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Abstract: In this paper, a variety of boundary value problems (BVPs) known as hybrid fractional
sequential integro-differential equations (HFSIDs) with two point orders (p, q) are investigated. The
uniqueness and existence of the solution are discussed via Banach fixed-point theorems. Certain
particular theorems associated with Hyers–Ulam and Hyers–Ulam–Rassias stability to the solution,
as well as the uniqueness and existence of the solution of the BVPs are studied. The results are
illustrated with some particular examples, and the numerical data are analyzed for confirmation
of the results. The results obtained in this work are simple and can easily be applicable to physical
systems. Furthermore, symmetry analysis of fractional differential equations and HFSIDs are also
presented. This is due to the fact that the aforementioned analysis plays a significant role in both the
optimization and qualitative theory of fractional differential equations.

Keywords: boundary value problem; HFSID; fixed-point theorem; Hyers–Ulam and Hyers–Ulam–
Rassias stability

1. Introduction

In a variety of scientific and engineering fields such as the electrodynamics of complex
media, statistics, chemistry, biology, heat transfer analysis, hydro and thermo dynamics,
several waves phenomena, fractal theory, physics, control theory, economics, image signals
and processing, and bio-physics, various phenomena are modeled mathematically in
the form of linear/nonlinear fractional ordinary differential equations/fractional partial
differential equations (FODEs/FPDEs) [1,2]. Similarly, the concept of symmetry is a novel
phenomenon in fractional calculus applied to investigate real-world problems, as well as
used to study the correlation between applied and mathematical sciences [3–6], for example
physics, fluid mechanics, dynamical systems, biology, control theory, entropy theory, and
many areas of engineering [7–9]. Fractional differential equations can be used to more
accurately describe some real-world issues in physics, mechanics, and other disciplines.
Therefore, fractional-order differential equations have attracted much attention lately and
are now a prominent subfield of nonlinear analysis. Fractional differential equations have
been the subject of numerous monographs. Several researchers have recently conducted
extensive studies on differential equations and inclusions with various boundary conditions.
For more information and references, please see the subsequent part of the Introduction
and the references therein.

The most helpful applications in fractional calculus are the Riemann–Liouville (R-L)
and Caputo fractional derivatives. The Riesz fractional derivative linearly represents both
the left fractional R-L derivative and the right fractional R-L derivative. The Caputo and
the fractional R-L derivatives are relatively connected. It has been proven that, under the
appropriate regularity assumptions, it is possible to convert the fractional R-L derivative
into the Caputo fractional derivative [10,11]. In FPDEs, the time-fractional derivatives are
usually defined by applying the Caputo fractional derivatives. The fundamental issue is
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that the initial conditions for the R-L method are necessary to comprise the R-L fractional
derivative limit at time t = 0, which has uncertain physical significance. It is worth
mentioning that the foundation standards of the classical derivatives of the given functions
at any time t = 0 are the same for Caputo derivatives similar to integer-order differential
equations [12,13].

Currently, hybrid fractional differential equations comprise one of the most extensive
areas of interest in FPDEs, which mainly involves the fractional derivative of a hybrid
unknown function that depends on the nonlinearity that appears in the given system [14,15].
A number of research articles [16,17] have presented various new findings on hybrid
differential equations. For example, Miller and Ross [18,19] defined sequential derivatives
in a monograph, a type of fractional derivative that combines the available derivative
operators. Similarly, a relationship between the common R-L derivative and the fractional
derivative of the sequential form was extensively studied in [20,21]. In addition, some
academics have looked into hybrid fractional differential equations. A hybrid unknown
function’s fractional derivative and the nonlinearity that depends on it are both present
in this class of equations. In a number of papers [14–17], some recent findings on hybrid
differential equations are presented.

The stability theory of FPDEs has obtained great consideration since Ulam gave the
idea in 1940 and 1941. Since then, Rassias developed the Hyers–Ulam stability for both
nonlinear and linear functions in 1982 and 1998. The Hyers–Ulam stability for linear DEs
was first introduced in 1997 by Obloza [22–25]. Due to the inclusion of numerous vigorous
systems as special instances, research of the HFSID equations has significant applications.
The uniqueness and existence analysis for the solution of the standard hybrid differential
equations of the first order with a leading form of perturbation were explored by Dhage and
Lakshmikantham and Dhage and Jadhav, respectively, in [26,27]. Recently, Jamil et al. [28]
discussed extensively the uniqueness and existence of the subsequent hybrid fractional
sequential integro-differential equation:

cDp

 cDqξ(t)−
m
∑

i=0
Iδi hi(t,ξ(t))

f(t,ξ(t))

 = g(t, ξ(t), Iγξ(t)), ∀ t ∈ [0, 1],

ξ(0) = 0, cDqξ(0) = 0, ξ(1) = ∆ξ(η), 0 < ∆, η < 1.

(1)

Following the idea used for the existence and uniqueness in Equation (1), we use the
following hybrid fractional sequential integro-differential (HFSID) equation with the two
points orders (p, q) with different boundary conditions as

cDp

 cDqξ(t)−
m
∑

i=0
Iδi hi(t,ξ(t))

f(t,ξ(t))

 = g(t, ξ(t), Iγξ(t)), t ∈ [0, 1],

ξ(0) = 0, ξ(1) = b, b ∈ R, cDq, ξ(0) = 0, p ∈ (0, 1], q ∈ (1, 2], p+ q ∈ (2, 3],

(2)

where cDp, cDq indicates Caputo’s fractional operator of order p and q. It should be noted
that 0 < p < 2, 0 < q ≤ 2. Further, the fractional R-L integral of order γ is denoted
by Iγ, and the fractional R-L sequential integral of order δi is denoted by Iδi for i > 0
with hi(0, 0) = 0. It should be further noted that the functions hi ∈ C([0, 1] × R,R),
f ∈ C([0, 1]×R,R− {0}) and g∈ C([0, 1]×R2,R).

2. Preliminaries

Here, are some fundamental definitions of fractional calculus, as well as some theorems
that guarantee the existence of the results from initial value problems.
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Definition 1. The following formula defines the fractional R-L integral for p > 0 for a continuous
function ξ : (0, ∞)→ R.

Ipξ(t) =
1

Γ(p)

∫ t

0
(t− s)p−1ξ(s)ds.

assuming that the above integral is well defined on the set of real numbers.

Definition 2. The fractional R-L derivative for p > 0 of a continuous function ξ defined above is
given by

Dpξ(t) =
1

Γ(n− p)

dn

dtn

∫ t

0
(t− s)n−p−1ξ(s)ds, ∀ p ∈ (n− 1, n].

Definition 3. The function ξ : (0, ∞) → R defines Caputo’s fractional derivative for p > 0 of a
function ξ(t) as

Dpξ(t) =
1

Γ(n− p)

∫ t

0
(t− s)n−p−1ξn(s)ds, ∀ p ∈ (n− 1, n],

where the integral on the right-hand side is distinctly defined on the interval (0, ∞) and n = [p] + 1.
Here, [p] is a bracket function, which signifies the integer component of order p.

Proposition 1. If β, q > 0, and ξ(t) are functions, then Iβ[Iqξ(t)] = Iβ + qξ(t) is the property
of the semi-group for the fractional R-L integrals of order β and q, respectively.

Theorem 1. Arzelà–Ascoli Theorem
A subset S of the space of continues functions C(X) is compact iff S is closed, bounded, and

equi-continuous.

Lemma 1 ([29]). For the function ξ ∈ L(0, T) ∩ C(0, T), the solution ξ(t) of the fractional
Caputo’s differential equation of the form:

cDqξ(t) = g(t), q ∈ (n− 1, n],

is presented by

ξ(t) = Iqg(t) + k0 + k1t + · · ·+ kn−1t = Iqg(t) +
n−1

∑
i=0

kiti = ξ(t),

Here, we establish ‖·‖ and a multiplication (×) in E = C([0, 1],R) (a Banach space) by
||ξ|| = sup

t∈J
|ξ(t)| and (ξv)(t) = ξ(t) v(t), for all t ∈ J = [0, 1]. Therefore, if E is a Banach

space, then the multiplication and norm mentioned above should be satisfied.

Lemma 2 ([26]). Suppose S ⊆ E is closed, bounded, and convex. Further suppose that two
operators A and B such that A : E→ E and B : S→ E satisfy the following conditions:

(c1) The operator A is contractive;
(c2) The operator B is compact;
(c3) The function ξ is of the form ξ = Aξ + Bζ such that, for all ζ ∈ S, it implies that ξ ∈ S.

Then, the solution for the operator equation ξ = Aξ + Bζ exists.

To discuss the Ulam stability, let us examine the equation of the form:

Dpξ(t) = g(t, ξ(t)), ∀ t ∈ J = [0, T], n− 1 < p ≤ n, (3)
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Definition 4 ([30]). For any constant k > 0 such that the inequality below has a solution for any
arbitrary g ∈ C([0, T],R) and ε > 0, then Equation (3) is supposed to be Hyers–Ulam stable.

|Dpg(t)− g(t, g(t))| ≤∈, ∀ t ∈ J, (4)

∃ a solution ξ(t) of Equation (3) such that

|g(t)− ξ(t)| ≤∈ k, for all t ∈ J. (5)

Definition 5 ([30]). For any constant kφ,g such that the solution of the subsequent inequality holds
for any arbitrary ε > 0, then Equation (3) is said to be Hyers–Ulam–Rassias stable for

|Dpg(t)− g(t, g(t))| ≤∈ φ(t), for all t ∈ J, (6)

∃ solution ξ(t) of Equation (3) satisfying

|g(t)− ξ(t)| ≤∈ kφ,gφ(t), for allt ∈ J = [0, T]. (7)

Remark 1 ([30]). For a function Φ ∈ C([0, T],R)(relies only on element y ∈ C([0, T],R]) so
that:
1. :|Φ(t)| ≤∈, for all t ∈ [0, T];
2. :Dpy(t) = g(t, y(t)) + Φ(t), for all t ∈ J = [0, T].

then g ∈ C([0, T],R) is a solution of Equation (4).

3. Symmetry Analysis of Fractional Differential Equations

Consider an independent variable ξ ∈ R, t > 0 and the independent function u(t, ξ).
The partial-order derivatives are denoted by ∂i

ξ u for i = 1, 2, · · · , s, and cDα
t u is the Caputo

fractional derivative of order α. Consider a general fractional partial differential equation
of the form

F(ξ, t, u,c Dα
t u, ∂ξ u, ∂2

ξ u, · · · , ∂s
ξ u) = 0, 0 < α ≤ 1,

then the one-parameter Lie-symmetry method is given in the following transformation:

t̄ = t + ετ(t, ξ, u) +Oε2,

ξ̄ = ξ + εξ(t, ξ, u) +Oε2,

ū = u + εη(t, ξ, u) +Oε2.

Here, ζ, τ′, η are the infinitesimals such that ζ = dξ̄
dε̄ |ε=0, τ′ = dτ̄

dε̄ |ε=0, and η = dū
dε̄ |ε=0.

3.1. Symmetry Analysis of Time-Fractional Boundary Value Problems

In this subsection, we study the symmetry analysis of the initial and boundary value
problems in the Caputo sense. Consider the following fractional diffusion equation in
Caputo’s form as

cDα
τu =

d
dξ

(
up du

dξ

)
, p 6= 0, 0 < α ≤ 0,

with the initial and boundary conditions of the form

u(τ, 0) = a(τ), for τ > 0, and u(0, ξ) = b(ξ), for ξ > 0.

The symmetries for this equation were derived by Gazizov, Kasatkin, and Lukashchuk
in [31], which we can use as an infinitesimal generator as

X =

(
c1 +

αξc2

2
+ pc3ξ

)
∂

∂ξ
+ tc2

∂

∂t
+ 2uc3

∂

∂u
. (8)

where c1, c2, c3 are arbitrary constant.
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3.2. Symmetry Analysis of HFSID

In this section of the research, we look at the IBVPs one-parameter Lie symmetry
analysis with Caputo fractional derivative. We know that it can explain actual processes in
terms of natural processes. If the initial and boundary conditions for the HFSID are of the
form: 

cDp

 cDqξ(t)−
m
∑

i=0
Iδi hi(t,ξ(t))

F(t,u(ξ,t))

 = G(t, ξ(t), Iγξ(t)), t ∈ [0, 1],

ξ(0) = 0, cDq, ξ(0) = 0,

(9)

where F and G are some known functions, then we follow the following definition.

Definition 6. We say that the symmetry (8) admits Equation (9) with the boundary condition if:

1. X(k)Dp(cDqξ(t)− G(t, ξ(t), Iγξ(t))) whenever Dp(Dqξ(t) = G(t, ξ(t), Iγξ(t)));
2. X(c)(cDp(cDqξ(0))) = 0, whenever cDp(cDqξ(0)) = 0;
3. X(k−1)Dp(cDqξ(0)) = 0, whenever cDp(cDqξ(0)) = 0.

Definition 7. The solution u = v(x, t) of Equation (9) is an invariant solution, resulting under the
symmetry of Section 3 with infinitesimal generator (8) if and only if:

1. u= v(x, t) satisfies Equation (sym1);
2. u = v(x, t) is an invariance surface under X.

The following theorem will help for the symmetry of the HFSID equation.

Theorem 2. u(x,t)=v(x,t) is an invariant solution of Equation (9) if and only if the function v(x,t)
under the generator (8) allows the condition:

η(x, t, v(x, t))− ζ(x, t, v(x, t))− τ(x, t, v(x, t))D1−p(D1−qξ(t)G(t, ξ(t), Iγξ(t))
)
= 0. (10)

Proof. As the solution u = v(x,t) is invariant and admits the condition X(u−v(x,t)), then
with the help of Definitions 6 and 7, we have

0 = X(u− v(ξ, t)) =
((

c1 +
αξc2

2
+ pc3ξ

)
∂

∂ξ
+ tc2

∂

∂t
+ 2uc3

∂

∂u

)
(u− v(x, t))

= c1
∂(u− v(ξ, t))

∂ξ
+

αξc2

2
∂(u− v(ξ, t))

∂ξ
+ pc3ξ

∂(u− v(ξ, t))
∂ξ

+ tc1
∂(u− v(ξ, t))

∂t
+ 2uc3

∂(u− v(ξ, t))
∂u

,

(11)

since u = v(ξ, t) so that ut =
∂u
∂t and in Caputo’s form ut =c D1−p(D1−qξ(t)G(t, u(t), Iγξ(t))),

finally we obtain:

η(ξ, t, v(ξ, t))− ζ(ξ, t, v(ξ, t))− τ(ξ, t, v(ξ, t))D1−p(D1−qξ(t)G(t, ξ(t), Iγξ(t))
)
, (12)

and this completes the proof.

In the next section, we discuss the existence and uniqueness solution of Equation (2).

4. Solution and Existence of HFSID

This section examines the BVP for the HFSID in the form of (2). Using the concepts
mentioned above and the findings covered in the previous section, we first derive the
solution of the BVP (2) before going to the existence theory. Our solution is based on the
following lemma.

Lemma 3. If 0 < p ≤ 1, 1 < q ≤ 2, and γ > 0 are satisfied by the functions gi, hi, and fi, then
the BVP (2) has a unique solution provided by
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ξ(t) =
∫ t

0

(t− s)q−1f(s, ξ(s))
Γ(q)

∫ s

0

(s− µ)p−1g(µ, ξ(µ), Iγξ(µ))

Γ(p)
dµds +

[
b +

m

∑
i=1

Iδi+qhi(1, ξ(1))

−
∫ 1

0

(t− ss)q−1f(s, ξ(s))
Γ(q)

∫ 1

0

(1− s)p−1g(s, ξ(s)
Γ(p)

, Iγξ(s))ds
]

t +
m

∑
i=1

Iδi+qhi(t, ξ(t)), (13)

where

Iδi+qhi(t, ξ(t)) =
∫ t

0

(t− s)δi+q−1

Γ(δi + q)
hi(s, ξ(s))ds,

Iδi+qhi(1, ξ(1)) =
∫ 1

0

(1− s)δi+q−1

Γ(δi + q)
hi(s, ξ(s))ds.

Proof. Using the R-L fractional integral operator p with the use of Lemma 1, the HFSID
Equation (2) presumably obtained in the form:

cDqξ(t)−
m
∑

i=1
Iδi hi(t, ξ(t))

f(t, ξ(t))
= Ipg(t, ξ(t), Iγξ(t)) + k0, (14)

with the use of the subsidiary conditions ξ(0) = 0, Dqξ(0) = 0, we have hi(0, 0) = 0 and
k0 = 0. Thus, for f (0, 0) 6= 0, Equation (14) takes the form:

Dqξ(t) =
m

∑
i=1

Iδi hi(t, ξ(t)) + f(t, ξ(t))
∫ t

0

(t− s)p−1g(s, ξ(s), Iγξ(s))
Γ(p)

ds. (15)

Next, we use the R-L fractional integral operator q combined with Proposition 1 and
Lemma 1 so that Equation (15) takes the form:

ξ(t) =
∫ t

0

(t− s)q−1f(s, ξ(s))
Γ(q)

∫ s

0

(s− µ)p−1g(µ, ξ(µ), Iγξ(µ))

Γ(p)
dµds +

m

∑
i=1

Iδi+qhi(t, ξ(t)) + k1 + k2t, (16)

and by the application of the initial and boundary conditions of Equations (2) to (16), we
have

k1 = 0, k2 = b−
[ ∫ 1

0

(t− s)q−1f(s, ξ(s))
Γ(q)

.
∫ 1

0

(s− µ)p−1g(s, ξ(s), Iγξ(s))
Γ(p)

dµds +
m

∑
i=1

Iδi+qhi(1, ξ(1))
]

After the inclusion of k2, Equation (16) takes the form:

ξ(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s, ξ(s))

1
Γ(p)

∫ s

0
(s− µ)p−1g(µ, ξ(µ), Iγξ(µ))dµds +

m

∑
i=1

Iδi+qhi(t, ξ(t))

+t
[

b−
∫ 1

0

(t− s)q−1f(s, ξ(s))
Γ(q)

.
∫ 1

0

(1− s)p−1g(s, ξ(s), Iγξ(s))
Γ(p)

ds +
m

∑
i=1

Iδi+qhi(1, ξ(1))
]

. (17)

This gives the unique solution of Equation (2). Hence, it is proven.

The following suppositions are taken into consideration to obtain a result for the
existence.
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Theorem 3.

• A1 : The continuous functions f, g are defined as f : [0, 1] × R → R − {0} and g :
[0, 1] × R2 → R. Further, suppose that hi has positive functions φ(t), χ(t), and θi(t),
respectively, with bounds ‖φ‖, ‖χ‖, and ‖θi‖. These positive functions are restricted as∣∣f(t, ξ)− f(t, ζ

∣∣ ≤ φ
∣∣ξ − ζ

∣∣,∣∣g(t, ξ, ξ̄)− g(t, ζ, ζ̄
∣∣ ≤ χ(

∣∣ξ − ζ
∣∣+ ∣∣ξ̄ − ζ̄

∣∣), ∀ t ∈ [0, 1] and ξ, ζ ∈ R.

• A2 :

|f(t, ξ)| ≤ ξ(t), for all (t, ξ) ∈ [0, 1]×R, ξ ∈ C([0, 1],R+),

|g(t, ξ, ζ)| ≤ ζ, for all (t, ξ, ζ) ∈ [0, 1]×R×R, ζ ∈ C([0, 1], R+),

|hi(t, ξ)| ≤ θi, for all (t, ξ) ∈ [0, 1]×R, θi ∈ C([0, 1],R+).

• A3 : For the real number r > 0, we can derive[ m

∑
i=1

‖φi‖
Γ(1 + δi + q)

(
Tδi+q + 1

)
+

Tp+q

Γ(q+ 1)Γ(p+ 1)
‖ξ‖ ‖ζ‖

]
≤ r,

and[
Tp

Γ(p+ 1)
‖ζ‖ ‖Θ‖+ ‖χ‖ ‖ξ‖

(
Tp

Γ(p+ 1)
+

Tp+γ

Γ(γ + p+ 1)

)](
Tq

Γ(q+ 1)
− t

Γ(q+ 1)

)
< 1. (18)

This shows that the BVP (2) has at least one solution on J = [0, 1].

The generalized Krasnoselikii fixed-point theorem by Dhage presented in [26] is the
foundation for our primary existence conclusion, which is stated in Lemma 2.

Theorem 4. Suppose the assumptions A1 −A3 hold, then ∃ at least one solution in the interval
[0, 1] of the BVP (2).

Proof. To prove our results, first, we set the bounds sup
t∈[0,1]

|φ(t)| = ‖φi‖, sup
t∈[0,1]

|ξ(t)| =

‖ξ‖, sup
t∈[0,1]

|Θi(t)| = ‖Θ‖, sup
t∈[0,1]

|ζ| = ‖ζ‖, sup
t∈[0,1]

|χ(t)| = ‖χ‖, for i = 1, 2,. . . , m.

Consider a Banach space E = C([0, 1],R), and let S ⊆ E, where S = {ξ ∈ E : ‖ξ‖ ≤
R}, then obviously, S is closed, bounded, and convex. Further, consider two operators
D : E −→ E and C : E −→ E, such that

Cξ(t) =
∫ t

0

(t− s)p−1g(s, ξ(s))
Γ(p)

, Iγξ(t))ds, and Dξ(t) = f(t, ξ(t)).

Using the assumptions (A1) and (A2) and the maximum in the interval [0, 1] gives

‖Cξ(t)− Cζ(t)‖ ≤ ‖χ‖
Γ(p+ 1)

(
1 +

1
Γ(γ + 1)

)
‖ξ − ζ‖,

‖Dξ(t)−Dζ(t)‖ ≤ ‖φ‖‖ξ − ζ‖,

‖Cξ(t)‖ ≤ ‖χ‖
Γ(p+ 1)

‖Dξ(t)‖ ≤ ‖ξ‖.

Next, consider A : E −→ E and B : S −→ E , such that

Aξ(t) =
∫ t

0

(t− s)q−1Dξ(s)Cξ(s)
Γ(q)

ds + t
[

b−
∫ 1

0

(1− s)q−1Dξ(s)Cξ(s)
Γ(q)

ds
]

, (19)
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and

Bξ(t) =
m

∑
i=1

∫ t

0

(t− s)δi+q−1hi(s, ξ(s))
Γ(δi + q)

ds +
m

∑
i=1

∫ 1

0

(1− s)δi+q−1hi(s, ξ(s))
Γ(δi + q)

ds, (20)

then the integral in Equation (17) will take the subsequent conformation:

ξ(t) = Aξ(t) + Bξ(t), ∀t ∈ J[0, 1]. (21)

In the subsequent operations, we present that the two operators A and B hold the entire
conditions of Lemma 2.

Step 1. To show that the operator A is contractive, we consider two functions ξ(t)
and ζ(t) in the subspace S, then

|Aξ −Aζ| ≤ 1
Γ(q)

∫ t

0
(t− s)q−1

∣∣∣∣Dξ(s)Cξ(s)−Dζ(s)Cζ(s)
∣∣∣∣ds

− t
Γ(q)

∫ 1

0
(1− s)q−1

∣∣∣∣Dξ(s)Cξ(s)−Dζ(s)Cζ(s)
∣∣∣∣ds

≤ 1
Γ(q)

∫ t

0
(t− s)q−1

∣∣∣∣Dξ(s)Cξ(s)−Dζ(s)Cζ(s) +Dζ(s)Cξ(s)−Dζ(s)Cζ(s)
∣∣∣∣ds

− t
Γ(q)

∫ 1

0
(1− s)q−1

∣∣∣∣Dξ(s)Cξ(s)−Dζ(s)Cζ(s) +Dζ(s)Cξ(s)−Dζ(s)Cζ(s)
∣∣∣∣ds,

≤ 1
Γ(q)

∫ t

0
(t− s)q−1

∣∣∣∣Dξ(s)
∣∣∣∣Cξ(s)− Cζ(s)

∣∣∣∣+ Cζ(s)
∣∣∣∣Dξ(s)−Dζ(s)

∣∣∣∣ds

− t
Γ(q)

∫ 1

0
(1− s)q−1

∣∣∣∣Dξ(s)
∣∣∣∣Cξ(s)− Cζ(s)

∣∣∣∣+ Cζ(s)
∣∣∣∣Dξ(s)−Dζ(s)

∣∣∣∣ds,

≤
(

Tq

Γ(q + 1)
− t

Γ(q + 1)

)[
‖χ‖‖ξ‖

(
Tp

Γ(p+ 1)
− Tγ+P

Γ(γ + q + 1)

)
+

Tp‖ζ‖‖Θ‖
Γ(p+ 1)

]
‖ξ − ζ‖.

Hence, by Equation (18), A is contractive.
Step 2. Next, we demonstrate that B is compact on S and satisfies the condition (c2) of
Lemma 2. As a result, we start by demonstrating that B is continuous on the set S. Consider
a sequence {ξn(t)} in S that converges to ξ(t). Using the Lebesgue dominant convergence
theorem, ∀ t ∈ [0, 1], we obtain

lim
n→∞

Bun(t) = lim
n→∞

[ m

∑
i=1

∫ t

0

(t− s)δi+q−1

Γ(δi + q)
hi(s, ξn(s))ds +

m

∑
i=1

∫ 1

0

(1− s)δi+q−1

Γ(δi + q)
hi(s, ξn(s))ds

]
.

=
m

∑
i=1

∫ t

0

(t− s)δi+q−1

Γ(δi + q)
hi(s, lim

n→∞
ξn(s))ds +

m

∑
i=1

∫ 1

0

(1− s)δi+q−1

Γ(δi + q)
hi(s, lim

n→∞
ξn(s))ds

=
m

∑
i=1

∫ t

0

(t− s)δi+q−1

Γ(δi + q)
hi(s, ξ(s))ds +

m

∑
i=1

∫ 1

0

(1− s)δi+q−1

Γ(δi + q)
hi(s, ξ(s))ds

= Bξ(t).

Hence, lim
n→∞

Bξn(t) = Bξ(t), which concludes that B is continuous on the subspace S.

Now, we reveal that B is bounded uniformly. For this, consider ξ(t) ∈ S such that
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|Bξ(t)| ≤
m

∑
i=1

1
Γ(δi + q)

∫ t

0
(t− s)δi+q−1|hi(s, ξ(s))|ds +

m

∑
i=1

1
Γ(δi + q)

∫ 1

0
(1− s)δi+q−1

∣∣∣∣hi(s, ξ(s))
∣∣∣∣ds

≤
m

∑
i=1

‖θi‖
Γ(δi + q+ 1)

+
m

∑
i=1

Tδi+q‖θi‖
Γ(δi + q+ 1)

≤
m

∑
i=1

‖θi‖
Γ(δi + q+ 1)

[
1 + Tδi+q

]
= K.

This implies that ‖Bξ(t)‖ ≤ K ∀ t in the interval [0, 1], and this reveals that the operator B
is uniformly continuous on S.
Now, we show that the operator B is equi-continuous. For this, we should take t1, t2 ∈ J
and ξ(t) ∈ S, then we obtain

|Bξ(t2)−Bξ(t1)| ≤
∣∣∣∣ m

∑
i=1

1
Γ(δi + q)

∫ t2

0
(t2 − s)δi+q−1hi(s, ξ(s))ds +

m

∑
i=1

1
Γ(δi + q)

∫ 1

0
(1− s)δi+q−1hi(s, ξ(s))ds

−
m

∑
i=1

1
Γ(δi + q)

∫ t1

0
(t1 − s)δi+q−1hi(s, ξ(s))ds−

m

∑
i=1

1
Γ(δi + q)

∫ 1

0
(1− s)δi+q−1hi(s, ξ(s))ds

∣∣∣∣
≤

∣∣∣∣ m

∑
i=1

1
Γ(δi + q)

∫ t2

0
(t2 − s)δi+q−1hi(s, ξ(s))ds−

m

∑
i=1

1
Γ(δi + q)

∫ t1

0
(t1 − s)δi+q−1hi(s, ξ(s))ds

∣∣∣∣
≤

m

∑
i=1

∣∣hi(t, ξ(t))
∣∣

Γ(δi + q)

[ ∫ t1

0
(t2 − s)δi+q−1ds−

∫ t1

0
(t1 − s)δi+q−1ds +

∫ t2

t1

(t1 − s)δi+q−1ds
]

≤
m

∑
i=1

‖θi‖
Γ(δi + q)

∣∣∣∣ ∫ t1

0

[
(t2 − s)δi+q−1 − (t1 − s)δi+q−1

]
ds +

∫ t2

t1

(t2 − s)δi+q−1ds
∣∣∣∣

≤
m

∑
i=1

‖θi‖
Γ(δi + q+ 1)

∣∣∣∣(t2 − t1)
δi+q − (t2 − t1)

δi+q +

∣∣∣∣ (t2 − t1)
δi+q

δi + q

∣∣∣∣t2

t1

∣∣∣∣
≤

m

∑
i=1

‖θi‖
Γ(δi + q+ 1)

[
(t2 − t1)

δi+q − (t2 − t1)
δi+q + (t2 − t1)

δi+q

]
≤

m

∑
i=1

‖θi‖
Γ(δi + q+ 1)

[
(t2 − t1)

δi+q

]
.

As one can see that the RHS approaches zero as t2− t1 −→ 0, therefore, B is equi-continuous.
The Arzelà–Ascoli theorem subsequently proves that the operator B is compact on the set S.
Step 3. The condition (c3) of Lemma 2 holds. Thus, for any function v ∈ S, we have
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|ξ| =

∣∣∣∣Aξ + Bζ

∣∣∣∣
≤

∣∣∣∣Aξ

∣∣∣∣+ ∣∣∣∣Bζ

∣∣∣∣ ≤ ∣∣∣∣ 1
Γ(q)

∫ t

0
(t− s)q−1Dξ(s)Cξ(s)ds + t

[
b− 1

Γ(q)

∫ 1

0
(1− s)q−1Dξ(s)Cξ(s)ds

]∣∣∣∣
+

∣∣∣∣ m

∑
i=1

1
Γ(δi + q)

∫ t

0
(t− s)δi+q−1hi(s, ξ(s))ds +

m

∑
i=1

1
Γ(δi + q)

∫ 1

0
(1− s)δi+q−1hi(s, ξ(s))ds

∣∣∣∣
≤ Tq

Γ(q+)1

∣∣Dξ(t)
∣∣ ∫ t

0

(t− s)p−1

Γ(p)
g(s, ξ(s), Iγ)ds +

m

∑
i=1

Iδi+q

Γ(δi + q)

∣∣hi(t, ξ(t))
∣∣

+
m

∑
i=1

∣∣∣∣ (1− ξ(s))δi+q

Γ(δi + q)

∣∣∣∣t
0

∣∣hi(s, ξ(s))
∣∣

≤ Tq

Γ(q+ 1

∥∥ξ
∥∥ Tp

Γ(p+ 1)

∥∥ζ
∥∥+ m

∑
i=1

Tδi+q

Γ(δi + q) + 1

∥∥θi
∥∥+ m

∑
i=1

∥∥θi
∥∥

Γ(δi + q+ 1)

≤
[

Tq

Γ(q+ 1)
Tp

Γ(p+ 1)
‖ζ‖‖ξ‖+

m

∑
i=1

‖φi‖
Γ(δi + q+ 1)

(
1 + Tδi+q

)]
≤ r.

which suggests that ‖ξ‖ ≤ r, and this implies that ξ ∈ S. Consequently, every condition of
the Lemma 2 is fulfilled; therefore, there is at least one solution in S for the operator equation
ξ(t) = Aξ(t) + Bξ(t). As a result, J = [0, 1] contains the solution to the BVP (2).

In the next section, we discuss the stability analysis of the boundary value problem (2).

5. Stability Analysis of Boundary Value Problems

Here, we discuss the Hyers–Ulam and Hyers–Ulam–Rassias stability analysis. These
stabilities are the two different varieties of the Ulam stability for the considered boundary
value problem (BVP)—(2).

Lemma 4. Assume that (A1) is satisfied by f(t, ξ(t)). If for any δ > 0, the fractional differential
inequality’s solution is g ∈ C([0, T],R):∣∣∣∣Dp

(
Dqκ(t)−∑m

i=0 Iδi hi(t, κ(t))
f(t, κ(t))

)
− g(t, κ(t), Iγκ(t))

∣∣∣∣ ≤ δ, ∀ t ∈ J = [0, T], (22)

this results shows that κ is the solution of the following inequality:∣∣∣∣κ(t)− Tξ(t)
∣∣∣∣ ≤ ∈ TpTq‖ξ‖

Γ(p+ 1)Γ(q+ 1)

Proof. Assume that, for any δ > 0, the solution κ ∈ C([0, T],R) is a solution to Inequality
(22). Then, considering any function Φ(t) implies that ‖Φ(t)‖ < δ, for every t ∈ [0, T].
Here, we use Remark 1 and Lemma 3 and obtain

κ(t) =
∫ t

0

(t− (s))q−1

Γ(q)
f((s), κ((s)))

∫ s

0

((s)− µ)p−1

Γ(p)

(
g(µ, ξ(µ), Iγy(µ)) + Φ(µ)

)
dµds

+t
(

b−
∫ 1

0

(t− (s))q−1

Γ(q)
f((s), κ((s))).

∫ 1

0

(1− (s))p−1

Γ(p)
g(s, κ((s)), Iγκ((s)))ds +

m

∑
i=1

Iδi+qhi(1, κ(1))
)

+
m

∑
i=1

Iδi+qhi(t, κ(t)).

Now, using Remark 1 and with the help of (A1), we have
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|κ(t)− Tκ(t)| =
∣∣∣∣ ∫ t

0

(t− s)q−1

Γ(q)
f((s), κ(((s))))

∫ s

0

((s)− µ)p−1

Γ(p)
Φ(µ)dµd(s)

∣∣∣∣ ≤ δTp+q

Γ(p+ 1)Γ(q+ 1)
‖ξ‖.

which is the required proof.

Theorem 5. Assume that Equation (18) is satisfied and that the assumptions (A1)–A3 are true;
subsequently, Equation (2) is Hyers–Ulam stable.

Proof. The problem (2) has a singular solution in C([0, T],R) underA1–A3, and Equation (18)
is true. If the inequality (22) has solution y ∈ C([0, T],R), then for any t ∈ [0, T], we obtain

|y− ξ| =

∣∣∣∣y− ∫ t

0

(t− s)q−1f(s, ξ(s))
Γ(q)

∫ s

0

(s− µ)p−1g(µ, ξ(µ), Iγξ(µ))

Γ(p)
dµds +

m

∑
i=1

Iδi+qhi(t, ξ(t)

+t
(

b−
∫ 1

0

(t− s)q−1

Γ(q)
f(s, ξ(s)).

∫ 1

0

(1− s)p−1

Γ(p)
g(s, ξ(s), Iγξ(s))ds +

m

∑
i=1

Iδi+qhi(1, ξ(1))
)∣∣∣∣

=

∣∣∣∣y− Ty + Ty− Tξ

∣∣∣∣
≤

∣∣∣∣y− Ty
∣∣∣∣+ ∣∣∣∣Ty− Tξ

∣∣∣∣ = εTpTq‖ξ‖
Γ(p+ 1)Γ(q+ 1)

+ δ‖y− ξ‖.

Thus, after simplification, we obtain

‖y− ξ‖ ≤ εTpTq‖ξ‖
(1− δ)Γ(p+ 1)Γ(q+ 1)

;

now, consider

εTpTq‖ξ‖
(1− δ)Γ(p+ 1)Γ(q+ 1)

= k (23)

then

|y− ξ| ≤ kε. (24)

which completes the proof and the result of the BVP (2) is Hyers–Ulam stable.

Next, we show that φ(t) is an increasing function.
A4: Consider φ(t) ∈ C([0, T]),R+) to be increasing and further suppose that ∃ qφ > 0 3 ∀
t ∈ [0, T]; we have

Ipφ(t) ≤ qφφ(t) (25)

Lemma 5. Take into account that A1 and A4 are fulfilled. If the fractional differential inequality
has a solution for every ε > 0 3 y(t) ∈ C([0, T],R):∣∣∣∣∣Dp

(
Dqy−∑m

i=0 Iδi hi(t, y)
f(t, y)

)
− g(t, y, Iγy)

∣∣∣∣∣ ≤∈ φ, ∀t ∈ [0, T], (26)

subsequently, y is the solution of the inequality:∣∣∣∣y− Tξ

∣∣∣∣ ≤ εqφφ

Γ(p+ 1)Γ(q+ 1)
‖ξ‖.
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Proof. For each ε > 0, suppose that y(t) ∈ C([0, T],R) is a solution to Inequality (22), then
assuming any φ(t) 3 |hi(t)| ≤∈ φ(t), for all t ∈ [0, T], we obtain

|y− Ty| =

∣∣∣∣ ∫ t

0

(t− s)q−1f(s, y(s))
Γ(q)

∫ s

0

(s− µ)p−1

Γ(p)
Φ(µ)dµds

∣∣∣∣
≤

ε
∣∣f(t, y

∣∣Tq

Γ(q+ 1)

∫ t

0
(t− s)p−1φ(s)ds

≤
εqφφ

Γ(p+ 1)Γ(q+ 1)
‖ξ‖.

Thus, the proof is complete.

Theorem 6. Suppose the assumptions A1–A4 are satisfied with the inequality (18) holding. The
problem (2) is Hyers–Ulam–Rassias stable.

Proof. As the assumptions (A1)–(A4) and Equation (18) hold, therefore, the BVP (2) must
have a unique result in the space C([0, T],R). Consider, y(t) ∈ C([0, T], R) to be the solution
of Equation (26), then for any t ∈ [0, T], we obtain

∣∣y− ξ
∣∣ =

∣∣∣∣y− ∫ t

0

(t− s)q−1f(s, ξ(s))
Γ(q)

∫ s

0

(s− µ)p−1g(µ, ξ(µ), Iγξ(µ))

Γ(p)
dµds +

m

∑
i=1

Iδi+qhi(t, ξ(t)

+t
[

b−
∫ 1

0

(t− s)q−1f(s, ξ(s))
Γ(q)

.
∫ 1

0

(1− s)p−1g(s, ξ(s), Iγξ(s))
Γ(p)

ds +
m

∑
i=1

Iδi+qhi(1, ξ(1))
]∣∣∣∣

=

∣∣∣∣y− Ty + Ty− Tξ

∣∣∣∣
≤

∣∣∣∣y− Ty
∣∣∣∣+ ∣∣∣∣Ty− Tξ

∣∣∣∣ = ε‖ξ‖λφφ(t)
Γ(p+ 1)Γ(q+ 1)

+ δ
∣∣y− ξ

∣∣.
Thus, after simplification, we obtain

‖y− ξ‖ ≤
εqφφ(t)

Γ(q+ 1)Γ(p+ 1)
‖ξ‖

Consider

εqφ

Γ(q+ 1)Γ(p+ 1)
‖ξ‖ = kφ,f.

then

|y− ξ| ≤∈ kφ,fφ(t)

Thus, the proof is complete, and the BVP (2) is Hyers–Ulam–Rassias stable.

6. Example

To analyze the results obtained, we study the following examples in the form of
HFSID (2).

Example 1. Consider the subsequent example:
D

3
5

( cD
3
2 ξ(t)−∑3

i=1 Iδi hi(t, ξ(t))
1
4 t2 sec

( tπ
4
)
|ξ(t)|

)
= sin

( t
6
)( |ξ(t)|
|ξ(t)|+ 1

+ I
5
2 ξ(t)

)
, t ∈ J,

ξ(0) = 0, Dqξ(0) = 0, ξ(1) = 1,

(27)
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where

3

∑
i=1

Iδi hi(t, ξ(t)) = I
1
3

(
|ξ| cos(t/3) + exp(t) sin(t)

)
+ I

4
3

(√
t|ξ| sin(t) +

2
3− t2

)

+I
3
5

(
|ξ(t)|tan(

√
t

2
) +

t
1 + exp(t)

)
.

From these equations, we have p = 3
5 , q = 3

2 , m = 3, β1 = 1
3 , β2 = 4

3 , β3 = 3
5 , γ =

5
2 , h1(t, ξ) = |ξ| cos( t

3 ) + et sin(t), h2(t, ξ) =
√

t|ξ| sin(t) + 2
3−t2 , h3(t, ξ) = |ξ| tan(

√
t

2 ) +

t
1+et , f(t, ξ) = 1

4 t2 sec(πt
3 )|ξ|, and g(t, ξ, Iγξ) = sin( t

6 )(
|ξ|

|ξ(t)|+1 + I
5
2 ξ). Then, one can show

easily that

|h1(t, ξ)− h1(t, ζ| ≤ cos(
t
3
)|ξ − ζ|,

|h2(t, ξ)− h2(t, ζ| ≤ t1/2 sin |ξ − ζ|,

|h3(t, ξ)− h3(t, ζ| ≤ tan(
t1/2

2
)|ξ − ζ|,

|f(t, ξ)− f(t, ζ| ≤ 1
4

t2sec(
πt
3
)|ξ − ζ|

and |g(t, ξ, ξ̄)− g(t, ζ, ζ̄| ≤ cos(
t
6
)

(
|ξ − ζ|+ |ξ̄ − ζ̄|

)
.

Hence, one can select

λ1(t) = cos(
t
3
), λ2(t) =

√
t sin t, λ3(t) = tan(

√
t

2
), Θ(t) = t2 sec(

πt
3
), ψ(t) = sin(

t
6
).

Further, g(t, ξ(t)), g(t, ξ(t), Iγξ(t)) and hi(t, ξ(t)), are bounded by the positive functions
as follows:

|h1(t, ξ(t))| ≤ cos( t
3 ) + et sin t = θ1(t),

|h2(t, ξ(t))| ≤
√

t sin t + 2
3−t2 = θ2(t),

|h3(t, ξ(t))| ≤ tan(
√

t
2 ) + t

1+et = θ3(t),

|f(t, ξ(t))| ≤ 1
4 t2 sec(πt

3 ) = φ(t)

and |g(t, ξ(t), ζ(t))| ≤ sin( t
6 ) = χ(t).

Choosing T = 1, 0 < t < 1, and putting ‖ξ‖ = ‖ζ‖ = 0.99, ‖χ‖ = ‖Θ‖ = 0.5 in (18), we
have

S1 =

(
Tq

Γ(q + 1)
− t

Γ(q + 1)

)[
Tp‖ζ‖‖Θ‖

Γ(p+ 1)
+ ‖χ‖‖ξ‖

(
Tp

Γ(p+ 1)
− Tγ+P

Γ(γ + q + 1)

)]
‖ < 1

= (0.55465503)× [0.50362873 + 0.45× 1.5742126] = 0.67225544 < 1.

Consequently, each and every condition of Theorem 3 holds; therefore, the BVP (27) has
at least one solution in the interval [0, 1]. Furthermore, one can show that the BVB (27) is
Hyers–Ulam and Hyers–Ulam–Rassias stable by Theorems 5 and 6, respectively.

Example 2. Here, we take another example of the following form:
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cD
7
6

(
cD 5

4 ξ(t)−∑3
i=1 Iδ

i hi(t,ξ(t)
f (t,ξ(t))

)
= 3

2 arc tan
(

2|ξ(t)| cos( πt
6 )

3+|ξ(t)|

)
− 3

2 arc tan
(

2|I8/3ξ(t)| cos( πt
6 )

3+|I8/3ξ(t)|

)
,

with ξ(0) = 0, D
7
6 ξ(0) = 0, ∀t ∈ [0, 1],

(28)

where

3

∑
i=1

Iδ
i hi(t, ξ(t) = I

1
6 log

(
1 + |ξ(t)| et sin(t)

1 + |ξ(t)|

)

+ I
3
5

(
cos(t) sin(ξ(t))

(2 + t)
1
2

+
cos(ξ(t)) sin(t)

(2− t)
1
2

)
+ I

5
4
(
tet cos(ξ(t) + πt) + e−t sin(ξ(t) + πt)

)
,

and

f (t, ξ(t)) =

 (7− et)

10
√

1− ( t
5 )

2

(
1 + |ξ(t)|
2 + |ξ(t)

)+
2− t

10
.

Here, we assume that p = 7/6, q = 5/4, m = 3, T = t = 1, β1 = 1/6, β2 = 3/5,
β3 = 5/4, and γ = 8/3. Thus,

| f (t, ξ − f (t, ζ| ≤

 7− et

40
√

1− ( t
5 )

2

, and |g(t, ξ, ζ)− g̃(t, ξ, ζ)| ≤ 1
3

cos
(

πt
6

)(
|ξ − ζ|+ |ũ− ζ̃|

)
,

we can choose
7− et

40
√

1− ( t
5 )

2
, and χ(t) =

1
3

cos
(

πt
6

)
and we concluded that∣∣ f (t, ξ)

∣∣ ≤ 7− et

10
√

1− ( t
5 )

2
+

2− t
10

= ξ(t), and
∣∣g(t, ξ, ζ)

∣∣ ≤ 2 cos
(

πt
6

)
= ζ(t).

Now, the functions hi(t, ξ(t)) are bounded by using the following functions ψi for i = 1, 2, 3
as follows: ∣∣h1(t, ξ)

∣∣ ≤ 1 + et sin(t) = ϕ1,

∣∣h2(t, ξ)
∣∣ ≤ 1

2
+

√
2− t cos(2t)

4− t2 = ϕ2,

∣∣h3(t, ξ)
∣∣ ≤ √1 + e4t

e2t = ϕ3;

thus, the conditions A1 and A2 are satisfied. Next, choosing ‖ξ‖ = 2/15, ‖ζ‖ = 4/5,
‖φ‖ = 3/20, and ‖χ‖ = 1/3 we satisfied that

S2 =

(
Tq

Γ(q + 1)
− t

Γ(q + 1)

)[
Tp‖ζ‖‖Θ‖

Γ(p+ 1)
+ ‖χ‖‖ξ‖

(
Tp

Γ(p+ 1)
− Tγ+P

Γ(γ + q + 1)

)]
‖

= 0.54632454 < 1.

Hence, by using Theorem 3, the BVP (28) has the unique solution on the interval J = [0, 1].

Example 3. Here, we consider another example of hybrid sequential fractional order of the following
form:
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cD2.5
(

cD1.5
(

ξ(s)
0.006 + s

1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

))
= cos

( s
3
)( |ξ(s)|

1 + |ξ(s)| + I
3
2 ξ(s)

)
(29)

with
ξ(0) = 0, D2.5ξ(0) = 0, D1.5ξ(1) = 1

We also choose the following:(
ξ(s)

0.006 + s
1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

)
|s=0 = 0 (30)

cD1
(

ξ(s)
0.006 + s

1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

)
|s=0

cD2
(

ξ(s)
0.006 + s

1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

)
|s=0 = 1(

ξ(s)
0.006 + s

1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

)
|s=0

I0.4
(

ξ(s)
0.006 + s

1000 (arc sin(ξ(s)) + sin(c I0.2ξ(s))

)
|s=0 = 0.55,

where v(s) = s/1000 and ?v = sup∈[0,1] |v(s)| = 1/1000. Note also that the Lipschitz

constant ξ > 0 such that ?v = [1 + 1
Γ(γ+1) ] =

1
1000 [1 +

1
Γ(1.04) ] = 0.002022 > 0, and consider

the set-valued map S : [0, 1]× R → P(R)defined by S(s, ξ(s)) = [0, (s + 1/4) sin ξ(s) +
1/2]. Now, for each v ∈ S(s, ξ(s)), ‖S, sξ(s))‖ = sup(|v̂| : v̂ ∈ S(s, ξ(s)) ≤ s + 0.74, next,
put M = 171.21 and θ(s) = s + 0.74 for s∈ [0, 1], then we have

S3 = ?v
[

1 +
1

Γ(γ + 1)

]
M‖q‖ = (0.002032)(172.21)(1.25) < 0.5

Thus, we showed by another way that Example 3 has the unique solution on the interval
J = [0, 1].

Example 4. Consider the following example:
D

2
3

( cD
5
3 ξ(t)−∑5

i=1 Iδi hi(t, ξ(t))
t2arc tan

( tπ
3
)
|ξ(t)|

)
= cos

( t
3
)( |ξ(t)|

1 + |ξ(t)| + I
3
2 ξ(t)

)
, t ∈ J,

ξ(0) = 0, D5/3ξ(0) = 0, ξ(π) = 1,

(31)

where
5

∑
i=1

Iδi hi(t, ξ(t)) = I
1
5

(
|ξ|arc tan(t/6) + exp(t2) sin(t)

)
+ I

6
5

(
2

3− t3 −
√

t|ξ| cos(t)
)

+I
11
5

(
arc tan(

√
t

2
) +

2t
1 + exp(t)

)
+ I

16
5

(
t√

2 + 2/3t
) +

2t
1 +
√

t

)
+ I21/5

( √
t

2 + |ξ(t)| +
3√

t

)
.

From these equations, we have p = 3
5 , q = 3

2 , m = 3, β1 = 1
3 , β2 = 4

3 , β3 = 3
5 , γ = 5

2 ,

h1(t, ξ) = |ξ| cos( t
3 ) + et sin(t), h2(t, ξ) =

√
t|ξ| sin(t) + 2

3−t2 , h3(t, ξ) = |ξ| tan(
√

t
2 )

+ t
1+et , h4(t, ξ) = t√

2+2/3t
) + 2t

1+
√

t
, h5 = t√

2+2/3t
) + 2t

1+
√

t
, f(t, ξ) = 1

4 t2 sec(πt
3 )|ξ|, and

g(t, ξ, Iγξ) = sin( t
6 )(

|ξ|
|ξ(t)|+1 + I

5
2 ξ). Then, one can show easily that
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|h1(t, ξ)− h1(t, ζ| ≤ cos(
t
3
)|ξ − ζ|,

|h2(t, ξ)− h2(t, ζ| ≤ t1/2 sin |ξ − ζ|,

|h3(t, ξ)− h3(t, ζ| ≤ tan(
t1/2

2
)|ξ − ζ|,

|h4(t, ξ)− h4(t, ζ| ≤ t√
2 + 2/3t

)|ξ − ζ|,

|h5(t, ξ)− h5(t, ζ| ≤ t√
2 + 2/3t

)|ξ − ζ|,

|f(t, ξ)− f(t, ζ| ≤ t2arc tan
(

tπ
3

)
|ξ − ζ|

and |g(t, ξ, ξ̄)− g(t, ζ, ζ̄| ≤ cos(
t
3
)

(
|ξ − ζ|+ |ξ̄ − ζ̄|

)
.

With the help of Matlab with choosing the parameters T = 1, 0 < t < 1, and putting
‖ξ‖ = ‖ζ‖ = 0.3422, ‖χ‖ = ‖Θ‖ = 0.332 in the above equations, we have

S4 =

(
Tq

Γ(q + 1)
− t

Γ(q + 1)

)[
Tp‖ζ‖‖Θ‖

Γ(p+ 1)
+ ‖χ‖‖ξ‖

(
Tp

Γ(p+ 1)
− Tγ+P

Γ(γ + q + 1)

)]
‖ < 1

= (0.883222344)× [0.455663433 + 0.443× 1.43334433] ' 0.43453212321 < 1.

7. Numerical Discussion

To discuss the numerical analysis of the condition (S1 and S2) for Example 1, we can
choose the parameter values as T = 1, 0 < t < 1, ‖ξ‖ = ‖ζ‖ = 0.99, ‖χ‖ = ‖Θ‖ = 0.5. In
Figure 1a,b, we plot condition S1 against the time variable t by checking the effect of the
time index p and q, respectively. We observe that, when both indices are exceeding their
limit (0 < p ≤ 1 and 1 < q ≤ 2), the condition S1 obtains values greater than 1. Similarly, in
Figure 2a,b, we plot the condition against the time variable t for varying parameters Θ and
ζ. We observe that, for both of these parameter values, the condition values are increasing
and exceeding the limiting values. Similar results for parameters χ and T are shown in
Figure 3a,b. The numerical analysis for the effect of the parameters p and q is also shown in
Table 1 for condition S1.

Next, to check condition S2 of Example 2, we choose the parameters ‖ξ‖ = 2/15,
‖ζ‖ = 4/5, ‖φ‖ = 3/20, and ‖χ‖ = 1/3. In Figure 4a, we depict the condition S2 against
the time variable t for the time indices’ values p and q, respectively. We see that, with the
enhancement of both of these indices, the condition S2 obtains larger values and exceeds
their limit. Similar results are shown in Figure 5a,b by changing the parameter values Θ
and γ. The effects of the parameters are shown there. The effects of the parameters χ and T
are shown in Figure 6a,b. The numerical analysis for the effect of the parameters p and q is
also shown in Table 2 for condition S2. In Examples 3 and 4, we derive the existence results
for the BVP in the form of hybrid fractional and hybrid fractional integro-order derivatives,
respectively.
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Table 1. Evaluation of the condition S1 for different values of p, q, and t.

t (p,q) = (1/5, 3/2) (p,q) = (2/5, 5/3) (p,q) = (3/5, 7/4) (p,q) = (4/5, 9/5) (p,q) = (1, 2)

0.0 0.193696 0.533696 0.793696 0.993696 1.193696
0.2 0.533696 0.55369 0.733696 0.835696 1.543696
0.4 0.835696 0.855696 0.875696 0.835696 1.435696
0.6 0.635696 0.735696 0.935696 0.933696 1.535696
0.8 0.535696 0.835696 0.935696 0.9835696 1.363596
1.0 0.935696 0.9355696 0.935696 1.935696 1.936962

0 1 2 3 4 5

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S1

(a)

p=0.3

p=0.5

p=0.7

p=1.1

0 1 2 3 4 5

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S1

(b)

q=1.3

q=1.5

q=1.7

q=2.1

Figure 1. Condition S1 of Example 1 is plotted against the time variable t for (a) varying index p and
(b) varying index q.

0 1 2 3 4 5

t

-0.2

0

0.2

0.4

0.6

0.8

1

S1

(a)

‖Θ‖=0.5

‖Θ‖=0.7

‖Θ‖=0.9

‖Θ‖=1

0 1 2 3 4 5

t

-1

0

1

2

3

4

5

6

S1

(b)

v=0.3

v=0.5

v=0.7

v=0.9

Figure 2. Condition S1 of Example 1 is plotted against the time variable t for (a) varying the parameter
‖Θ‖ and (b) varying the parameter ζ.

0 1 2 3 4 5

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S1

(a)

‖χ‖=0.5

‖χ‖=0.7

‖χ‖=0.9

‖χ‖=1.5

0 1 2 3 4 5

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S1

(b)

T=0.5

T=0.7

T=0.9

T=1.5

Figure 3. Condition S1 of Example 1 is plotted against the time variable t for (a) varying the parameter
‖χ‖ and (b) varying the parameter T.
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Table 2. Evaluation of the condition S2 for different values of p, q, and t.

t (p,q) = (1/2, 5/2) (p,q) = (2/3, 7/3) (p,q) = (3/5, 9/4) (p,q) = (4/5, 11/5) (p,q) = (1, 2)

0.0 0.093696 0.433696 0.693696 0.893696 1.193696
0.2 0.433696 0.653694 0.933696 0.835666 1.543696
0.4 0.435696 0.755696 0.955696 0.985636 1.673696
0.6 0.735696 0.835696 0.935696 0.973696 1.835696
0.8 0.535396 0.835396 0.935396 0.983366 1.363396
1.0 0.735396 0.833566 0.975636 1.985636 1.736932

0 1 2 3 4 5

t

-0.1

0

0.1

0.2

0.3

0.4

S2

(a)

p=3/5

p=3/7

p=3/9

p=3/11

0 1 2 3 4 5

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

S2

(b)

q=5/2

q=5/3

q=5/4

q=5/5

Figure 4. Condition S2 of Example 2 is plotted against the time variable t for (a) varying the parameter
p and (b) varying the parameter q.
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0.05
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0.15
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0.25

0.3

S2

(a)
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‖Θ‖=3/25

‖Θ‖=3/30

‖Θ‖=3/35

0 1 2 3 4 5

t

-0.1

0
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0.2

0.3

0.4

0.5

0.6

S2

(b)

γ = 3/2

γ = 3/5

γ = 3/7

γ = 3/9

Figure 5. Condition S2 of Example 2 is plotted against the time variable t for (a) varying the parameter
‖Θ‖ and (b) varying the parameter γ.
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Figure 6. Condition S2 of Example 1 is plotted against the time variable t for (a) varying the parameter
‖χ‖ and (b) varying the parameter T.
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8. Conclusions

We established an existence theory for the proposed BVP (2) of the hybrid fractional
sequential integro-differential (HFSID) equation in response to Dhage’s [26] and Jamil’s [28]
applied generalized Krasnoselikii’s fixed-point theorem on the BVP. We also demonstrated
the problem’s Ulam stability, identified as Ulam–Hyers and Ulam–Hyers–Rassias stability.
With the help of the Arzelà–Ascoli Theorem 1 and Lemma 2, we proved that the result
obtained as (17) of the BVP (2) exists and is unique. Finally, four examples with the numeri-
cal plots and discussions were illustrated to verify our results. The effects of the different
parameters were shown to verify the results obtained in this manuscript. The numerical
illustration of the BVPs investigated that the existence and uniqueness results with Ulam
stability comprise one of the challenging tasks to investigate for such problems [32–37].
The physical systems in the fields of plasma physics, electrical engineering, and biological
models, hybrid fractional sequential integro-differential equations (HFSID) play a key
role due to their double-fractional-order derivative. In such physical systems, the time
derivative terms need to be integrated with a continuous change. Hence, the HFSID could
play a novel key role in overcoming such problems.

As future work, it will be interesting to investigate the hybrid planar waveguide
arrays by a variety of fractional coupled sine-Gordon equations with different phase
shifts reported in [38] for the integer order. The consideration of such systems is very
useful to investigate different physical phenomena for the applications of the parity time
symmetry in optics, Bose–Einstein condensates, and nonlinear physical phenomena, where
the coupling of nonlinearity fundamentally advances the problem and generates completely
novel characteristics.
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