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Abstract: In the paper a finite-capacity discrete-time queueing system with geometric interarrival
times and generally distributed processing times is studied. Every time when the service station
becomes idle it goes for a vacation of random duration that can be treated as a power-saving
mechanism. Application of a single vacation policy is one way for the system to achieve symmetry
in terms of system operating costs. A system of differential equations for the transient conditional
queue-size distribution is established. The solution of the corresponding system written for double
probability generating functions is found using the analytical method based on a linear algebraic
approach. Moreover, the representation for the probability-generating function of the stationary
queue-size distribution is obtained. Numerical study illustrating theoretical results is attached as well.
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1. Introduction

Queueing models with a discrete-time parameter are an important alternative to the
systems with continuous time which are used most often in modeling. In fact, continuous-
time systems were initially proposed in the works of Erlang, a precursor of queueing
theory, who assumed—in accordance with the nature of telecommunication traffic—a
continuous distribution of the duration of a telephone call. Until 1958, the year of the
publication of Torben Meisling’s work [1], they were almost exclusively used and analyzed
in queueing theory.

The special application of discrete-time models is associated with the modeling of
processing (sending) packets in the nodes of digital telecommunication and computer
networks. In discrete models time is divided into fixed-length intervals (called slots),
which, in fact, play the role of the smallest undivided time units. Because, as a rule,
time slots are short, it is not important for practice at what moment they are affected or
terminated. We will refer, for clarity, to the start of the time slot. One can find the overview
of main results related to discrete-time queueing models, e.g., in [2–4]. One of the first
numerical analyses of such models was proposed in [5].

One of the key research areas in the field of design and development of wireless
communication is the issue of energy saving. In the literature, different-type approaches
and solutions are proposed. One of them is the exhaustive single vacation policy in that the
service station (that can be identified as a network node) is switched off for a certain period
(deterministic or random) whenever the system empties (the buffer does not contain waiting
jobs and the service station is idle). The cost of maintaining a server in a ready-to-process
state is generally significantly higher than the cost of mere job accumulation during the
non-servicing period. Of course, suspension of service involves an increase in waiting times
and the subsequent risk of losing jobs due to buffer overload. In consequence, such a policy
is one way for the system to achieve symmetry in terms of system operating costs. Single
vacation policy can be used in the modeling of the operation of mobile network nodes
(e.g. working under the IEEE 802.16e Mobile WiMAX protocol) in which sleep and active
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periods change cyclically. Moreover, in the automated production line, if the accumulating
buffer becomes empty, machine conservation is sometimes planned that can be treated as a
machine vacation.

In the paper, we study the queue-size distribution in a finite-buffer discrete-type
model with a single vacation policy in the transient state. Non-stationary results for
different-type queueing models are much rarer than those obtained for the steady state
of the system. However, transient analysis is sometimes more desirable. For example,
a system in which the traffic intensity is sparse (such a situation can be observed, e.g., in
wireless sensor network node) or the traffic/processing rates change quite often, or a
new control mechanism is implemented, requires rather time-dependent analysis than
the stationary one. Applying the total probability law with respect to the first departure
epoch after the opening of the system, we build a system of differential equations for
the queue-size distribution at the fixed moment t conditioned by the buffer state at the
starting time t = 0. The solution of the corresponding system written for double probability
generating functions (PGFs for short) is derived in a compact form with the support of a
linear algebraic approach.

The overview of different-type models with service interruptions can be found in [6].
A discrete-time model described by geometric distributions operating under a multiple
vacation policy was investigated in [7]. Stationary distributions of the queue size and
waiting time were obtained there using quasi-birth-and-death chain and matrix-geometric
solution methods. In [8] an infinite-buffer discrete-time GI/Geo/1 model with multiple
vacation policies was studied. By using the matrix-geometric approach stationary represen-
tations for the queue size and waiting time distributions were obtained. The same queueing
system was investigated in [9] in the case of a single vacation scheme. A modification of
the classical single/multiple vacation policy for the discrete-time model was considered
in [10] where server vacations occur whenever the queue becomes empty or whenever a
timer expires. In [11] a class of single-server discrete-time queueing models with server
vacations, individual arrivals, and non-batch service was considered. It was shown that,
under the assumption that interarrival, service, vacation, and server operational times can
be cast with Markov-based representation, the class can be tractable as a matrix–geometric
or a matrix-product problem. A Geo/Geo/1-type queue with a single vacation mechanism
was studied in [12]. In [13] a more general GI/Geo/1-type model was investigated. Rep-
resentations for stationary distributions of the queue size at arrivals epochs and of the
waiting time for an arbitrary job were found there using the matrix-geometric solution
method. The supplementary variable technique was used in [14] to find main performance
measures in a discrete-time Geo/G/1 model operating under multiple vacations and with
setup-closedown times. Discrete-time queueing model GI/Geo/1 with a single vacation
policy was considered in [15]. The case of a multiple vacation policy was analyzed in [16].
The additional strategy of the N-policy was studied in [17]. One can find the solution to
the problem of equilibrium strategies in discrete-time Markovian queues working under
single and multiple vacations in [18]. In [19] (see also [20]) another mechanism limiting
the access to the service station was considered, namely a dropping function “filtering”
the arrival stream in dependence on the current queue size. An alternative strategy was
studied in [21] where a flexible queueing system was analyzed that adapts to the system
size by using a single or a bulk service discipline. Transient results for queueing models
with vacation policies can be found e.g., in [22–25] (see also [26,27]). Moreover, one can
find in [28–30] some new results for systems with different-type restrictions in the access to
the service facility. In particular, in [28] a model with active queue management is studied.

The remaining part of the paper is organized as follows. The detailed mathematical
description of the system is given in the next Section 2. The system of difference equations
for the transient queue-size distribution conditioned by the initial buffer state is built in
Section 3. In Section 4 we establish the corresponding system for double PGFs and write it
in the specific form. Section 5 contains the main results: the solution of the last system in a
compact form. Moreover, the appropriate result is obtained there for the equilibrium of
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the system.Section 6 presents numerical study illustrating theoretical results and in the last
Section 7 one can find a short conclusion.

2. Model Description

We deal with a discrete-time queueing model with the input stream of jobs governed
by the binomial process (see e.g., [31,32]), i.e., successive interarrival times τ1, τ2, . . . are
independent and geometrically distributed random variables as follows:

P{τj = k} = ak = a(1− a)k−1, (1)

where j, k ∈ N and a ∈ (0, 1) is a fixed parameter.
The processing of jobs is organized according to the natural FIFO service discipline

with the general-type probability mass function (PMF for short), where bk denotes the
probability that the service time equals k time slots, ∑∞

k=1 bk = 1. An incoming job that
finds the service station busy with processing is accumulated in the buffer of finite capacity
(B− 1) places. Hence, the maximal system size (the number of jobs allowed to be present
in the system simultaneously) equals B. Obviously, if the buffer is saturated on arrival,
the arriving job is lost, i.e., it leaves the system without processing. If the arrival and
departure occur at the same time slot, we assume that the arrival precedes the departure,
so we accept the so-called Arrival First (AF) scheme.

Every time when the system becomes empty (the buffer does not contain any waiting
job and the service station is free), a vacation period begins that can be treated as a kind
of a power saving mechanism. More precisely, the service station goes for a vacation of
random duration with a general-type PMF, whereby vj we denote the probability that the
vacation duration equals j time slots, ∑∞

j=1 vj = 1. During the vacation the processing is
blocked completely. After finishing the vacation, if there is at least one job waiting in the
accumulating buffer, the processing restarts immediately. Otherwise, the service station
waits for the nearest arrival (being ready for service).

Because of the fact that interarrival times are geometrically distributed the probability
p(i, j) that during i ≥ 1 time slots exactly 0 ≤ j ≤ i jobs will arrive can be easily expressed.
Since the sum of independent random variables with the same geometric distribution has
Pascal (negative binomial) distribution, we obtain

p(i, j) = aj(1− a)i−j
i

∑
l=j

(
l − 1
j− 1

)
. (2)

where i ≥ 1 and 0 ≤ j ≤ i.
In the paper we use in some formulae the characteristic function (indicator), so let us

put

1A(r)
de f
=

{
1, if r ∈ A,
0, if t /∈ A,

(3)

where A is a certain set.

3. Transient Equations for the Queue-Size Distribution

Let us denote by Xr the number of jobs present in the system at the time (slot) r ≥ 0,
including the one being processed at this time, if any. In this section, we establish transient
equations for the conditional queue-size distribution, where the condition is the state of the
accumulating buffer (the number of jobs present) at the starting epoch r = 0.

Introduce the following notation:

Qn(r, m)
de f
= P{Xr = m |X0 = n}, (4)

where m, n ∈ {0, . . . , B} and r ∈ N.
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Suppose, firstly, that the buffer accumulating the incoming jobs is empty at the starting
moment r = 0. In consequence, the vacation begins at this time. Let us fix the moment
r ∈ N. In relation to the first arrival, the following four different mutually excluding random
events may occur:

• Event no. 1 (E1(r)): the first job arrives before or at the moment r but after the
completion of the vacation;

• Event no. 2 (E2(r)): the vacation finishes before or at the moment r and during the
vacation (maybe at the last time slot of the vacation duration) the first job enters the
system;

• Event no. 3 (E3(r)): the first job arrives before or at the moment r but the vacation
finishes after r;

• Event no. 4 (E4(r)): the first arrival occurs after time r.

We are interested in the probabilities of random events

(Xr = m) ∩ Ei(r)

for i = 1, 2, 3, 4, conditioned by X0 = 0.
Considering the random event E1(r), we obtain

P{(Xr = m) ∩ E1(r) |X0 = 0} =
r−1

∑
i=1

ai

i−1

∑
j=1

vjQ1(r− i, m) + 1{1}(m)ar

r−1

∑
j=1

vj. (5)

Indeed, the first summand on the right side of (5) relates to the situation in that the
first arrival occurs before time r; in the second one the first job enters the system exactly at
time r, so m = 1 with probability one.

In the case of E2(r) we get similarly

P{(Xr = m) ∩ E2(r) |X0 = 0} = ∑r−1
i=1 ai ∑r−1

j=i+1 vj

[
∑B−2

k=0 p(j− i, k)Qk+1(r− j, m)

+QB(r− j, m)∑∞
k=B−1 p(j− i, k)

]
+ vr ∑r−1

i=1 ai

[
1{1,...,B−1}(m)p(r− i, m− 1)

+1{B}(m)∑∞
k=B−1 p(r− i, k)

]
+ ∑r−1

i=1 aiviQ1(r− i, m) + 1{1}(m)arvr.

(6)

The first summand on the right side of (6) refers to the situation in that the first arriving
job enters the system before time r and the vacation finishes after this arrival but still before
r. The second summand describes the case of the vacation completing at time r exactly and
the arrival occurring earlier. The two last summands on the right side of (6) are related to
the vacation completion time coinciding with the first arrival time: before and exactly at r,
respectively.

For the random event E3(r) we obtain the following representation:

P{(Xr = m) ∩ E3(r) |X0 = 0} = ∑∞
j=r+1 vj

[
∑r−1

i=1 ai

(
1{1,...,B−1}(m)p(r− i, m− 1)

+1{B}(m)∑∞
k=B−1 p(r− i, k)

)
+ 1{1}(m)ar

]
.

(7)

Finally, considering E4(r), we have

P{(Xr = m) ∩ E4(r) |X0 = 0} = 1{0}(m)
∞

∑
i=r+1

ai. (8)
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The formula of total probability gives

Q0(r, m) =
4

∑
i=1

P{(Xr = m) ∩ Ei(r) |X0 = 0}. (9)

Investigate now the case of the system starting the operation with at least one job
accumulated in the buffer. Due to the memoryless property of the geometric distribution of
interarrival times, successive departure epochs are renewal moments in the evolution of
the system. Applying the formula of total probability with respect to the first departure
moment after the opening of the system (r = 0), we obtain

Qn(r, m) = ∑r−1
i=1 bi

[
∑B−n−1

k=0 p(i, k)Qn+k−1(r− i, m) + QB−1(r− i, m)∑∞
k=B−n p(i, k)

]
+br1{n−1,...,B−1}(m)p(r, m− n) + ∑∞

i=r+1 bi

(
1{n,...,B−1}(m)p(r, m− n)

+1{B}(m)∑∞
k=B−n p(r, k)

)
,

(10)

where n ∈ {1, . . . , B}. The interpretation of the right side of (10) is similar to those stated
for (5) and (6).

In the next section, we collect the Formulae (5)–(8) and (10) and obtain the system of
linear equations for double PGFs of conditional probabilities Qn(r, m).

4. System of Equations for PGFs

Let us define the double transform (PGF) of Qn(r, m) in the following way:

qn(θ, z)
de f
=

∞

∑
r=1

θr
∞

∑
m=0

zmQn(r, m), (11)

where |θ| < 1 and |z| < 1.
Moreover, introduce PGFs of sequences (ak) and (vk) as follows:

A(z)
de f
=

∞

∑
k=1

akzk =
az

1− z(1− a)
, (12)

and

V(z)
de f
=

∞

∑
k=1

vkzk, (13)

where |z| < 1.
To establish the system for PGFs in a compact form, we need some auxiliary calcula-

tions.
Let us start with the right side of (5). Double transform of the first summand (on

arguments m and r) gives

∑∞
m=0 zm ∑∞

r=2 θr ∑r−1
i=1 ai ∑i−1

j=1 vjQ1(r− i, m)

= ∑∞
m=0 zm ∑∞

i=1 aiθ
i ∑i−1

j=1 vj ∑∞
r−i=1 θr−iQ1(r− i, m) = aθ

1−θ(1−a)V(θ(1− a))q1(θ, z).
(14)
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Similarly, taking the double generating function of the first summand on the right side
of (6), we obtain

∞

∑
m=0

zm
∞

∑
r=2

θr
r−1

∑
i=1

ai

r−1

∑
j=i+1

vj

B−2

∑
k=0

p(j− i, k)Qk+1(r− j, m)

=
∞

∑
m=0

zm
B−2

∑
k=0

∞

∑
i=1

ai

∞

∑
j=i+2

p(j− i, k)vjθ
j

∞

∑
r−j=1

θr−jQk+1(r− j, m)

=
B−2

∑
k=0

qk+1(θ, z)αk(θ), (15)

where

αk(θ)
de f
=

∞

∑
i=1

ai

∞

∑
j=i+2

vjθ
j p(j− i, k). (16)

According to the second summand on the right side of (6), let us put

β(θ, z)
de f
=

B−1

∑
m=1

zm
∞

∑
r=1

vrθr
r−1

∑
i=1

ai p(r− i, m− 1) + zB
∞

∑
r=1

vrθr
r−1

∑
i=1

ai

∞

∑
k=B−1

p(r− i, k). (17)

The third summand of (6), after transformation, leads to

∑∞
m=0 zm ∑∞

r=1 θr ∑r−i
i=1 aiviQ1(r− i, m)

= ∑∞
i=1 aiθ

ivi ∑∞
m=0 zm ∑∞

r=i+1 θr−iQ1(r− i, m) = a
1−a V(θ(1− a))q1(θ, z).

(18)

Next, let us define (compare the right side of (7))

γ(θ, z)
de f
=

∞

∑
r=1

θr
∞

∑
j=r+1

vj

[
r−1

∑
i=1

ai

(B−1

∑
m=1

zm p(r− i, m− 1) + zB
∞

∑
k=B−1

p(r− i, k)
)]

. (19)

Summing up and transforming the last components on the right sides of (5)–(7), we
get

z
∞

∑
r=1

θrar = zA(θ) =
azθ

1− θ(1− a)
. (20)

Lastly, double transform of the right side of (8) gives

∞

∑
r=1

θr
∞

∑
i=r+1

ai =
(1− a)θ

1− (1− a)θ
. (21)

At this stage, referring to the representations (14)–(21), after simplification, we obtain
from (9)

q0(θ, z) = ∑B−2
k=0 αk(θ)qk+1(θ, z) + qB(θ, z)∑∞

k=B−1 αk(θ)
+q1(θ, z)V(θ(1− a)) a

(1−θ(1−a))(1−a)

+β(θ, z) + γ(θ, z) + θ(1−a+az)
1−θ(1−a) .

(22)

Putting

g(θ)
de f
=

aV(θ(1− a))
(1− θ(1− a))(1− a)

(23)
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and

h(θ, z)
de f
= β(θ, z) + γ(θ, z) +

θ(1− a + az)
1− θ(1− a)

, (24)

we get, finally,

q0(θ, z) =
B−2

∑
k=0

αk(θ)qk+1(θ, z) + qB(θ, z)
∞

∑
k=B−1

αk(θ) + q1(θ, z)g(θ) + h(θ, z). (25)

Let us now analyze Equation (10). Observe that

∑∞
m=0 zm ∑∞

r=1 θr ∑r−1
i=1 bi ∑B−n−1

k=0 p(i, k)Qn+k−1(r− i, m)

= ∑B−n−1
k=0 ∑∞

i=1 biθ
i p(i, k)∑∞

m=0 zm ∑∞
r=i+1 θr−iQn+k−1(r− i, m)

= ∑B−n−1
k=0 τk(θ)qn+k−1(θ, z),

(26)

where

τk(θ)
de f
=

∞

∑
i=1

biθ
i p(i, k), k ∈ {0, . . . , i}. (27)

Moreover, denoting

ηn(θ, z)
de f
=

∞

∑
r=1

θr

(
∞

∑
i=r

bi

B−1

∑
m=n

zm p(r, m− n) + zB
∞

∑
i=r+1

bi

∞

∑
k=B−n

p(r, k)

)
, (28)

we obtain from (10)

qn(θ, z) =
B−n−1

∑
k=0

τk(θ)qn+k−1(θ, z) + qB−1(θ, z)
∞

∑
k=B−n

τk(θ) + ηn(θ, z), (29)

where n ∈ {1, . . . , B}.
Let us transform Equations (25) and (29) applying the following interchanging:

xn(θ, z)
de f
= qB−n(θ, z) n ∈ {0, . . . , B}. (30)

We obtain from (25)

xB(θ, z) =
B−1

∑
k=1

αB−k−1(θ)xk(θ, z) + x1(θ, z)g(θ) + x0(θ, z)
∞

∑
k=B−1

αk(θ) + h(θ, z). (31)

Similarly, from (29) we get

n−1

∑
k=−1

τk+1(θ)xn−k(θ, z)− xn(θ, z) = φn(θ, z), (32)

where n ∈ {0, . . . , B− 1}, and

φn(θ, z)
de f
= −x1(θ, z)

∞

∑
k=n+1

τk(θ)− ηB−n(θ, z). (33)
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5. Representation for Solution

In this section, we obtain the solution of the system (31)–(32) in a closed form. It is
proved in [33] that each solution of the following system of infinitely many linear equations:

n−1

∑
k=−1

τk+1xn−k − xn = φn, n ≥ 1, (34)

where (τk) and (φk) are known sequences of coefficients and free terms, respectively,
and (xk) is the sequence of unknowns, can be represented in the form

xn = LRn +
n

∑
k=1

Rn−kφk, n ≥ 1, (35)

where L is a certain constant and the sequence (Rk) can be defined recursively by successive
terms of the sequence of coefficients (τk) in the following way:

R0 = 0, R1 = (τ0)
−1,

Rk = R1

(
Rk−1 −∑k−1

j=0 τj+1Rk−1−i

)
,

(36)

where k ≥ 2. Alternatively, the sequence (Rk) can be obtained by using generating functions.
Indeed, defining

T(z)
de f
=

∞

∑
k=1

τkzk, |z| < 1, (37)

it can be easily shown that

∞

∑
k=0

Rkzk =
z

T(z)− z
. (38)

In consequence, expanding the right side of (38) in the Maclaurin series and comparing
the coefficients at successive powers of z, we have

Rk =
1
k!

dk

dzk

( z
T(z)− z

)∣∣∣
z=0

. (39)

Comparing systems of Equations (32) and (34) we can observe the following two
essential differences. The first one is the dependence of unknowns, coefficients, and free
terms on arguments θ and z in (32). The next is the number of equations that is finite in
(30) (where n ∈ {0, . . . , B− 1}) and infinite in (34) (where n ≥ 1). Moreover, we have an
additional Equation (31) written for n = B.

Referring to (35), we can write

xn(θ, z) = L(θ, z)Rn(θ) +
n

∑
k=1

Rn−k(θ)φk(θ), (40)

where n ≥ 1, and (compare (36))

R0(θ) = 0, R1(θ) = (τ0(θ))
−1,

Rk(θ) = R1(θ)
(

Rk−1(θ)−∑k−1
j=0 τj+1(θ)Rk−1−i(θ)

) (41)

for k ≥ 2.
Note that to obtain the explicit-form solution of the system (31)–(32) we need the

representation not only for L(θ, z) but also for x0(θ, z) (since the Formula (40) is valid
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for n ≥ 1) and for x1(θ, z) (occurring in the definition (33) of φn(θ, z)). As it turns out,
the Equation (31), treated as a kind of a boundary condition, will play a special role here.

Substituting n = 0 into (32) and applying (33), we get

τ0(θ)x1(θ, z)− x0(θ, z) = −x1(θ, z)
∞

∑
k=1

τk(θ)− ηB(θ, z). (42)

Hence we obtain the formula linking x0(θ, z) with x1(θ, z), namely

x0(θ, z) = x1(θ, z)
∞

∑
k=0

τk(θ, z) + ηB(θ, z). (43)

Simultaneously, from the other side, x1(θ, z) can be expressed using (40) written for
n = 1. Indeed, we have

x1(θ, z) = L(θ, z)R1(θ). (44)

Substituting (44) into (43), we obtain

x0(θ, z) = L(θ, z)R1(θ)
∞

∑
k=0

τk(θ) + ηB(θ, z). (45)

So, having the Formulae (44)–(45), the remaining task is to find the representation for
L(θ, z).

Using (40), (44) and (45) on the right side of (31), we obtain

xB(θ, z) = ∑B−1
k=1 αB−k−1(θ)

[
L(θ, z)Rk(θ) + ∑k

i=1 Rk−i(θ)

×
(
−L(θ, z)R1(θ)∑∞

j=i+1 τj(θ)− ηB−i(θ, z)
)]

+L(θ, z)R1(θ)g(θ) +
(

L(θ, z)R1(θ)∑∞
i=0 τi(θ)

+ηB(θ, z)
)

∑∞
k=B−1 αk(θ) + h(θ, z).

(46)

Similarly, substituting n = B into (40) and referring to (33), we have

xB(θ, z) = L(θ, z)RB(θ) + ∑B
k=1 RB−k(θ)

×
(
−L(θ, z)R1(θ)∑∞

i=k+1 τi(θ)− ηB−k(θ, z)
)

.
(47)

Comparing the right sides of (46) and (47), we get the following formula for L(θ, z) :

L(θ, z) =
N(θ, z)
D(θ)

, (48)

where

N(θ, z)
de f
= ∑B

k=1 RB−k(θ)ηB−k(θ, z)−∑B−1
k=1 αB−k−1(θ)∑k

i=1 Rk−i(θ)ηB−i(θ, z)
+ηB(θ, z)∑∞

k=B−1 αk(θ) + h(θ, z)
(49)

and

D(θ)
de f
= RB(θ)− R1(θ)∑B

k=1 RB−k(θ)∑∞
i=k+1 τi(θ)

−∑B−1
k=1 αB−k−1(θ)

(
Rk(θ)− R1(θ)∑k

i=1 Rk−i(θ)∑∞
j=i+1 τj(θ)

)
−R1(θ)g(θ)− R1(θ)∑∞

i=0 τi(θ)∑∞
k=B−1 αk(θ).

(50)

Finally, referring to Formulae (30), (33), (40), (44), (45) and (48), we can state the
following main result:
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Theorem 1. The double PGF qn(·, ·) of the queue-size conditional distribution in the considered
discrete-time Geo/G/1/B-type queueing model with single vacation policy can be represented in
the following way:

qn(θ, z) =
N(θ, z)
D(θ)

RB−n(θ)−
B−n

∑
k=1

RB−n−k(θ)

×
(

N(θ, z)
D(θ)

R1(θ)
∞

∑
i=k+1

τi(θ) + ηB−k(θ, z)

)
, (51)

where n ∈ {0, . . . , B− 1}, and

qB(θ, z) =
N(θ, z)
D(θ)

R1(θ)
∞

∑
k=0

τk(θ) + ηB(θ, z). (52)

The formulae for τk(θ), ηk(θ, z), Rk(θ), N(θ, z) and D(θ) are given in (27), (28), (41), (49) and
(50), respectively.

It is possible to obtain from Theorem 1 a useful corollary. Let us put

PX(z)
de f
=

∞

∑
m=0

zmP{X = m}, (53)

where |z| < 1 and X stands for the stationary number of jobs present in the system.
Obviously, the stationary distribution is independent of the initial buffer state. The well-
known Abelian theorem leads to the following result:

Corollary 1. The PGF PX(·) of the number of jobs X present in the system in the equilibrium (the
stationary state) can be computed from the formula

PX(z) = lim
θ↑1

(1− θ)
∞

∑
r=1

θr
∞

∑
m=0

zmP{Xr = m |X0 = B}

= lim
θ↑1

(1− θ)qB(θ, z)

= lim
θ↑1

(1− θ)

(
N(θ, z)
D(θ)

R1(θ)
∞

∑
k=0

τk(θ) + ηB(θ, z)

)
, (54)

where |z| < 1.

Obviously, we also have

E(X) = P′X(1). (55)

6. Numerical Study

In this section, we illustrate theoretical results obtained in the previous section via
numerical examples. Let us study the model in which the parameter a ∈ (0, 1) of the
geometric distribution of interarrival times takes on values from the set

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Investigate three different types of the service (processing) time distribution, namely

• deterministic: b2 = 1, bk = 0, k = 1, k ≥ 3;
• finite discrete: b1 = 0.25, b2 = 0.50, b3 = 0.25, bk = 0, k ≥ 4;
• geometric : bk = (0.5)k, k ≥ 1.
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Let us note that for all these distributions the mean value equals 2 while variances,
however, are different: 0 for the deterministic case, 4.5 for the finite discrete one, and 2 for
the geometric distribution.

Similarly, let us consider three different probability distributions of the single vacation
duration, namely

• deterministic: v2 = 1, vk = 0, k = 1, k ≥ 3;
• finite discrete: v1 = 0.25, v2 = 0.50, v3 = 0.25, vk = 0, k ≥ 4;
• geometric : vk = (0.5)k, k ≥ 1.

As in the case of the service time distributions, for all distributions the mean value is
the same and equal to 2. The variance equals 0, 4.5, and 2 for deterministic, finite discrete,
and geometric cases, respectively.

In Table 1 and Figure 1, the values of the mean stationary queue size are presented
for B = 3 in a function of the parameter a for deterministic service time distribution and
three different probability distributions of the single vacation duration. Let us observe that,
obviously, mean queue sizes increase with increasing a (or, equivalently, with decreasing
mean interarrival times). Note that the impact of the service type distribution (keeping the
same means) and its variance seems to be slight.

Table 1. Mean queue size for deterministic service time distribution.

Parameter a Deterministic SV Finite Discrete SV Geometric SV

0.1 0.3921 0.4052 0.4197
0.2 0.5635 0.6037 0.6464
0.3 0.7051 0.7742 0.8438
0.4 0.8371 0.9253 1.0077
0.5 0.9667 1.0560 1.1318
0.6 1.0866 1.1583 1.2126
0.7 1.1835 1.2277 1.2575
0.8 1.2515 1.2711 1.2829
0.9 1.2974 1.3021 1.3047

Deterministic

Finite discrete

Geometric

2 4 6 8
10*a

0.2

0.4

0.6

0.8

1.0

1.2

Mean queue size

Figure 1. Mean queue size for deterministic service time distribution.

A similar conclusion can be formulated in the case of finite discrete service time
distribution for which appropriate results and presented and visualized in Table 2 and in
Figure 2, and for geometric service time distribution (see Table 3 and Figure 3).
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Table 2. Mean queue size for finite discrete service time distribution.

Parameter a Deterministic SV Finite Discrete SV Geometric SV

0.1 0.3902 0.4033 0.4179
0.2 0.5609 0.6015 0.6448
0.3 0.6988 0.7698 0.8417
0.4 0.8236 0.9174 1.0061
0.5 0.9448 1.0473 1.1356
0.6 1.0619 1.1563 1.2295
0.7 1.1679 1.2408 1.2915
0.8 1.2558 1.3014 1.3297
0.9 1.3231 1.3431 1.3542

Deterministic

Finite discrete

Geometric

2 4 6 8
10*a

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Mean queue size

Figure 2. Mean queue size for finite discrete service time distribution.

Table 3. Mean queue size for geometric service time distribution.

Parameter a Deterministic SV Finite Discrete SV Geometric SV

0.1 0.3830 0.3961 0.4108
0.2 0.5509 0.5923 0.6366
0.3 0.6810 0.7555 0.8318
0.4 0.7931 0.8965 0.9963
0.5 0.9001 1.0229 1.1324
0.6 1.0088 1.1371 1.2414
0.7 1.1206 1.2381 1.3242
0.8 1.2225 1.3222 1.3810
0.9 1.3365 1.3845 1.4124

Deterministic

Finite discrete

Geometric

2 4 6 8
10*a

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Mean queue size

Figure 3. Mean queue size for geometric service time distribution.
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7. Conclusions

In this article, the queue-size distribution is studied in a finite-buffer discrete-time
queueing model in which a single vacation policy is implemented. Identifying renewal
moments in the evolution of the system and applying the formula of total probability
and linear algebra, the representation for the double probability generating function of
the transient queue-size distribution is found in a compact form. From the formula, it
is possible to obtain the mean stationary queue size just by using the Abelian theorem
and differentiation. A numerical study illustrating analytical results is attached. The
considered queueing system has potential applications in modeling energy-saving modes
or maintenance periods in wireless communication networks, production lines, etc.
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