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Abstract: In this investigation, two different models for two coupled asymmetrical oscillators, known
as, coupled forced damped Duffing oscillators (FDDOs) are reported. The first model of coupled
FDDOs consists of a nonlinear forced damped Duffing oscillator (FDDO) with a linear oscillator, while
the second model is composed of two nonlinear FDDOs. The Krylov–Bogoliubov–Mitropolsky (KBM)
method, is carried out for analyzing the coupled FDDOs for any model. To do that, the coupled FDDOs
are reduced to a decoupled system of two individual FDDOs using a suitable linear transformation.
After that, the KBM method is implemented to find some approximations for both unforced and
forced damped Duffing oscillators (DDOs). Furthermore, the KBM analytical approximations are
compared with the fourth-order Runge–Kutta (RK4) numerical approximations to check the accuracy
of all obtained approximations. Moreover, the RK4 numerical approximations to both coupling and
decoupling systems of FDDOs are compared with each other.

Keywords: Duffing oscillators; coupled oscillators; KBM method; ansatz method; trigonometric
function

1. Introduction

Nonlinear differential equations of the second- and third-order have attracted great
attention from many researchers due to their many applications in various fields of science
especially in engineering problems and in modeling robotics motion [1,2]. For instance, the
Duffing equation (DE) is a second-order differential equation, which has spread widely
due to its many applications in physics, chemistry, and in modeling many engineering
problems [3,4]. It is typically regarded as a paradigm for nonlinear dynamics of dissipative
systems. The Duffing equation (DE)/Duffing oscillator (DO) has been used successfully to
describe and model a variety of physical and chemical processes, and several engineering
problems, such as reinforcing springs, beam buckling, nonlinear electronic circuits, among
others [3]. Given a physical system that has some form of potential energy associated with
it, its dynamics in the neighborhood of a potential minimum can always be approximated
by a linear oscillator. The oscillator restorative force coefficient incorporates the curvature
of the potential well and is the first term of the Taylor series in which it can develop the
position-dependent force acting on the already mentioned physical system. Taking more
terms of the series improves the approximation. The next term of the Taylor series that
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brings about qualitative changes is the one that goes with the cube of the position (the
quadratic term only implies a change in the equilibrium position). Narasimha [5] stated
the general equations of the dynamics of a thin wire. The center point of a vibrating wire
whose ends are embedded can be described as a one-dimensional effective oscillator. It
was shown that for this oscillator the cubic term should not be neglected under resonance
conditions. The micro clamped–clamped oscillator should share this characteristic with the
vibrating wire as it is also a thin body tensed between anchors, therefore, its dynamics are
governed by the following forced damped Duffing oscillator (FDDE)

mẍ + γẋ + kx + hx3 = f cos ωt, (1)

where m represents the pendulum mass, γ gives the coefficient of the damping force
(damping parameter), and k denotes the effective stiffness constant while f and ω indicate
the amplitude and frequency of the driving force. The new term is hx3, which represents
the nonlinear relationship of the increase in the restoring force as the tension in the beams
increases due to their elongation. Again, the equation is dimensionless. The unit of time is
1/ω0 =

√
m/k and the position is f /k. There are now two free parameters, namely, ε and

η, defined by
ẍ + εẋ + x + ηx3 = cos ωt, (2)

with ε = γ/
√

mk and η = h f 2/k3, where ε indicates the normalized friction coefficient and
η represents the coefficient of the nonlinear term. It is considered that these are the two
parameters that define the system. We want to find the motion of the oscillator when it is
excited with frequency ω.

One of the desirable properties of a clock-like oscillator is that it has a stable frequency.
The linear oscillator has a stable frequency near the resonance maximum, but the DO
loses that property, particularly when fluctuations in amplitude affect the frequency of the
system. The dependency of the frequency on the phase has a promising local maximum
(zero slope), but according to the range in which frequency fluctuations can be tolerated, it
may not be enough.

What can be interpreted from the measurements is that micro-oscillators behave as
coupled Duffing oscillators (DOs) with another higher-frequency oscillator. In the current
investigation, we propose a model consisting of a nonlinear oscillator that experiences a
forced external coupling and a coupling due to the second oscillator. This second oscillator
is linear and sustains its movement only by coupling with the main oscillator. The dynamics
of this system can be modeled by the pair of equations{

m1 ẍ + γ1 ẋ + k1x + hx3 = f cos ωt + J1y,
m2ÿ + γ2ẏ + k2y = J2x.

(3)

The two oscillators have different natural frequencies (given by the ratio ki/mi = ω2
i ). The

width of their resonance curves is given by γi. The coupling, in principle, is asymmetric
due to J1 6= J2. The system (3) may be rewritten in the following initial-value problem
(i.v.p.) form, known as, coupled forced damped Duffing oscillators (FDDOs){

R1 ≡ ẍ + 2ν1 ẋ + αx + βx3 − γ cos ωt− ε1y = 0,
R2 ≡ ÿ + 2ν2ẏ + µy− ε2x = 0,

(4)

with the initial conditions (ICs){
x(0) = x0, y(0) = y0,

ẋ(0) = ẋ0 and ẏ(0) = ẏ0,
(5)

where ν1 = γ1/(2m1), α = k1/m1, β = h/m1, γ = f /m1, ε1 = J1/m1, ν2 = γ2/(2m2),
µ = k2/m2, and ε2 = J2/m2. We assume that the coupling is weak, that is, |ε1| � 1 and
|ε2| � 1.
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Furthermore, in our investigation, we try to find an explicit approximation to the
following coupled FDDOs [6]{

k1 ≡ ẍ + 2ν1 ẋ + αx + βx3 + k1(y− x)− H1(t) = 0,
k2 ≡ ÿ + 2ν2ẏ + λy + µy3 + k2(x− y)− H2(t) = 0,

(6)

with the ICs {
x(0) = x0, y(0) = y0,

ẋ(0) = ẋ0 and ẏ(0) = ẏ0,
(7)

where (ε, δ) indicate the damping coefficients of both first and second oscillators, (H1(t), H2(t))
represent the driving forces, (k1, k2) express the linear coupling stiffness parameters, (α, λ)
denote the linear stiffness parameters, and (β, µ) represent the parameters of nonlinear terms.
Furthermore, H1,2(t) represent any time-dependent functions.

Some studies have been conducted around coupled Duffing-type oscillators [7–12], but
an explicit solution to the coupled Duffing-type oscillators is rarely found in the published
papers. In our study, we use the Krylov–Bogoliubov–Mitropolsky (KBM) method [7–9] for
analyzing the two models of coupled FDDO including the first model (4) and the second
model (6). The proposed method is successful in analyzing many nonlinear oscillators such
as a generalized Van der Pol oscillator, a pendulum with variable length, and a Rayleigh
Equation [13]. Furthermore, this method as well as the ansatz method are applied to analyze
the (un)forced pendulum–cart system oscillators [14] and many other oscillators [15–21]. All
mentioned studies and many others prove the efficiency and accuracy of the KBM method in
obtaining high-accuracy approximations to many strong nonlinear oscillators. Motivated by
these investigations, we can use this method to find high-accurate approximations to many
nonlinear coupled systems such as the two mentioned models of coupled oscillators (4)
and (6).

2. Decoupling the Two Models of Coupled FDDOs

Before applying the KBM technique for analyzing the coupled systems (4) and (6), we
first must decouple systems (4) and (6) to two individual FDDOs.

2.1. Decoupling the First Model (4) to Two Individual FDDOs

For decoupling system (4), the following linear solution to the system (4) is introduced{
x(t) = u + v,
y(t) = ru + sv,

(8)

where (r, s) represent the transformation parameters and u ≡ u(t) and v ≡ v(t). We choose
r and s so that the system (4) has the new form{

ü = −
(
2εu̇ + Pu + Ru3)+z1(t),

v̈ = −
(
2δv̇ + Qv + Sv3)+z2(t),

(9)

where z1(t) = f1 cos ωt and z2(t) = f2 cos ωt or any other time-dependent functions.
Observe that this new system is linearly decoupled.

Inserting Equations (8) and (9) into the linearized form of system (4), i.e., in the
following form {

ẍ + 2ν1 ẋ = −αx + ε1y + H1(t)
ÿ + 2ν2ẏ = −µy + ε2x + H2(t),

(10)

we have

R1 = z1(t) +z2(t)− H1(t) + (−P + α + rε1)u

+ (−Q + α + sε1)v− Ru3 − Sv3 + β(u + v)3

+2(−ε + ν1)u̇ + 2(−δ + ν1)v̇ = 0, (11)
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and

R2 =rz1(t) + sz2(t)− H2(t) + (−ε2 + µs− sQ)v

+ (−ε2 + µr− Pr)u− sSv3 − rRu3

+2r(−ε + ν2)u̇ + 2s(ν2 − δ)v̇ = 0 , (12)

where H1(t) = γ cos ωt and H2(t) = 0 as defined in Equation (4). After vanishing the
coefficients of u0, v0, u, v, u3, v3, u̇, and v̇ in Equations (11) and (12), we have

z1(t) +z2(t)− H1(t) = 0,
−H2(t) + rz1(t) + sz2(t) = 0,
(−P + α + rε1) = 0,
(−Q + α + sε1) = 0,
(−2ε + 2ν1) = 0,
(2ν2s +−2δs) = 0,
(−ε2 + µs− sQ) = 0,
(−ε2 + µr− Pr) = 0.

(13)

By solving system (13), we finally get

ε = ν1, δ = ν2,
R = S = β,
P = α + rε1,
Q = α + sε1,
z1(t) =

−sH1(t)+H2(t)
r−s ,

z2(t) =
rH1(t)−H2(t)

r−s ,

(14)

and  r = −α+
√

∆+µ
2ε1

,

s = −α−
√

∆−µ
2ε1

.
(15)

Note that the values of (r, s) given in Equation (15) are valid only for ∆ = (α− µ)2− 4ε1ε2 > 0.
The original coupled system of FDDOs (4) is decoupled to two individual FDDOs as

shown in Equation (9) with some residual errors and with the following new ICs{
u(0) = y0−sx0

r−s , v(0) = rx0−y0
r−s ,

u̇(0) = ẏ0−sẋ0
r−s and v̇(0) = rẋ0−ẏ0

r−s .
(16)

The residual errors for this case read{
R1 = β

(
3u2v + 3v2u

)
+ 2(ν1 − δ)v̇,

R2 = −sSv3 − rRu3 + 2r(ν2 − ε)u̇.

Now, it is enough to solve any one of the FDDOs (9){
ẅ + 2κẇ + Ω2w + σw3 = f cos ωt,

w(0) = w0 and ẇ(0) = ẇ0,
(17)

for arbitrary parameters to find approximations to the coupled system (4).

2.2. Decoupling the Second Model (6) to Two Individual FDDOs

Let us consider the following alternative form for the two coupled FDDOs{
k1 ≡ ẍ + 2ν1 ẋ + αx + βx3 + k1(y− x)− H1(t) = 0,
k2 ≡ ÿ + 2ν2ẏ + λy + µy3 + k2(x− y)− H2(t) = 0.

(18)
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For decoupling system (18), the following linear solutions are assumed{
x(t) = u + v

y(t) = ru + sv,
(19)

where u ≡ u(t) and v ≡ v(t) follow the FDDOs as{
ü = −

(
2εu̇ + Pu + Ru3)+z1(t),

v̈ = −
(
2δv̇ + Qv + Sv3)+z2(t).

(20)

Here, (r, s) represent the transformation parameters and (ε, δ, P, Q, R, S,z1(t),z2(t)) are
undermined parameters.

Inserting Equation (19) into system (18) and using system (20), we finally obtain

k1 = z1(t) +z2(t)− H1(t) + (α + k1r− k1 − P)u
+(α + k1s− k1 −Q)v + (−S + β)v3 + (−R + β)u3

+β
(
3vu2 + 3uv2)+ 2(ν1 − δ)v̇ + 2(ν1 − ε)u̇,

(21)

and
k2 = rz1(t) + sz2(t)− H2(t) + (k2 − k2r + λr− rP)u
+(λs− k2s + k2 − sQ)v + r

(
r2µ− R

)
u3 + s

(
s2µ− S

)
v3

+µ
(
3r2u2sv + 3s2v2ru

)
+ 2r(ν2 − ε)u̇ + 2s(ν2 − δ)v̇.

(22)

Now, after vanishing the coefficients of u0, v0, u, v, u3, v3, u̇, and v̇ in Equations (21) and (22),
we obtain 

ε = ν1, δ = ν2,
R = β, S = µs2,
P = −k1 + rk1 + α,
Q = −k1 + sk1 + α,
z1(t) =

−sH1(t)+H2(t)
r−s ,

z2(t) =
rH1(t)−H2(t)

r−s ,

(23)

and  r = λ+k1−k2−α+
√

∆
2k1

,

s = λ+k1−k2−α−
√

∆
2k1

.
(24)

Note that the values of (r, s) given in Equation (24) are valid only for ∆ = (λ + k1 − k2 − α)2 +
4k1k2 > 0.

Finally, the original coupled system of FDDOs (18) is decoupled to individual two
FDDOs as shown in Equation (20) with some residual errors and with the following new ICs{

u(0) = y0−sx0
r−s , v(0) = rx0−y0

r−s ,
u̇(0) = ẏ0−sẋ0

r−s and v̇(0) = rẋ0−ẏ0
r−s .

(25)

Accordingly, the residual errors read{
k1 = (−S + β)v3 + β

(
3vu2 + 3uv2)+ 2(ν1 − δ)v̇,

k2 = r
(
r2µ− R

)
u3 + µ

(
3r2u2sv + 3s2v2ru

)
+ 2r(ν2 − ε)u̇,

(26)

Thus, it is enough to solve the FDDO (17) for arbitrary parameters to find some approxima-
tions to the coupled system (18).

3. KBM Technique for Analyzing the FDDO (17)

We first solve the following unforced damped DE:{
ẅ + 2κẇ + Ω2w + σw3 = 0,
w(0) = w0 and ẇ(0) = ẇ0.

(27)
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According to the KBM method, the following perturbed problem is constructed:{
N1 ≡ ẅ + Ω2w + p

(
2κẇ + σw3) = 0,

w(0) = w0 and ẇ(0) = ẇ0,
(28)

where p indicates the perturbed parameter 0 < p << 1.
Assume the solution to the i.v.p. (28) is given by the following ansatz form

w(t) = c1a cos ψ + p(d1(a) cos 3ψ + c2a sin ψ), (29)

where the functions a ≡ a(t) and ψ ≡ ψ(t) are defined by{
ȧ = pA(a),

ψ̇ = Ω + pΦ1(a).
(30)

Inserting solution (29) into the i.v.p. (28) yields

N1 = p
4 [
(
a3c3

1 − 32Ω2d1(a)
)

cos(3ψ)
+ac1

(
3a2c2

1σ− 8ΩΦ1(a)
)

cos(ψ)
−8c1Ω sin(ψ)(A(a) + aκ))].

(31)

Equating to zero the coefficients of sin jψ and cos jψ (j = 0, 1, 3, ...), an algebraic system is
obtained and by solving this system, we have

d1(a) =
a3c3

1
32Ω2 ,

Φ1(a) =
3a2c2

1σ

8Ω
,

A(a) = −κa. (32)

Inserting the values of (a, ψ) given in Equation (32) into Equation (30) and solving the
obtained equations using the ICs a(0) = 1 and ψ(0) = 0, we get{

a = e−pκt,

ψ = Ωt + 3c2
1σ

16pκΩ
(
1− e−2pκt). (33)

For p = 1, the following approximate solution (first-order approximation) to the unforced
damped DE (27) is obtained

w(t) = c1e−κt cos

[
Ωt +

3c2
1σ

16κΩ

(
1− e−2κt

)]

+ c2e−κt sin

[
Ωt +

3c2
1σ

16κΩ

(
1− e−2κt

)]

+
a3c3

1
32Ω2 cos

[
3

(
Ωt +

3c2
1σ

16κΩ

(
1− e−2κt

))]
. (34)

Now, by applying the ICs given in the i.v.p. (27), the values of c1,2 are obtained

c2 =
3c3

1σκ + 32c1κΩ2 + 32ẇ0Ω2

12c2
1σΩ + 32Ω3

,

σ

32Ω2 c3
1 + c1 − w0 = 0. (35)
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Remark 1. We have the following third-order approximation to the i.v.p. (28)

w(t) = ac1 cos(ψ) + 1
3 (p + p2 + p3)ac2 sin(ψ)

+pW1 + p2W2 + p3W3,
(36)

with

ȧ = −paκ + p2a3 3c2
1σκ

8Ω2 − p3a5 195c4
1σ2κ

512Ω4 ,

ψ̇ = Ω + pa2 3c2
1σ

8Ω
− p2a4 15c4

1σ2 + 128κ2Ω2

256Ω3

+ p3 a2(369a4c6
1σ3 − 4608c2

1σκ2Ω2 + 1024c2
2σΩ4)

24576Ω5 ,

where the values of coefficients Wi (i = 1, 2, 3) are given in Appendix A.

It remains to solve the FDDO (17). For this purpose, we assume the solution is defined
by the ansatz form

w(t) = z(t) + e1 cos ωt + e2 sin ωt + e3 cos 3ωt + e4 sin 3ωt, (37)

where the function z ≡ z(t) represents a solution to the unforced damped DE{
z̈ + 2νż + Ω2z + σz3 = 0,

z(0) = w0 − e1 and ż(0) = ẇ0 −ωe2,
(38)

where ei (i = 1, 2, 3, 4) are undetermined constants.
Inserting solution (37) into (17) yields

ẅ + 2κẇ + Ω2w + σw3 − f cos ωt =
S1 cos(ωt) + S2 sin(ωt) + S3 cos(3ωt) + S4 sin(3ωt) + h.o.t,

(39)

where the values of the coefficients Si (i = 1, 2, 3, 4) are defined in Appendix B.
For Si = 0, we get

8e2νω + 3e3
1σ + 3e3e2

1σ + 3e2
2e1σ + 6e2

3e1σ + 6e2
4e1σ + 6e2e4e1σ− 3e2

2e3σ− 4e1ω2 + 4e1Ω2 − 4 f = 0,
−2e1(3e2e3σ + 4νω) + e2

(
3e2

2σ + 6e2
3σ + 6e2

4σ− 3e2e4σ− 4ω2 + 4Ω2)+ 3(e2 + e4)e2
1σ = 0,

24e4νω + e3
1σ + 6e3e2

1σ− 3e2
2e1σ + 3e3

3σ + 3e3e2
4σ + 6e2

2e3σ− 36e3ω2 + 4e3Ω2 = 0,
−24e3νω− e3

2σ + 6e4e2
2σ + 3e3

4σ + 3e2
3e4σ + 3e2

1(e2 + 2e4)σ− 36e4ω2 + 4e4Ω2 = 0.

(40)

By solving system (40), the values of coefficients ei can be obtained.

Example 1. Let us now consider the following numerical example to the coupled system of FD-
DOs (42) 

..
x + 0.2ẋ + 3x + 2x3 = 0.1 cos(t) + 0.1y
..
y + 0.2ẏ + 2y = −0.1x,
x(0) = ẋ(0) = 0 and y(0) = ẏ(0) = 0.

(41)

The decoupling system for system (41) reads{
x(t) = u + v,
y(t) = 0.0990195u− 10.099v,

(42)

with 
ü + 0.2u̇ + 3.0099u + 2u3 = 0.099029 cos(t),

v̈ + 0.2v̇ + 1.9901v + 2v3 = 0.000970966 cos(t),
u(0) = u̇(0) = 0 and v(0) = v̇(0) = 0.
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The KBM explicit-form approximations to the decoupled system (41) read

x = 0.0050279 sin(t) + 1.90864× 10−6 sin(3t)

+ 0.0496444 cos(t) + 9.55958× 10−6 cos(3t)

− 1.19996× 10−6e−0.3t cos(χ3)

− e−0.1t
(

0.000201709 sin(χ1) + 0.00559604 sin(χ2)
0.000942229 cos(χ1) + 0.0487105 cos(χ2)

)
, (43)

and

y = −0.00144313 sin(t) + 1.88989× 10−7 sin(3t)

− 0.00469313 cos(t) + 9.46579× 10−7 cos(3t)

− 1.18819× 10−7e−0.3t cos(χ3)

+ e−0.1t
(

0.00203707 sin(χ1)− 0.000554117 sin(χ2)
+0.00951559 cos(χ1)− 0.00482329 cos(χ2)

)
, (44)

with

χ1 = 1.41071t− 2.35997× 10−6
(

e−0.2t − 1
)

,

χ2 = 1.73491t− 0.00512861
(

e−0.2t − 1
)

,

χ3 = 5.20472t− 0.0153858e−0.2t + 0.0153858.

Now, we can apply two methodologies for analyzing the coupled system of FDDOs (41). In the
first methodology, we can use the KBM analytical approximation (34) for studying the properties
of the decoupled system oscillators (42) and then make a comparison among the obtained results
and the RK4 approximations to the coupling system (41) as illustrated in Figure 1. In the second
methodology, we can directly analyze the decoupling system of oscillators (42) using the RK4
approximations (here we do not use approximation (34)) and compare the numerical results with the
RK4 approximations to the coupling system (41) as shown in Figure 2. Furthermore, the maximum
residual distance error for the two methodologies is estimated as follows

Lx = max0≤t≤40

∣∣∣RK4|For system (41) − KBM approxi.
∣∣∣ = 0.00196831,

Ly = max0≤t≤40

∣∣∣RK4|For system (41) − KBM approxi.
∣∣∣ = 0.0002707,

Lx = max0≤t≤40

∣∣∣RK4|For system (41) − RK4|For system (42)

∣∣∣ = 0.00216587,

Ly = max0≤t≤40

∣∣∣RK4|For system (41) − RK4|For system (42)

∣∣∣ = 0.000361187.

(45)

It is noted from both Figures 1 and 2 and the maximum error given in Equation (45) that both
analytical and numerical approximations are compatible with each other, which confirms the high
accuracy of the analytical solutions.
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RK4 For coupling system

KBM-pprox.
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RK4 For coupling system

KBM-pprox.
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Fig. 1Figure 1. The KBM analytical approximation for the decoupling system (42) is compared with the
RK4 numerical approximation for the coupling system (41), (a) for component x, (b) for component y.

RK4 For coupling system

RK4 For decoupling system

0 10 20 30 40

-0.05

0.00

0.05

t
a

x

Error = 0.00216587

RK4 For coupling system

RK4 For decoupling system

0 10 20 30 40

-0.010

-0.005

0.000

0.005

0.010

t
b

y

Error = 0.000361187

Fig. 2Figure 2. The numerical approximations for both coupling (41) and decoupling (42) systems using
RK4 method are compared with each other, (a) for component x and (b) for component y.

Example 2. Let us now consider the following numerical example to the coupled system of FD-
DOs (6) 

ẍ + 0.2ẋ + 3x + x3 + 0.1(y− x)− 0.1 cos(0.2t) = 0,
ÿ + 0.2ẏ + 4y + 1y3 + 0.3(x− y)− 0.2 cos(0.2t) = 0,

x(0) = ẋ(0) = 0 and y(0) = ẏ(0) = 0.
(46)

The decoupling system for system (46) reads{
x(t) = u + v,
y(t) = 8.3589u− 0.358899v,

(47)

with 
ü + 0.2u̇ + 3.73589u + u3 = 0.0270584 cos(0.2t),

v̈ + 0.2v̇ + 2.86411v + 0.128808v3 = 0.0729416 cos(0.2t),
u(0) = u̇(0) = 0 and v(0) = v̇(0) = 0.

The KBM explicit form approximations to decoupled system (46) read

x = 0.000444959 sin(0.2t)− 2.19375× 10−8 sin(0.6t)

+ 0.0331427 cos(0.2t)− 2.49289× 10−7 cos(0.6t)

+ e−0.3t
(
−1.87858× 10−7 cos(η3)− 3.28121× 10−9 cos(η4)

)
+ e−0.1t

(
−0.00156899 sin(η1)− 0.000386924 sin(η2)
−0.025822 cos(η1)− 0.00732025 cos(η2)

)
, (48)
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and

y = 0.000530975 sin(0.2t)− 9.32518× 10−9 sin(0.6t)

+ 0.0519219 cos(0.2t)− 1.6307× 10−7 cos(0.6t)

+ e−0.3t
(

6.7422× 10−8 cos(η3)− 2.74273× 10−8 cos(η4)
)

+ e−0.1t
(

0.000563108 sin(η1)− 0.00323426 sin(η2)
+0.00926748 cos(η1)− 0.0611892 cos(η2)

)
, (49)

with

η1 = 1.69237t− 0.0000951546
(

e−0.2t − 1
)

,

η2 = 1.93285t− 0.0000519824
(

e−0.2t − 1
)

,

η3 = 5.0771t− 0.000285464
(

e−0.2t − 1
)

,

η4 = 5.79854t− 0.000155947
(

e−0.2t − 1
)

.

Both analytical approximations using the KBM method for the decoupling system (47) and the
RK4 numerical approximation to coupled system (46) were compared with each other as shown in
Figure 3. Moreover, the RK4 numerical approximations to the coupling system (46) and decoupling
system (47) are introduced in Figure 4. Over and above, the maximum residual distance error for
the two methodologies was estimated using the same parameters of Figure 3 as follows

Lx = max0≤t≤40

∣∣∣RK4|For system (46) − KBM approxi.
∣∣∣ = 0.000230824,

Ly = max0≤t≤40

∣∣∣RK4|For system (46) − KBM approxi.
∣∣∣ = 0.0004614,

Lx = max0≤t≤40

∣∣∣RK4|For system (46) − RK4|For system (47)

∣∣∣ = 0.0000764837,

Ly = max0≤t≤40

∣∣∣RK4|For system (46) − RK4|For system (47)

∣∣∣ = 0.000301353.

(50)

It is evident that both analytical and numerical solutions exhibit a high degree of accuracy and
stability for a long time.

RK4 For coupling system

KBM-pprox.

0 10 20 30 40

-0.04
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0.00
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x

Error = 0.000230824

RK4 For coupling system

KBM-pprox.

0 10 20 30 40

-0.05

0.00

0.05

0.10

t
b

y

Error = 0.0004614

Fig. 3Figure 3. The KBM analytical approximation for the decoupling system (46) is compared with the
RK4 numerical approximation for the coupling system (47), (a) for component x, (b) for component y.
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RK4 For coupling system

RK4 For decoupling system

0 10 20 30 40

-0.04

-0.02

0.00
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0.04

0.06

t
a

x

Error = 0.0000764837

RK4 For coupling system

RK4 For decoupling system

0 10 20 30 40

-0.05

0.00

0.05

0.10

t
b

y

Error = 0.000301353

Fig. 4Figure 4. The numerical approximations for both coupling (46) and decoupling (47) systems using
RK4 method are compared with each other, (a) for component x and (b) for component y.

4. Conclusions

The coupled forced damped Duffing oscillators (FDDOs) were analyzed analytically
and numerically using highly accurate approximate methods. In our investigation, two
different models for the coupled FDDOs were analyzed in detail. For the analytical ap-
proximation to the proposed models, the Krylov–Bogoliubov–Mitropolsky (KBM) method
was used for solving the coupled FDDOs. However, to apply the mentioned method, the
coupled FDDOs were reduced to a decoupled system of two individual standard FDDOs.
After that, the proposed method was applied to find some approximations for both un-
forced and forced damped Duffing oscillators in terms of trigonometric functions. Some
numerical examples using the KBM approximations were analyzed and discussed. More-
over, the KBM analytical approximations to the decoupled system and the RK4 numerical
approximations to the coupled and decoupled systems were compared with each other
to verify the high accuracy of all obtained approximations. Furthermore, the maximum
residual error for all obtained approximations was estimated on the whole time domain. It
was found that both analytical and numerical approximations were compatible with each
other, which confirmed the high accuracy of the obtained approximations.
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Appendix A. The Coefficients of Equation (36)

W1 =

(
a3c3

1σ cos(3ψ)

32Ω2

)
,

W2 =

 − 21c5
1σ2 cos(3ψ)

1024Ω4 a5 +
c5

1σ2 cos(5ψ)

1024Ω4 a5

+
3c3

1σκ sin(3ψ)

64Ω3 a3 +
c2c2

1σ sin(3ψ)

32Ω2 a3

,

and

W3 =



417c7
1σ3 cos(3ψ)

32768Ω6 a7 − 43c7
1σ3 cos(5ψ)

32768Ω6 a7

+
c7

1σ3 cos(7ψ)

32768Ω6 a7 − 21c4
1σ2 sin(3ψ)(9c1κ+2c2Ω)

2048Ω5 a5

+
c4

1σ2 sin(5ψ)(19c1κ+10c2Ω)

6144Ω5 a5 − 3c3
1σκ2 cos(3ψ)

128Ω4 a3

− 3c2c2
1σκ cos(3ψ)

64Ω3 a3 +
c2c2

1σ sin(3ψ)

32Ω2 a3

− c2
2c1σ cos(3ψ)

96Ω2 a3


.

Appendix B. The Values of the Coefficients Si of Equation (39)

S1 = 1
4


8e2νω + 3e3

1σ + 3e3e2
1σ

+3e2
2e1σ + 6e2

3e1σ + 6e2
4e1σ

+6e2e4e1σ− 3e2
2e3σ− 4e1ω2

+4e1Ω2 − 4 f + 12e1σz(t)2

,

S2 = 1
4


−2e1(3e2e3σ + 4νω)

+e2

(
3e2

2σ + 6e2
3σ + 6e2

4σ
−3e2e4σ− 4ω2 + 4Ω2

)
+3(e2 + e4)e2

1σ + 12e2σz(t)2

,

S3 = 1
4

 24e4νω + e3
1σ + 6e3e2

1σ−
3e2

2e1σ + 3e3
3σ + 3e3e2

4σ + 6e2
2e3σ

−36e3ω2 + 4e3Ω2 + 12e3σz(t)2

,

and

S4 =
1
4

 −24e3νω− e3
2σ + 6e4e2

2σ
+3e3

4σ + 3e2
3e4σ + 3e2

1(e2 + 2e4)σ
−36e4ω2 + 4e4Ω2 + 12e4σz(t)2

.
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