Next Article in Journal
A Lateral Control Method of Intelligent Vehicles Based on Shared Control
Next Article in Special Issue
A New Numerical Approach for Variable-Order Time-Fractional Modified Subdiffusion Equation via Riemann–Liouville Fractional Derivative
Previous Article in Journal
The Reappearance of Poetic Beauty in Chaos
Previous Article in Special Issue
A Review on Some Linear Positive Operators Defined on Triangles
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Cheney–Sharma Type Operators on a Triangle with Straight Sides

by
Teodora Cătinaş
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St., RO-400084 Cluj-Napoca, Romania
Symmetry 2022, 14(11), 2446; https://doi.org/10.3390/sym14112446
Submission received: 4 November 2022 / Revised: 12 November 2022 / Accepted: 16 November 2022 / Published: 18 November 2022
(This article belongs to the Special Issue Numerical Analysis, Approximation Theory, Differential Equations)

Abstract

:
We consider two types of Cheney–Sharma operators for functions defined on a triangle with all straight sides. We construct their product and Boolean sum, we study their interpolation properties and the orders of accuracy and we give different expressions of the corresponding remainders, highlighting the symmetry between the methods. We also give some illustrative numerical examples.

1. Introduction

In order to match all the boundary information on a domain, there were considered interpolation operators on triangles with straight sides (see, e.g., [1,2,3,4,5,6,7]) and on triangles with curved sides (see, e.g., [8,9,10,11,12,13,14,15,16,17,18,19,20,21]).
Here, we construct two kind of Cheney–Sharma type operators (see, e.g., [22,23,24,25]) defined on a triangle with all straight sides and study the interpolation properties, the orders of accuracy, their products and boolean sums and the remainders of the corresponding approximation formulas, using the modulus of continuity and Peano’s theorem. There is a symmetrical connection between the two methods introduced here. Using the interpolation properties of such operators, blending function interpolants can be constructed that exactly match the function on some sides of the given region. Applications of these blending functions are in computer-aided geometric design, in the finite element method for differential equations problems and for the construction of surfaces that satisfy some given conditions (see, e.g., [1,14,17,20,21,26,27,28,29,30,31,32,33,34]).
We have considered the standard triangle T h (see Figure 1), with vertices V 1 = ( 0 , h ) , V 2 = ( h , 0 ) and V 3 = ( 0 , 0 ) and sides Γ 1 , Γ 2 , Γ 3 .

2. Cheney–Sharma Operator of the Second Kind

Let m N and β be a nonnegative parameter. The Cheney–Sharma operator of the second kind Q m : C [ 0 , 1 ] C [ 0 , 1 ] , introduced in [23], is given by
( Q m f ) ( x ) = i = 0 m q m , i ( x ) f ( i m ) ,
with
q m , i ( x ) = m i x ( x + i β ) i 1 ( 1 x ) [ 1 x + ( m i ) β ] m i 1 ( 1 + m β ) m 1 .
The following results are useful in the sequel.
Remark 1.
(1) Notice that for β = 0 , the operator Q m becomes the Bernstein operator.
(2) In [25], it has been proved that the Cheney–Sharma operator Q m interpolates a given function at the endpoints of the interval.
(3) In [23,25], it has been proved that the Cheney–Sharma operator Q m reproduces the constant and the linear functions, so its degree of exactness is 1 (denoted dex ( Q m ) = 1 ) .
(4) In [23], the following result is given:
( Q m e 2 ) ( x ) = x ( 1 + m β ) 1 m [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] ,
where e i ( x ) = x i , i N , and
S ( j , m , x , y ) = k = 0 m m k ( x + k β ) k + j 1 [ y + ( m k ) β ] m k ,
j = 0 , , m , m N , x , y [ 0 , 1 ] , β > 0 .
Considering the partitions Δ m x = i h y m i = 0 , , m and Δ n y = j h x n j = 0 , , n of the intervals [ 0 , h y ] and [ 0 , h x ] , the real-valued function F defined on T h (Figure 1), for m , n N , β , b R + , we introduce the following extensions to the triangle T h of the Cheney–Sharma operator given in (1):
( Q m x F ) ( x , y ) = i = 0 m q m , i ( x , y ) F i h y m , y , ( Q n y F ) ( x , y ) = j = 0 n q n , j ( x , y ) F x , j h x n ,
with
q m , i x , y = m i x h y ( x h y + i β ) i 1 ( 1 x h y ) [ 1 x h y + ( m i ) β ] m i 1 ( 1 + m β ) m 1 , q n , j x , y = n j y h x ( y h x + j b ) j 1 ( 1 y h x ) [ 1 y h x + ( n j ) b ] n j 1 ( 1 + n b ) n 1 .
Remark 2.
As the Cheney–Sharma operator of the second kind interpolates a given function at the endpoints of the interval, we may use the operators Q m x and Q n y as interpolation operators.
Theorem 1.
If F is a real-valued function defined on T h , then
(i)
Q m x F = F on Γ 1 Γ 3 ,
(ii)
Q n y F = F on Γ 2 Γ 3 .
Proof. 
(i) We may write
( Q m x F ) ( x , y ) = 1 ( 1 + m β ) m 1 ( 1 x h y ) [ 1 x h y + m β ] m 1 F 0 , y + x h y ( 1 x h y ) i = 1 m 1 m i ( x h y + i β ) i 1 · [ 1 x h y + ( m i ) β ] m i 1 F i h y m , y + x h y ( x h y + m β ) m 1 F h y , y .
Considering (5), it follows that
( Q m x F ) ( 0 , y ) = F ( 0 , y ) , ( Q m x F ) ( h y , y ) = F ( h y , y ) .
(ii) Similarly, writing
( Q n y F ) ( x , y ) = 1 ( 1 + n b ) n 1 ( 1 y h x ) [ 1 y h x + n b ] n 1 F x , 0 + y h x ( 1 y h x ) j = 1 n 1 n j ( y h x + j b ) j 1 · [ 1 y h x + ( n j ) b ] n j 1 F x , j h x n + y h x ( y h x + n b ) n 1 F x , h x ,
we find that
( Q n y F ) ( x , 0 ) = F ( x , 0 ) , ( Q n y F ) ( x , h x ) = F ( x , h x ) .
Theorem 2.
The operators Q m x and Q n y have the following orders of accuracy:
(i)
Q m x e k j x , y = x k y j , k = 0 , 1 ; j N ;
(ii)
Q n y e k j x , y = x k y j , k N ; j = 0 , 1 , where e k j x , y = x k y j , k , j N .
Proof. 
(i) We have
( Q m x e k j ) ( x , y ) = y j i = 0 m q m , i ( x , y ) ( i h y m ) k ,
and by Remark 1, the result follows.
Similarly, (ii) follows. □
We consider the approximation formula
F = Q m x F + R m x F ,
where R m x F denotes the approximation error.
Theorem 3.
If F ( · , y ) C [ 0 , h y ] , the following holds:
| R m x F ( x , y ) | ( 1 + 1 δ A m x 2 ) ω ( F ( · , y ) ; δ ) , δ > 0 ,
where ω ( F ( · , y ) ; δ ) is the modulus of continuity and A m = x ( 1 + m β ) 1 m [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] , with S given in (3).
Proof. 
By Theorem 2, it follows that dex ( Q m x ) = 1 ; thus, we may apply the following property of linear operators (see, for example, [35]):
| ( Q m x F ) ( x , y ) F ( x , y ) | [ 1 + δ 1 ( Q m x e 20 ) ( x , y ) x 2 ] ω ( F ( · , y ) ; δ ) , δ > 0 ;
thus, taking into account (2), we obtain (6). □
Theorem 4.
If F ( · , y ) C 2 [ 0 , h y ] , then
( R m x F ) ( x , y ) = 1 2 F ( 2 , 0 ) ( ξ , y ) { x 2 x ( 1 + m β ) 1 m [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] } ,
for ξ [ 0 , h y ] and β > 0 .
Proof. 
Taking into account the fact that dex ( Q m x ) = 1 , by Theorem 2 and applying Peano’s theorem (see, e.g., [36]), it follows that
( R m x F ) ( x , y ) = 0 h y K 20 ( x , y ; s ) F ( 2 , 0 ) ( s , y ) d s ,
where
K 20 ( x , y ; s ) = ( x s ) + i = 0 m q m , i ( x , y ) i h y m s + .
For a given ν { 1 , , m } , one denotes by K 20 ν ( x , y ; · ) the restriction of the kernel K 20 ( x , y ; · ) to the interval ( ν 1 ) h y m , ν h y m , i.e.,
K 20 ν ( x , y ; ν ) = ( x s ) + i = ν m q m , i ( x , y ) i h y m s ,
whence,
K 20 ν ( x , y ; s ) = x s i = ν m q m , i ( x , y ) i h y m s , s < x i = ν m q m , i ( x , y ) i h y m s , s x .
It follows that K 20 ν ( x , y ; s ) 0 , for s x .
For s < x , we have
K 20 ν ( x , y ; s ) = x s i = 0 m q m , i ( x , y ) i h y m s + i = 0 ν 1 q m , i ( x , y ) i h y m s .
Applying Theorem 2, we get
i = 0 m q m , i ( x , y ) i h y m s = ( Q m x e 10 ) ( x , y ) s ( Q m x e 00 ) ( x , y ) = x s ;
it then follows that
K 20 ν ( x , y ; s ) = i = 0 ν 1 q m , i ( x , y ) i h y m s 0 .
Thus, K 20 ν ( x , y ; · ) 0 , for any ν { 1 , , m } , i.e., K 20 ( x , y ; s ) 0 , for s [ 0 , h y ] .
By the Mean Value Theorem, one obtains
( R m x F ) ( x , y ) = F ( 2 , 0 ) ( ξ , y ) 0 h y K 20 ( x , y ; s ) d s , for 0 ξ h y ,
with
0 h y K 20 ( x , y ; s ) d s = 1 2 [ x 2 ( Q m x e 20 ) ( x , y ) ] ,
and using (2) we get (7). □
Remark 3.
Analogous results with the ones in Theorems 3 and 4 can be obtained for the remainder R n y F of the formula F = Q n y F + R n y F .

2.1. Product Operators

Let P m n 1 = Q m x Q n y , respectively, P n m 2 = Q n y Q m x be the products of the operators Q m x and Q n y , given by
P m n 1 F x , y = i = 0 m j = 0 n q m , i x , y q n , j i h y m , y F i h y m , j ( m i ) h + i y m n ,
respectively,
P n m 2 F x , y = i = 0 m j = 0 n q m , i x , j h x n q n , j x , y F i ( n j ) h + j x m n , j h x n .
Theorem 5.
If F is a real-valued function defined on T h , then
(i) 
( P m n 1 F ) ( V i ) = F ( V i ) , i = 1 , 2 , 3 ;
( P m n 1 F ) ( Γ 3 ) = F ( Γ 3 ) ,
(ii) 
( P n m 2 F ) ( V i ) = F ( V i ) , i = 1 , 2 , 3 ;
( P n m 2 F ) ( Γ 3 ) = F ( Γ 3 ) ,
Proof. 
By a straightforward computation, we obtain the following properties:
( P m n 1 F ) ( x , 0 ) = ( Q m x F ) ( x , 0 ) , ( P m n 1 F ) ( 0 , y ) = ( Q n y F ) ( 0 , y ) , ( P m n 1 F ) ( x , h x ) = F ( x , h x ) , x , y [ 0 , h ]
and
( P n m 2 F ) ( x , 0 ) = ( Q m x F ) ( x , 0 ) , ( P n m 2 F ) ( 0 , y ) = ( Q n y F ) ( 0 , y ) , ( P n m 2 F ) ( h y , y ) = F ( h y , y ) , x , y [ 0 , h ] ,
and, taking into account Theorem 1, these imply (i) and (ii). □
We consider the following approximation formula:
F = P m n 1 F + R m n P 1 F ,
where R m n P 1 is the corresponding remainder operator.
Theorem 6.
If F C ( T h ) then
( R m n P 1 F ) ( x , y ) ( A m + B n x 2 y 2 + 1 ) ω ( F ; 1 A m x 2 , 1 B n y 2 ) , ( x , y ) T h ,
where
A m = x ( 1 + m β ) 1 m [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] B n = y ( 1 + n b ) 1 n [ S ( 2 , n 2 , y + 2 b , 1 y ) ( n 2 ) b S ( 2 , n 3 , y + 2 b , 1 y + β ) ]
and ω ( F ; δ 1 , δ 2 ) , with δ 1 > 0 , δ 2 > 0 , is the bivariate modulus of continuity.
Proof. 
Using a basic property of the modulus of continuity, we have
( R m n P 1 F ) ( x , y ) [ 1 δ 1 i = 0 m j = 0 n q m , i ( x , y ) q n , j i m ( h y ) , y x i m ( h y ) + 1 δ 2 i = 0 m j = 0 n q m , i ( x , y ) q n , j i m ( h y ) , y y j n ( m i ) h + i y m + i = 0 m j = 0 n q m , i ( x , y ) q n , j i m ( h y ) , y ] ω ( F ; δ 1 , δ 2 ) , δ 1 , δ 2 > 0 .
Since
i = 0 m j = 0 n p m , i ( x , y ) q n , j i m ( h y ) , y x i m ( h y ) ( Q m x e 20 ) ( x , y ) x 2 , i = 0 m j = 0 n p m , i ( x , y ) q n , j i m ( h y ) , y y j n ( m i ) h + i y m ( Q n y e 02 ) ( x , y ) y 2 , i = 0 m j = 0 n p m , i ( x , y ) q n , j i m ( h y ) , y = 1 ,
applying (2), we get
( R m n P 1 F ) ( x , y ) { 1 δ 1 [ x ( 1 + m β ) 1 m ] 1 2 · [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] x 2 1 2 + 1 δ 2 [ y ( 1 + n b ) 1 n ] 1 2 · [ S ( 2 , n 2 , y + 2 b , 1 y ) ( n 2 ) b S ( 2 , n 3 , y + 2 b , 1 y + β ) ] y 2 1 2 + 1 ω ( F ; δ 1 , δ 2 ) .
Denoting
A m = x ( 1 + m β ) 1 m [ S ( 2 , m 2 , x + 2 β , 1 x ) ( m 2 ) β S ( 2 , m 3 , x + 2 β , 1 x + β ) ] B n = y ( 1 + n b ) 1 n [ S ( 2 , n 2 , y + 2 b , 1 y ) ( n 2 ) b S ( 2 , n 3 , y + 2 b , 1 y + β ) ]
and taking δ 1 = 1 A m x 2 and δ 2 = 1 B n y 2 , we get (8). □

2.2. Boolean Sum Operators

The Boolean sums of the operators Q m x and Q n y are given by
S m n 1 : = Q m x Q n y = Q m x + Q n y Q m x Q n y , S n m 2 : = Q n y Q m x = Q n y + Q m x Q n y Q m x .
Theorem 7.
If F is a real-valued function defined on T h , then
S m n 1 F T h = F T h , S m n 2 F T h = F T h .
Proof. 
By
Q m x Q n y F x , 0 = Q m x F x , 0 , Q n y Q m x F 0 , y = Q n y F 0 , y , Q m x F x , h x = Q n y F ( x , h x ) = ( P m n 1 F ) ( x , h x ) = ( P n m 2 F ) ( x , h x ) = F ( x , h x ) ,
and, taking into account Theorem 1, the conclusion follows. □
We consider the following approximation formula:
F = S m n 1 F + R m n S 1 F ,
where R m n S 1 is the corresponding remainder operator.
Theorem 8.
If F C ( T h ) , then
| ( R m n S 1 F ) ( x , y ) | ( 1 + A m x 2 ) ω ( F ( · , y ) ; 1 A m x 2 ) + ( 1 + B n y 2 ) ω ( F ( x , · ) ; 1 B n y 2 ) + ( A m + B n x 2 y 2 + 1 ) ω ( F ; 1 A m x 2 , 1 B n y 2 ) ,
with A m and B n given in (9).
Proof. 
The identity
F S m n 1 F = ( F Q m x F ) + ( F Q n y F ) ( F P m n 1 F )
implies that
| ( R m n S 1 F ) ( x , y ) | | ( R m x F ) ( x , y ) | + | ( R n y F ) ( x , y ) | + | ( R m n P 1 F ) ( x , y ) | ,
and, applying Theorems 3 and 6, we get (10). □

3. Cheney–Sharma Operator of the First Kind

Let m N and β be a nonnegative parameter. In [23], based on the following Jensen’s identity,
( x + y + m β ) m = k = 0 m m k x ( x + k β ) k 1 [ y + ( m k ) β ] m k , ( ) ( x , y ) R 2 ,
the Cheney–Sharma operators of the first kind G m : C [ 0 , 1 ] C [ 0 , 1 ] were introduced, given by
( G m f ) ( x ) = i = 0 m q m , i ( x ) f ( k m ) ,
with
q m , i ( x ) = m i x ( x + i β ) i 1 [ 1 x + ( m i ) β ] m i ( 1 + m β ) m .
For F, a real-valued function defined on T h , m , n N ,   β , b R + , and the uniform partitions Δ m x and Δ n y of the intervals [ 0 , h y ] and [ 0 , h x ] , we consider here the new extensions of the Cheney–Sharma operator of the first kind,
( G m x F ) ( x , y ) = i = 0 m r m , i ( x , y ) F i h y m , y , ( G n y F ) ( x , y ) = j = 0 n r n , j ( x , y ) F x , j h x n ,
with
r m , i x , y = m i x h y ( x h y + i β ) i 1 [ 1 x h y + ( m i ) β ] m i ( 1 + m β ) m , r n , j x , y = n j y h x ( y h x + j b ) j 1 [ 1 y h x + ( n j ) b ] n j ( 1 + n b ) n .
We denote by P m n G = G m x G n y the product and by S m n G : = G m x G n y = G m x + G n y G m x G n y , respectively, the Boolean sum of the operators G m x and G n y .
Remark 4.
The new extensions of the Cheney–Sharma operator of the first kind, G m x and G n y , and their product and Boolean sum, P m n G and S m n G , introduced here, have similar properties as the ones of the Cheney–Sharma operator of the second kind from the previous section.

4. Numerical Examples

In this section, we consider two test functions for which we plot the graphs of the approximants using the methods presented here, and also we study the maximum approximation errors for the corresponding approximants.
Example 1.
Consider the following test functions, generally used in the literature (see, e.g., [37]):
Gentle : F 1 ( x , y ) = 1 3 exp [ 81 16 ( ( x 0.5 ) 2 + ( y 0.5 ) 2 ) ] , Saddle : F 2 ( x , y ) = 1.25 + cos 5.4 y 6 + 6 ( 3 x 1 ) 2 .
Considering h = 1 ,   m = 5 , n = 6 , β = 1 , in Table 1, one can see the maximum errors for approximating F i by Q m x F i , Q n y F i , P m n 1 F i , S m n 1 F i , G m x F i , G n y F i , P m n G F i , S m n G F i , i = 1 , 2 ; in Figure 2 and Figure 3, we have plotted the graphs of F i , Q m x F i , Q n y F i , P m n 1 F i , S m n 1 F i , G m x F i , S m n G F i , i = 1 , 2 on T h .

5. Conclusions

According to Table 1 and Figure 2 and Figure 3, we note the good approximation properties of the two types of Cheney–Sharma operators considered here, especially of the Boolean sum operators, which interpolate on the entire frontier of the domain.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Barnhill, R.E.; Birkhoff, G.; Gordon, W.J. Smooth interpolation in triangles. J. Approx. Theory 1973, 8, 114–128. [Google Scholar] [CrossRef] [Green Version]
  2. Barnhill, R.E.; Gregory, J.A. Polynomial interpolation to boundary data on triangles. Math. Comp. 1975, 29, 726–735. [Google Scholar] [CrossRef]
  3. Blaga, P.; Coman, G. Bernstein-type operators on triangle. Rev. Anal. Numer. Theor. Approx. 2009, 37, 9–21. [Google Scholar]
  4. Böhmer, K.; Coman, G. Blending Interpolation Schemes on Triangle with Error Bounds; Lecture Notes in Mathematics, 571; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977; pp. 14–37. [Google Scholar]
  5. Cătinaş, T.; Coman, G. Some interpolation operators on a simplex domain. Stud. Univ. Babes-Bolyai Math. 2007, 52, 25–34. [Google Scholar]
  6. Costabile, F.A.; Dell’Accio, F. Expansions over a simplex of real functions by means of Bernoulli polynomials. Numer. Algorithms 2001, 28, 63–86. [Google Scholar] [CrossRef]
  7. Costabile, F.A.; Dell’Accio, F. Lidstone approximation on the triangle. Appl. Numer. Math. 2005, 52, 339–361. [Google Scholar] [CrossRef]
  8. Barnhill, R.E.; Gregory, J.A. Compatible smooth interpolation in triangles. J. Approx. Theory 1975, 15, 214–225. [Google Scholar] [CrossRef] [Green Version]
  9. Bernardi, C. Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 1989, 26, 1212–1240. [Google Scholar] [CrossRef]
  10. Blaga, P.; Cătinaş, T.; Coman, G. Bernstein-type operators on tetrahedrons. Stud. Univ. Babes-Bolyai Math. 2009, 54, 3–19. [Google Scholar]
  11. Blaga, P.; Cătinaş, T.; Coman, G. Bernstein-type operators on a square with one and two curved sides. Stud. Univ. Babes-Bolyai Math. 2010, 55, 51–67. [Google Scholar]
  12. Blaga, P.; Cătinaş, T.; Coman, G. Bernstein-type operators on triangle with all curved sides. Appl. Math. Comput. 2011, 218, 3072–3082. [Google Scholar] [CrossRef]
  13. Blaga, P.; Cătinaş, T.; Coman, G. Bernstein-type operators on triangle with one curved side. Mediterr. J. Math. 2012, 9, 843–855. [Google Scholar] [CrossRef]
  14. Cătinaş, T. Some classes of surfaces generated by Nielson and Marshall type operators on the triangle with one curved side. Stud. Univ. Babes-Bolyai Math. 2016, 61, 305–314. [Google Scholar]
  15. Cătinaş, T. Extension of some particular interpolation operators to a triangle with one curved side. Appl. Math. Comput. 2017, 315, 286–297. [Google Scholar] [CrossRef]
  16. Cătinaş, T. Extension of Some Cheney-Sharma Type Operators to a Triangle With One Curved Side. Miskolc Math. Notes 2020, 21, 101–111. [Google Scholar] [CrossRef]
  17. Cătinaş, T.; Blaga, P.; Coman, G. Surfaces generation by blending interpolation on a triangle with one curved side. Results Math. 2013, 64, 343–355. [Google Scholar] [CrossRef]
  18. Coman, G.; Cătinaş, T. Interpolation operators on a tetrahedron with three curved sides. Calcolo 2010, 47, 113–128. [Google Scholar] [CrossRef]
  19. Coman, G.; Cătinaş, T. Interpolation operators on a triangle with one curved side. BIT Numer. Math. 2010, 50, 243–267. [Google Scholar] [CrossRef]
  20. Marshall, J.A.; Mitchell, A.R. An exact boundary tehnique for improved accuracy in the finite element method. J. Inst. Maths. Applics. 1973, 12, 355–362. [Google Scholar] [CrossRef]
  21. Mitchell, A.R.; McLeod, R. Curved elements in the finite element method. In Conference on the Numerical Solution of Differential Equations; Springer: Berlin/Heidelberg, Germany, 1974; Volume 363, pp. 89–104. [Google Scholar]
  22. Chandra, P.; Kumar, V.D.; Naokant, D. Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators. Math. Found. Comput. 2022. [Google Scholar] [CrossRef]
  23. Cheney, E.W.; Sharma, A. On a generalization of Bernstein polynomials. Riv. Mat. Univ. Parma 1964, 5, 77–84. [Google Scholar]
  24. Ong, S.H.; Ng, C.M.; Yap, H.K.; Srivastava, H.M. Some Probabilistic Generalizations of the Cheney–Sharma and Bernstein Approximation Operators. Axioms 2022, 11, 537. [Google Scholar] [CrossRef]
  25. Stancu, D.D.; Cişmaxsxiu, C. On an approximating linear positive operator of Cheney-Sharma. Rev. Anal. Numer. Theor. Approx. 1997, 26, 221–227. [Google Scholar]
  26. Barnhill, R.E. Blending Function Interpolation: A Survey and Some New Results. In Numerishe Methoden der Approximationstheorie; Collatz, L., Ed.; Birkhauser-Verlag: Basel, Switzerland, 1976; Volume 30, pp. 43–89. [Google Scholar]
  27. Barnhill, R.E. Representation and approximation of surfaces. In Mathematical Software III; Rice, J.R., Ed.; Academic Press: New York, NY, USA, 1977; pp. 68–119. [Google Scholar]
  28. Barnhill, R.E.; Gregory, J.A. Sard kernels theorems on triangular domains with applications to finite element error bounds. Numer. Math. 1976, 25, 215–229. [Google Scholar] [CrossRef]
  29. Gordon, W.J.; Hall, C. Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer. Math. 1973, 21, 109–129. [Google Scholar] [CrossRef]
  30. Gordon, W.J.; Wixom, J.A. Pseudo-harmonic interpolation on convex domains. SIAM J. Numer. Anal. 1974, 11, 909–933. [Google Scholar] [CrossRef]
  31. Liu, T. A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations. Comput. Math. Appl. 2016, 71, 1519–1523. [Google Scholar] [CrossRef]
  32. Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [Google Scholar] [CrossRef]
  33. Marshall, J.A.; Mitchell, A.R. Blending interpolants in the finite element method. Int. J. Numer. Meth. Eng. 1978, 12, 77–83. [Google Scholar] [CrossRef]
  34. Roomi, V.; Ahmadi, H.R. Continuity and Differentiability of Solutions with Respect to Initial Conditions and Peano Theorem for Uncertain Differential Equations. Math. Interdiscip. 2022. [Google Scholar] [CrossRef]
  35. Agratini, O. Approximation by Linear Operators; Cluj University Press: Cluj-Napoca, Romania, 2000. [Google Scholar]
  36. Sard, A. Linear Approximation; American Mathematical Society: Providence, RI, USA, 1963. [Google Scholar]
  37. Renka, R.J.; Cline, A.K. A triangle-based C1 interpolation method. Rocky Mountain J. Math. 1984, 14, 223–237. [Google Scholar] [CrossRef]
Figure 1. Triangle T h .
Figure 1. Triangle T h .
Symmetry 14 02446 g001
Figure 2. Graphs of F 1 and its interpolants on T 1 .
Figure 2. Graphs of F 1 and its interpolants on T 1 .
Symmetry 14 02446 g002
Figure 3. Graphs of F 2 and its interpolants on T 1 .
Figure 3. Graphs of F 2 and its interpolants on T 1 .
Symmetry 14 02446 g003
Table 1. Maximum approximation errors.
Table 1. Maximum approximation errors.
Max Error F 1 F 2
Q m x F i 0.0862 0.1922
Q n y F i 0.1264 0.1529
P m n 1 F i 0.1680 0.1926
S m n 1 F i 0.0152 0.0235
G m x F i 0.1523 0.1695
G n y F i 0.1560 0.2364
P m n G F i 0.2444 0.1697
S m n G F i 0.0676 0.0750
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cătinaş, T. Cheney–Sharma Type Operators on a Triangle with Straight Sides. Symmetry 2022, 14, 2446. https://doi.org/10.3390/sym14112446

AMA Style

Cătinaş T. Cheney–Sharma Type Operators on a Triangle with Straight Sides. Symmetry. 2022; 14(11):2446. https://doi.org/10.3390/sym14112446

Chicago/Turabian Style

Cătinaş, Teodora. 2022. "Cheney–Sharma Type Operators on a Triangle with Straight Sides" Symmetry 14, no. 11: 2446. https://doi.org/10.3390/sym14112446

APA Style

Cătinaş, T. (2022). Cheney–Sharma Type Operators on a Triangle with Straight Sides. Symmetry, 14(11), 2446. https://doi.org/10.3390/sym14112446

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop