889654




	
MVO

	
5.452234536

	
0.29165614

	
26.4882102




	
COOT

	
5.452180789

	
0.291626468

	
26.48636379




	
INFO

	
5.452181458

	
0.291626391

	
26.48636292




	
SSA

	
5.45218082

	
0.29162643

	
26.48636194




	
MFO

	
5.452180736

	
0.291626429

	
26.48636147




	
LARO

	
5.452180736

	
0.291626429

	
26.48636147




	
AOA

	
6.012282217

	
0.315448278

	
30.15798064
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Table 20. The statistical output of the different search methods in completing the TCD problem.






Table 20. The statistical output of the different search methods in completing the TCD problem.





	Methods
	Best
	Worst
	Average
	STD





	AOA
	26.81127923
	34.46559721
	30.15798064
	2.258475608



	WOA
	26.49962106
	27.5573071
	26.70565649
	0.23330885



	SCA
	26.52613096
	26.69821662
	26.60424231
	0.050054727



	GJO
	26.48802612
	26.49798174
	26.49283541
	0.002808313



	GWO
	26.48685573
	26.49234446
	26.4889654
	0.001724975



	MVO
	26.48681494
	26.49219586
	26.4882102
	0.001225866



	COOT
	26.48636148
	26.4863693
	26.48636379
	2.65E-06



	INFO
	26.48636147
	26.48639027
	26.48636292
	6.44E-06



	SSA
	26.48636153
	26.48636257
	26.48636194
	3.10E-07



	MFO
	26.48636147
	26.48636147
	26.48636147
	3.09E-10



	LARO
	26.48636147
	26.48636147
	26.48636147
	3.65E-15
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