The Arcsine Kumaraswamy-Generalized Family: Bayesian and Classical Estimates and Application
Abstract
:1. Introduction
- (i)
- To develop the flexibility and properties of basic models.
- (ii)
- A suitable procedure for adding two extra parameters in expanded models with potent outliers, which is very useful when modeling industrial data (see Section 5).
- (iii)
- To introduce the extended version of a basic model with closed forms for the cdf and hazard rate function, the special submodels of this family can be used in the analysis of censored data sets.
- (iv)
- Compared to existing competing models, the special cases of the ASKUG-X approach are able to model data sets with high-tailed content in factorial habits.
2. ASKUG-Lomax Distribution
2.1. Quantile Function
2.2. Moments
3. Maximum Likelihood Estimation
Algorithm 1 Boot-p interval algorithm: |
|
4. Bayesian Estimation
MCMC Method
- Set initial values and . Then, simulate a sample of size n from ASKUG-Lomax, next set .
- Simulate and using the proposal distributions , , , and .
- Obtain the probability .
- Simulate U from Uniform (0, 1).
- If , then .If , then .
- Set .
- Iterate Steps 2–6, M repetitions, and obtain and for .
- Sort , and in rising values.
- The lower bounds of , and in the rank .
- The lower bounds of , and in the rank .
- Iterate the previous steps M times. Obtain the average value of the lower and upper bounds of , and .
5. Simulation Study
- The MLEs seem to behave as expected, i.e., the MSE values and the estimated biases decrease as n increases. Moreover, the mean values of the estimates tend to the true values as n increases, showing the consistency property of the MLEs.
- It is well known that the Bayesian estimation method provides better results in practice than the classical one, especially when the sample size is relatively small, which is exactly what the results show. The standard deviation of the MLE is greater than the Bayesian estimate for .
- The interval width of the MLE for a given confidence level is greater than the Bayesian estimate in most cases.
- A General Entropy Loss Function is a suitable alternative to the Modified LINEX loss function. The approximate Bayes estimate of the parameters based on the general entropy loss function provides better results in most cases.
Application of the ASKUG-Lomax Model
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Klugman, S.A.; Panjer, H.H.; Willmot, G.E. Loss Models: From Data to Decisions; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 715. [Google Scholar]
- Lane, M.N. Pricing risk transfer transactions. ASTIN Bull. 2000, 30, 259–293. [Google Scholar] [CrossRef] [Green Version]
- Cooray, K.; Ananda, M. Modeling actuarial data with a composite lognormal-pareto model. Scand. Actuar. J. 2005, 2005, 321–334. [Google Scholar] [CrossRef]
- Ibragimov, R.; Prokhorov, A. Heavy tails and copulas: Topics in dependence modelling in economics and finance. Quant. Financ. 2019, 19, 13–14. [Google Scholar]
- Bernardi, M.; Maruotti, A.; Petrella, L. Skew mixture models for loss distributions: A bayesian approach. Insur. Math. Econ. 2012, 51, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Adcock, C.; Eling, M.; Loperfido, N. Skewed distributions in finance and actuarial science: A review. Le Eur. J. Financ. 2015, 21, 1253–1281. [Google Scholar] [CrossRef]
- Bhati, D.; Ravi, S. On generalized log-moyal distribution: A new heavy tailed size distribution. Insur. Math. Econ. 2018, 79, 247–259. [Google Scholar] [CrossRef]
- Beirlant, J.; Matthys, G.; Dierckx, G. Heavy-tailed distributions and rating. ASTIN Bull. 2001, 31, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Resnick, S.I. Discussion of the Danish data on large fire insurance losses. ASTIN Bull. 1997, 27, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.; Perry, J. A tale of tails: An empirical analysis of loss distribution models for estimating operational risk capital. SSRN Electron. J. 2006, 1, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.Z.; Cordeiro, G.M.; Maed, M.E.; Alizadeh, M.; Al-Mofleh, H.; Nofal, Z.M. The generalized odd Lindley-G family: Properties and applications. An. Acad. Bras. Ciˆencias 2019, 91, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.Z.; Alizadeh, M. The odd Dagum family of distributions: Properties and applications. J. Appl. Probab. Stat. 2020, 15, 45–72. [Google Scholar]
- Nasir, A.; Yousof, H.M.; Jamal, F.; Korkmaz, M.Ç. The exponentiated Burr XII power series distribution: Properties and applications. Stats 2019, 2, 15–31. [Google Scholar] [CrossRef]
- Jamal, F.; Nasir, M. Some new members of the TX family of distributions. In Proceedings of the 17th International Conference on Statistical Sciences, Lahore, Pakistan, 21–23 January 2019; Volume 17. [Google Scholar]
- Al-Mofleh, H. On generating a new family of distributions using the tangent function. Pak. J. Stat. Oper. Res. 2018, 14, 471–499. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.Z.; Cordeiro, G.M.; Butt, N.S.; Ortega, E.M.M.; Suzuki, A.K. A new lifetime model with variable shapes for the hazard rate. Braz. J. Probab. Stat. 2017, 31, 516–541. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Afify, A.Z.; Ortega, E.M.M.; Suzuki, A.K.; Mead, M.E. The odd Lomax generator of distributions: Properties, estimation and applications. J. Comput. Appl. Math. 2019, 347, 222–237. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [Google Scholar] [CrossRef]
- Mead, M.E.; Afify, A.Z. On five-parameter Burr XII distribution: Properties and applications. S. Afr. Stat. J. 2017, 51, 67–80. [Google Scholar] [CrossRef]
- Mansour, M.M.; Aryal, G.; Afify, A.Z.; Ahmad, M. The Kumaraswamy exponentiated Fréchet distribution. Pak. J. Stat. 2018, 34, 177–193. [Google Scholar]
- Ahmad, Z.; Hamedani, G.G.; Butt, N.S. Recent developments in distribution theory: A brief survey and some new generalized classes of distributions. Pak. J. Stat. Oper. Res. 2019, 15, 87–110. [Google Scholar] [CrossRef] [Green Version]
- AL-Jamal, Z.Y. Exponentiated exponential distribution as a failure time distribution. Iraqi J. Stat. Sci. 2008, 8, 63–75. [Google Scholar] [CrossRef]
- Nigm, A.M.; Hamdy, H.I. Bayesian prediction bounds for the Pareto lifetime model. Commun. Stat. Theory Methods 1987, 16, 1761–1772. [Google Scholar] [CrossRef]
- Wong, A. Approximate studentization for Pareto distribution with application to censored data. Stat. Pap. 1998, 39, 189–201. [Google Scholar] [CrossRef]
- Available online: https://databank.worldbank.org/reports.aspx?source=world-development-indicators (accessed on 20 October 2022).
No. | Model | Distribution Function | Generated Model | Range |
---|---|---|---|---|
1 | Beta | ASKUG-Beta | ||
2 | Burr | ASKUG-Burr | ||
3 | Erlang | ASKUG-Erlang | ||
4 | Exponential | ASKUG-Exponential | ||
5 | Frechet | ASKUG-Frechet | ||
6 | Gamma | ASKUG-Gamma | ||
7 | Gumbel | ASKUG-Gumbel | ||
8 | Half logistic | ASKUG-Half logistic | ||
9 | Kumaraswamy | ASKUG-Kumaraswamy | ||
10 | Lindely | ASKUG-Lindely | ||
11 | Linear failure rate | ASKUG-Linear failure rate | ||
12 | Log logistics | ASKUG-Log logistics | ||
13 | Lomax | ASKUG-Lomax | ||
14 | Normal | ASKUG-Normal | ||
15 | Pareto | ASKUG-Pareto | ||
16 | Power function | ASKUG-Power function | ||
17 | Rayleigh | ASKUG-Rayleigh | ||
18 | Topp Leone | ASKUG-Topp Leone | ||
19 | Uniform | ASKUG-Uniform | ||
20 | Weibull | ASKUG-Weibull |
n | Point | Intrval | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | Bootstrap | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
25 | 0.6661 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | 0.2393 1.0928 | 0.06 1.861 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1521 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 0.8535 | 1.801 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
0.0474 | 0.026 | 0.0312 | 0.0168 | 0.0088 | 0.3068 1.0253 | 0.11 1.598 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
0.7185 | 1.488 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
30 | 0.6428 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | −2.4957 3.7812 | 0.086 1.689 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1288 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 6.2769 | 1.603 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
2.564 | 0.026 | 0.0312 | 0.0168 | 0.0088 | −1.9993 3.2848 | 0.137 1.526 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
5.2841 | 1.389 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
40 | 0.6476 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | 0.0818 1.2134 | 0.12 1.942 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1336 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 1.1316 | 1.822 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
0.0833 | 0.026 | 0.0312 | 0.0168 | 0.0088 | 0.1713 1.1239 | 0.153 1.554 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
0.9527 | 1.401 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
50 | 0.6152 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | 0.2347 0.9958 | 0.117 1.696 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1012 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 0.7611 | 1.579 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
0.0377 | 0.026 | 0.0312 | 0.0168 | 0.0088 | 0.2949 0.9356 | 0.162 1.435 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
0.6407 | 1.273 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
60 | 0.6152 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | 0.1762 1.0542 | 0.117 1.696 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1012 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 0.878 | 1.579 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
0.0502 | 0.026 | 0.0312 | 0.0168 | 0.0088 | 0.2456 0.9848 | 0.162 1.435 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
0.7391 | 1.273 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
70 | 0.6429 | 0.6435 | 0.6605 | 0.6062 | 0.5018 | 0.2584 1.0275 | 0.151 1.699 | 0.467 0.822 | 0.4798 0.8348 | 0.4375 0.7678 | 0.3198 0.6758 |
0.1289 | 0.1295 | 0.1465 | 0.0922 | −0.0121 | 0.7691 | 1.548 | 0.355 | 0.355 | 0.3304 | 0.3561 | |
0.0385 | 0.026 | 0.0312 | 0.0168 | 0.0088 | 0.3192 0.9667 | 0.197 1.492 | 0.492 0.798 | 0.4958 0.8232 | 0.4663 0.7601 | 0.3605 0.6499 | |
0.6475 | 1.295 | 0.306 | 0.3274 | 0.2938 | 0.2894 | ||||||
80 | 0.6356 | 0.6035 | 0.6116 | 0.5853 | 0.5352 | 0.3024 0.9688 | 0.161 1.755 | 0.283 0.999 | 0.2847 1.0067 | 0.278 0.9798 | 0.2518 0.9417 |
0.1216 | 0.0895 | 0.0976 | 0.0713 | 0.0213 | 0.6664 | 1.594 | 0.716 | 0.722 | 0.7017 | 0.6899 | |
0.0272 | 0.0407 | 0.0431 | 0.0358 | 0.031 | 0.3551 0.93 | 0.211 1.48 | 0.336 0.923 | 0.3387 0.9399 | 0.3313 0.8851 | 0.2889 0.8189 | |
0.561 | 1.269 | 0.587 | 0.6012 | 0.5537 | 0.53 | ||||||
90 | 0.6526 | 0.5869 | 0.5939 | 0.5708 | 0.5248 | 0.0865 1.2187 | 0.188 1.743 | 0.304 1.029 | 0.3067 1.0402 | 0.2988 0.9913 | 0.2691 0.9165 |
0.1386 | 0.0729 | 0.08 | 0.0568 | 0.0109 | 1.1322 | 1.555 | 0.725 | 0.7335 | 0.6925 | 0.6474 | |
0.0834 | 0.041 | 0.0431 | 0.0365 | 0.033 | 0.176 1.1291 | 0.231 1.475 | 0.341 0.963 | 0.3438 0.976 | 0.3346 0.9338 | 0.2922 0.8904 | |
0.9531 | 1.244 | 0.622 | 0.6322 | 0.5992 | 0.5982 | ||||||
100 | 0.6526 | 0.6449 | 0.6533 | 0.626 | 0.5788 | 0.33 0.9752 | 0.188 1.743 | 0.32 0.97 | 0.3234 0.9821 | 0.3127 0.9425 | 0.2904 0.911 |
0.1386 | 0.1309 | 0.1393 | 0.112 | 0.0648 | 0.6453 | 1.555 | 0.65 | 0.6587 | 0.6298 | 0.6206 | |
0.0271 | 0.0475 | 0.0505 | 0.0412 | 0.0336 | 0.381 0.9242 | 0.231 1.475 | 0.376 0.933 | 0.3796 0.9537 | 0.3681 0.9029 | 0.3214 0.8833 | |
0.5432 | 1.244 | 0.557 | 0.574 | 0.5347 | 0.5619 |
n | Point | Intrval | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | Bootstrap | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
25 | 1.0657 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.8151 1.3164 | 0.369 1.953 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1456 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 0.5013 | 1.584 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.0164 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.8548 1.2767 | 0.414 1.826 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
0.422 | 1.412 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
30 | 1.0601 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.3908 1.7294 | 0.355 1.971 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1399 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 1.3387 | 1.616 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.1166 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.4966 1.6236 | 0.401 1.844 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
1.1269 | 1.443 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
40 | 1.0603 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.8153 1.3054 | 0.389 1.899 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1402 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 0.4901 | 1.51 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.0156 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.854 1.2666 | 0.432 1.789 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
0.4126 | 1.357 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
50 | 1.0966 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.8639 1.3293 | 0.393 1.951 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1764 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 0.4654 | 1.558 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.0141 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.9007 1.2925 | 0.433 1.8 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
0.3918 | 1.367 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
60 | 1.0966 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.7381 1.4552 | 0.393 1.951 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1764 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 0.7171 | 1.558 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.0335 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.7948 1.3985 | 0.433 1.8 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
0.6037 | 1.367 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
70 | 1.031 | 1.0174 | 1.0342 | 0.9794 | 0.9315 | 0.8339 1.228 | 0.4 1.851 | 0.664 1.332 | 0.6703 1.3465 | 0.6513 1.2946 | 0.6241 1.2583 |
0.1108 | 0.0973 | 0.1141 | 0.0592 | 0.0114 | 0.3941 | 1.451 | 0.668 | 0.6762 | 0.6433 | 0.6343 | |
0.0101 | 0.0332 | 0.0374 | 0.0259 | 0.0236 | 0.8651 1.1969 | 0.434 1.747 | 0.789 1.28 | 0.8029 1.2926 | 0.7589 1.2242 | 0.7142 1.1888 | |
0.3318 | 1.313 | 0.491 | 0.4897 | 0.4654 | 0.4746 | ||||||
80 | 1.0798 | 1.0193 | 1.0242 | 1.0074 | 0.9942 | 0.892 1.2675 | 0.395 1.87 | 0.584 1.546 | 0.585 1.5535 | 0.579 1.528 | 0.5677 1.5169 |
0.1596 | 0.0991 | 0.1041 | 0.0873 | 0.0741 | 0.3755 | 1.475 | 0.962 | 0.9686 | 0.9489 | 0.9492 | |
0.0092 | 0.0829 | 0.0848 | 0.0786 | 0.0772 | 0.9217 1.2378 | 0.442 1.763 | 0.67 1.522 | 0.6717 1.5324 | 0.6654 1.4936 | 0.6554 1.4919 | |
0.3161 | 1.321 | 0.852 | 0.8608 | 0.8282 | 0.8365 | ||||||
90 | 1.0516 | 1.0025 | 1.0058 | 0.9948 | 0.9856 | 0.8093 1.2939 | 0.395 1.823 | 0.597 1.495 | 0.5993 1.5019 | 0.5916 1.4786 | 0.5786 1.4707 |
0.1314 | 0.0824 | 0.0857 | 0.0746 | 0.0655 | 0.4846 | 1.428 | 0.898 | 0.9026 | 0.887 | 0.8921 | |
0.0153 | 0.0633 | 0.0643 | 0.0612 | 0.0609 | 0.8476 1.2556 | 0.435 1.739 | 0.669 1.364 | 0.6716 1.3652 | 0.6619 1.3609 | 0.649 1.3591 | |
0.408 | 1.304 | 0.695 | 0.6935 | 0.699 | 0.7101 | ||||||
100 | 1.0516 | 0.9737 | 0.9789 | 0.9617 | 0.9475 | 0.8846 1.2185 | 0.395 1.823 | 0.594 1.518 | 0.5945 1.5236 | 0.5914 1.5051 | 0.5859 1.4979 |
0.1314 | 0.0535 | 0.0587 | 0.0415 | 0.0273 | 0.3338 | 1.428 | 0.924 | 0.9291 | 0.9136 | 0.912 | |
0.0073 | 0.0774 | 0.0789 | 0.0743 | 0.0741 | 0.911 1.1921 | 0.435 1.739 | 0.621 1.457 | 0.6223 1.4597 | 0.6188 1.4514 | 0.6131 1.4485 | |
0.281 | 1.304 | 0.836 | 0.8374 | 0.8326 | 0.8354 |
n | Point | Intrval | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | Bootstrap | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
25 | 2.1144 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | 1.1013 3.1275 | 0.876 3.69 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.2245 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 2.0262 | 2.814 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
0.2672 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | 1.2616 2.9673 | 0.992 3.515 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
1.7057 | 2.523 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
30 | 2.0915 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | −3.0784 7.2613 | 0.885 3.675 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.2015 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 10.3397 | 2.79 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
6.9574 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | −2.2607 6.4436 | 1.025 3.475 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
8.7043 | 2.45 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
40 | 2.106 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | 1.4116 2.8004 | 0.968 3.634 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.216 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 1.3888 | 2.666 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
0.1255 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | 1.5214 2.6906 | 1.09 3.464 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
1.1692 | 2.374 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
50 | 2.068 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | 1.3319 2.8041 | 0.963 3.624 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.1781 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 1.4722 | 2.661 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
0.141 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | 1.4484 2.6877 | 1.078 3.385 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
1.2393 | 2.307 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
60 | 2.068 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | 1.3888 2.7473 | 0.963 3.624 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.1781 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 1.3585 | 2.661 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
0.1201 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | 1.4962 2.6398 | 1.078 3.385 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
1.1436 | 2.307 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
70 | 2.0956 | 1.8219 | 1.8586 | 1.7395 | 1.7187 | 1.5005 2.6907 | 1.093 3.545 | 1.498 2.105 | 1.5513 2.1416 | 1.4204 2.0183 | 1.3967 2.0081 |
0.2056 | −0.068 | −0.0313 | −0.1504 | −0.1713 | 1.1902 | 2.452 | 0.607 | 0.5903 | 0.5978 | 0.6115 | |
0.0922 | 0.0272 | 0.0233 | 0.0453 | 0.0538 | 1.5946 2.5966 | 1.166 3.291 | 1.591 2.079 | 1.6242 2.104 | 1.4997 1.9998 | 1.4538 1.9863 | |
1.0019 | 2.125 | 0.488 | 0.4798 | 0.5001 | 0.5324 | ||||||
80 | 2.1042 | 1.9246 | 1.9476 | 1.8714 | 1.8612 | 1.5096 2.6988 | 1.114 3.569 | 1.349 2.377 | 1.3577 2.389 | 1.316 2.3457 | 1.2991 2.3471 |
0.2143 | 0.0346 | 0.0577 | −0.0185 | −0.0287 | 1.1892 | 2.455 | 1.028 | 1.0313 | 1.0297 | 1.048 | |
0.092 | 0.0797 | 0.0811 | 0.0798 | 0.0838 | 1.6037 2.6048 | 1.22 3.364 | 1.394 2.364 | 1.4065 2.3747 | 1.3686 2.3279 | 1.3563 2.3297 | |
1.0011 | 2.144 | 0.97 | 0.9683 | 0.9593 | 0.9734 | ||||||
90 | 2.1136 | 1.9146 | 1.9369 | 1.8635 | 1.853 | 1.7443 2.4829 | 1.157 3.548 | 1.38 2.403 | 1.3962 2.4239 | 1.3143 2.3759 | 1.2948 2.3782 |
0.2236 | 0.0246 | 0.047 | −0.0264 | −0.0369 | 0.7385 | 2.391 | 1.023 | 1.0278 | 1.0617 | 1.0834 | |
0.0355 | 0.0781 | 0.0784 | 0.0807 | 0.0856 | 1.8027 2.4245 | 1.248 3.324 | 1.54 2.386 | 1.5627 2.4048 | 1.4904 2.3383 | 1.4683 2.3402 | |
0.6217 | 2.076 | 0.846 | 0.8421 | 0.8479 | 0.8719 | ||||||
100 | 2.1136 | 1.9762 | 1.9915 | 1.9416 | 1.9364 | 1.5508 2.6764 | 1.157 3.548 | 1.259 2.537 | 1.2657 2.5425 | 1.2445 2.5238 | 1.2361 2.5257 |
0.2236 | 0.0863 | 0.1015 | 0.0516 | 0.0465 | 1.1256 | 2.391 | 1.278 | 1.2767 | 1.2793 | 1.2896 | |
0.0825 | 0.1188 | 0.1209 | 0.116 | 0.1191 | 1.6398 2.5874 | 1.248 3.324 | 1.406 2.491 | 1.4252 2.4986 | 1.3644 2.4742 | 1.3449 2.4765 | |
0.9476 | 2.076 | 1.085 | 1.0734 | 1.1098 | 1.1316 |
n | Point | Intrval | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | Bootstrap | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
25 | 1.3447 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | 0.8466 1.8428 | 0.431 2.904 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.2108 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 0.9962 | 2.473 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.0646 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.9254 1.764 | 0.474 2.727 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
0.8387 | 2.253 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
30 | 1.3636 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | −0.2178 2.945 | 0.444 2.91 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.2297 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 3.1627 | 2.466 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.6509 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.0324 2.6948 | 0.486 2.771 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
2.6625 | 2.285 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
40 | 1.3171 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | 0.852 1.7822 | 0.46 2.85 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.1832 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 0.9302 | 2.39 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.0563 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.9256 1.7086 | 0.512 2.713 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
0.7831 | 2.201 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
50 | 1.2688 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | 0.8648 1.6727 | 0.488 2.818 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.1348 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 0.8079 | 2.33 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.0425 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.9287 1.6088 | 0.532 2.616 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
0.6801 | 2.084 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
60 | 1.2688 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | 0.6134 1.9241 | 0.488 2.818 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.1348 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 1.3107 | 2.33 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.1118 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.7171 1.8205 | 0.532 2.616 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
1.1034 | 2.084 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
70 | 1.314 | 1.0961 | 1.1214 | 1.0393 | 0.9731 | 0.9296 1.6985 | 0.499 2.682 | 0.718 1.415 | 0.7271 1.452 | 0.7003 1.3246 | 0.6627 1.2649 |
0.1801 | −0.0378 | −0.0125 | −0.0946 | −0.1608 | 0.7689 | 2.183 | 0.697 | 0.725 | 0.6243 | 0.6022 | |
0.0385 | 0.0301 | 0.0302 | 0.0341 | 0.0507 | 0.9904 1.6377 | 0.541 2.55 | 0.831 1.38 | 0.8531 1.4163 | 0.7842 1.3041 | 0.7133 1.2273 | |
0.6473 | 2.009 | 0.549 | 0.5632 | 0.5198 | 0.514 | ||||||
80 | 1.2516 | 1.1065 | 1.1157 | 1.0853 | 1.0651 | 0.9197 1.5835 | 0.494 2.816 | 0.654 1.654 | 0.6615 1.6647 | 0.6362 1.6285 | 0.5971 1.6193 |
0.1177 | −0.0274 | −0.0182 | −0.0486 | −0.0688 | 0.6638 | 2.322 | 1 | 1.0032 | 0.9923 | 1.0222 | |
0.0287 | 0.0823 | 0.0833 | 0.0805 | 0.0846 | 0.9722 1.531 | 0.522 2.527 | 0.705 1.616 | 0.7087 1.6247 | 0.694 1.5942 | 0.6705 1.5839 | |
0.5588 | 2.005 | 0.911 | 0.916 | 0.9002 | 0.9134 | ||||||
90 | 1.2983 | 1.1069 | 1.114 | 1.0905 | 1.0756 | 0.8266 1.77 | 0.503 2.799 | 0.651 1.62 | 0.6527 1.6371 | 0.6428 1.5905 | 0.6164 1.5803 |
0.1644 | −0.027 | −0.0199 | −0.0434 | −0.0583 | 0.9434 | 2.296 | 0.969 | 0.9844 | 0.9477 | 0.9639 | |
0.0579 | 0.0771 | 0.0784 | 0.0742 | 0.076 | 0.9012 1.6954 | 0.546 2.59 | 0.713 1.575 | 0.7136 1.6028 | 0.7103 1.555 | 0.7055 1.5479 | |
0.7942 | 2.044 | 0.862 | 0.8892 | 0.8446 | 0.8425 | ||||||
100 | 1.2983 | 1.1627 | 1.1731 | 1.1388 | 1.1172 | 0.975 1.6216 | 0.503 2.799 | 0.647 1.667 | 0.653 1.6768 | 0.6344 1.6467 | 0.6087 1.6402 |
0.1644 | 0.0288 | 0.0392 | 0.0049 | −0.0168 | 0.6465 | 2.296 | 1.02 | 1.0238 | 1.0123 | 1.0315 | |
0.0272 | 0.0933 | 0.0955 | 0.0889 | 0.0917 | 1.0262 1.5704 | 0.546 2.59 | 0.687 1.662 | 0.6942 1.6747 | 0.6751 1.6249 | 0.6519 1.6131 | |
0.5443 | 2.044 | 0.975 | 0.9804 | 0.9497 | 0.9612 |
Parameter | Point | Intrval | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
0.6481 | 0.6112 | 0.6267 | 0.5775 | 0.4828 | 0.001 2.6472 | 0.231 0.921 | 0.2375 0.9363 | 0.2184 0.8913 | 0.1926 0.8158 | |
2.6462 | 0.69 | 0.6988 | 0.6729 | 0.6232 | ||||||
0.001 2.331 | 0.335 0.904 | 0.3459 0.9261 | 0.3141 0.8488 | 0.2159 0.7785 | ||||||
2.33 | 0.569 | 0.5802 | 0.5346 | 0.5627 | ||||||
0.1389 | 0.137 | 0.1371 | 0.1368 | 0.1335 | 0.001 0.3055 | 0.115 0.156 | 0.1147 0.1559 | 0.1144 0.1555 | 0.111 0.1519 | |
0.3045 | 0.041 | 0.0413 | 0.0411 | 0.0409 | ||||||
0.001 0.2791 | 0.118 0.155 | 0.1178 0.1553 | 0.1175 0.1549 | 0.1146 0.1516 | ||||||
0.2781 | 0.037 | 0.0375 | 0.0375 | 0.037 | ||||||
3.06 | 2.8373 | 2.8674 | 2.7709 | 2.7863 | 0.2895 5.8305 | 2.213 3.169 | 2.2227 3.2024 | 2.1959 3.1157 | 2.1974 3.1235 | |
5.5409 | 0.956 | 0.9797 | 0.9198 | 0.926 | ||||||
0.7277 5.3923 | 2.379 3.159 | 2.3859 3.1923 | 2.3496 3.0888 | 2.3539 3.1063 | ||||||
4.6645 | 0.78 | 0.8064 | 0.7392 | 0.7524 | ||||||
27.2078 | 27.0577 | 27.098 | 26.969 | 27.0505 | 0.001 86.4802 | 26.476 27.472 | 26.4907 27.5257 | 26.4499 27.3939 | 26.4738 27.4622 | |
86.4792 | 0.996 | 1.035 | 0.9441 | 0.9884 | ||||||
0.001 77.1055 | 26.579 27.434 | 26.6082 27.4789 | 26.5259 27.3379 | 26.5742 27.4268 | ||||||
77.1045 | 0.855 | 0.8707 | 0.812 | 0.8526 |
Parameter | Point | Intrval | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
0.1627 | 0.1627 | 0.1627 | 0.1626 | 0.1619 | 0.0001 0.5561 | 0.159 0.167 | 0.1589 0.1671 | 0.1588 0.167 | 0.1583 0.1663 | |
0.556 | 0.008 | 0.0082 | 0.0081 | 0.008 | ||||||
0.0001 0.4939 | 0.159 0.167 | 0.1594 0.167 | 0.1593 0.1669 | 0.1587 0.1661 | ||||||
0.4938 | 0.008 | 0.0076 | 0.0076 | 0.0074 | ||||||
11.0589 | 11.022 | 11.0591 | 10.9364 | 11.0051 | 9.0918 13.026 | 10.796 11.156 | 10.8501 11.1942 | 10.7056 11.0895 | 10.7738 11.1408 | |
3.9341 | 0.36 | 0.3441 | 0.3839 | 0.367 | ||||||
9.403 12.7148 | 10.824 11.153 | 10.8665 11.1837 | 10.7253 11.0872 | 10.8027 11.139 | ||||||
3.3119 | 0.329 | 0.3172 | 0.3619 | 0.3363 | ||||||
25.7072 | 25.613 | 25.6538 | 25.5249 | 25.6053 | 22.9367 28.4777 | 25.357 25.788 | 25.4052 25.8313 | 25.2631 25.6965 | 25.3485 25.7804 | |
5.5409 | 0.431 | 0.4261 | 0.4334 | 0.4319 | ||||||
23.3749 28.0395 | 25.384 25.777 | 25.4354 25.8177 | 25.2997 25.6864 | 25.3742 25.7704 | ||||||
4.6645 | 0.393 | 0.3823 | 0.3867 | 0.3962 | ||||||
36.4867 | 36.489 | 36.5309 | 36.3921 | 36.4832 | 30.4393 42.5341 | 36.196 36.67 | 36.2273 36.7122 | 36.1252 36.5865 | 36.1917 36.6652 | |
12.0948 | 0.474 | 0.4848 | 0.4612 | 0.4735 | ||||||
31.3958 41.5776 | 36.23 36.662 | 36.255 36.6998 | 36.1715 36.5771 | 36.2266 36.6573 | ||||||
10.1818 | 0.432 | 0.4448 | 0.4056 | 0.4307 |
Parameter | Point | Intrval | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ML | SE | LE1 | LE2 | GE | ML | HPDS | HPDLE1 | HPDLE2 | HPDGE | |
10.5 | 10.5257 | 10.5286 | 10.5189 | 10.5243 | 8.7048 12.2952 | 9.732 11.157 | 9.734 11.1576 | 9.7262 11.1571 | 9.7305 11.1574 | |
3.5905 | 1.425 | 1.4236 | 1.4309 | 1.4269 | ||||||
8.9887 12.0113 | 9.914 11.093 | 9.9162 11.1155 | 9.908 11.0866 | 9.9127 11.0866 | ||||||
3.0226 | 1.179 | 1.1993 | 1.1786 | 1.1739 | ||||||
2.9 | 2.2877 | 2.2938 | 2.2739 | 2.275 | 2.7406 3.0594 | 1.972 2.678 | 1.9726 2.6778 | 1.9717 2.6777 | 1.9717 2.6777 | |
0.3188 | 0.706 | 0.7052 | 0.706 | 0.7061 | ||||||
2.7658 3.0342 | 2.016 2.637 | 2.0163 2.6591 | 2.0141 2.6272 | 2.014 2.629 | ||||||
0.2684 | 0.621 | 0.6428 | 0.6131 | 0.615 | ||||||
1.88 | 2.3156 | 2.3305 | 2.2785 | 2.2759 | 1.2522 2.5078 | 1.533 2.803 | 1.5448 2.8039 | 1.4496 2.801 | 1.4051 2.8014 | |
1.2556 | 1.27 | 1.2591 | 1.3514 | 1.3964 | ||||||
1.3515 2.4085 | 1.702 2.778 | 1.7191 2.7777 | 1.6523 2.7773 | 1.6337 2.7773 | ||||||
1.057 | 1.076 | 1.0586 | 1.125 | 1.1436 | ||||||
1.13 | 0.2813 | 0.2818 | 0.2805 | 0.2749 | 1.06 1.2 | 0.192 0.373 | 0.1919 0.3727 | 0.1919 0.3726 | 0.1914 0.3722 | |
0.1399 | 0.181 | 0.1808 | 0.1808 | 0.1808 | ||||||
1.0711 1.1889 | 0.216 0.358 | 0.2158 0.3585 | 0.2151 0.3568 | 0.2118 0.3515 | ||||||
0.1178 | 0.142 | 0.1427 | 0.1417 | 0.1397 |
Model | AIC | BIC | HQC | CAIC |
---|---|---|---|---|
ASKUG-Lomax | 254.692 | 256.358 | 260.161 | 256.404 |
ASEXG-Lomax | 272.857 | 271.897 | 268.755 | 271.573 |
AS-Lomax | 266.395 | 265.934 | 263.661 | 265.539 |
EX-Weibull | 338.517 | 339.477 | 342.619 | 339.802 |
Weibull | 370.397 | 370.858 | 373.131 | 371.253 |
Model | AIC | BIC | HQC | CAIC |
---|---|---|---|---|
ASKUG-Lomax | 19.683 | 27.683 | 20.893 | 18.355 |
ASEXG-Lomax | 31.750 | 35.750 | 32.658 | 30.754 |
AS-Lomax | 38.695 | 40.410 | 39.301 | 38.032 |
EX-Weibull | 82.178 | 86.178 | 83.085 | 81.182 |
Weibull | 63.219 | 64.933 | 63.824 | 62.555 |
Model | AIC | BIC | HQC | CAIC |
---|---|---|---|---|
ASKUG-Lomax | 244.007 | 244.748 | 252.317 | 247.251 |
ASEXG-Lomax | 297.611 | 298.047 | 303.843 | 300.044 |
AS-Lomax | 315.456 | 315.671 | 319.611 | 317.078 |
EX-Weibull | 254.981 | 255.417 | 261.214 | 257.414 |
Weibull | 303.874 | 304.088 | 308.029 | 305.496 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emam, W.; Tashkandy, Y. The Arcsine Kumaraswamy-Generalized Family: Bayesian and Classical Estimates and Application. Symmetry 2022, 14, 2311. https://doi.org/10.3390/sym14112311
Emam W, Tashkandy Y. The Arcsine Kumaraswamy-Generalized Family: Bayesian and Classical Estimates and Application. Symmetry. 2022; 14(11):2311. https://doi.org/10.3390/sym14112311
Chicago/Turabian StyleEmam, Walid, and Yusra Tashkandy. 2022. "The Arcsine Kumaraswamy-Generalized Family: Bayesian and Classical Estimates and Application" Symmetry 14, no. 11: 2311. https://doi.org/10.3390/sym14112311
APA StyleEmam, W., & Tashkandy, Y. (2022). The Arcsine Kumaraswamy-Generalized Family: Bayesian and Classical Estimates and Application. Symmetry, 14(11), 2311. https://doi.org/10.3390/sym14112311