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Abstract: The development of numeric-analytic solutions and the construction of fractional order
mathematical models for practical issues are of the highest concern in a variety of physics, applied
mathematics, and engineering applications. The nonlinear Kersten–Krasil’shchik-coupled Korteweg–
de Vries-modified Korteweg–de Vries (KdV-mKdV) system is treated analytically in this paper
using a unique method, known as the Laplace residual power series (LRPS) approach to find some
approximate solutions. The RPS methodology and the Laplace transform operator are combined
in the LRPS method. We provide a detailed introduction to the proposed method for dealing with
fractional Kersten–Krasil’shchik-linked KdV-mKdV models. When compared to exact solutions, the
approach provides analytical solutions with good accuracy. We demonstrate the effectiveness of the
current strategy compared to alternative methods for solving nonlinear equations using an illustrative
example. The LRPS technique’s results show and highlight that the method may be used for a variety
of time-fractional models of physical processes with simplicity and computing effectiveness.

Keywords: Laplace transform; residual power series; Caputo operator; Korteweg–de Vries nonlinear
system

MSC: 26A33; 60H15; 35R11; 34A25

1. Introduction

Fractional calculus (FC) has attracted increased interest from scientists and academics
due to its applications in a variety of scientific disciplines, including engineering, chem-
istry, and social science [1–3]. Iterative methodology [4], Laplace transforms [5], and the
operational tool [6] are some of the methods used to explore fractional equations. Dif-
ferent approaches were employed by various researchers to examine various fractional
nonlinear equations found in the field of nanotechnology, including the shock wave equa-
tion, the KdV Burgers–Kuramoto equation, and the differential-difference equation [7–9].
Singh et al. studied the Tricomi equation in relation to the local fractional derivative of
the fractal transonic flow, which led to the discovery of the system’s non-differentiable
solution [10]. Using the integral transform method, Choudhary et al. [11] investigated a
fractional system of heat flux in the semi-infinite solid. Liouville–Caputo operators were
employed by Gomez Aguilar et al. in their study of a fractional derivative for an electrical
RLC circuit [12]. In [13], a fractional-order model of the exponential kernel in the Euler–
Lagrange and Hamilton equations was investigated. As a result, symmetry analysis is an
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excellent tool for understanding partial differential equations, particularly when looking
at equations derived from accounting-related mathematical ideas [14,15]. The majority of
natural observations lack symmetry, despite the fact that symmetry is the cornerstones of
nature. Unexpected symmetry-breaking occurrences are a sophisticated method of hiding
symmetry. Finite and infinitesimal symmetry are the two types. Finite symmetries can
either be discrete or continuous. Parity and temporal inversion are discrete natural sym-
metries, whereas space is a continuous transformation. Patterns have always captivated
mathematicians. In the seventeenth century, the classification of spatial and planar patterns
really got going. Regrettably, precise solutions to fractional nonlinear differential equations
have shown to be exceedingly challenging.

In recent years, people have been able to simulate numerous processes with more
freedom by employing fractional differential equations (FDE). This concept has been
realized in numerous disciplines, including engineering, economics, control theory, and
finance, with impressive achievements. People are becoming more and more interested in
using FDE to simulate challenging and real-world issues; however, integer characteristics
do not make differential equations more realistic (IDE) [16–18]. FDE is non-local, has a
storage effect, and performs better when compared to local IDE. For the investigation of
various situations, the model’s future circumstances will vary depending on both current
events and historical data. These features make it possible for FDE to successfully model
non-Markov events in addition to non-Gaussian phenomena realistically. Additionally,
standard IDEs are unable to explain FDE’s assistance or offer information between two
different integer values. Numerous non-integer order derivative operators have been put
out in various studies occurring to get over the restriction of only differentiating integer
values. There are several disciplines where fractional-order differential operators are
used [19–24].

The degree of freedom of its differential operator in modern calculus (including
classical calculus) in a specific circumstance is more significant than that of the local ordinary
differential operator. The main application of calculation can be found in [25–27]. As a
result, the study of non-integer order differentiation and integrations is highly valued by
scholars. From a geometric standpoint, the entire function’s accumulation or the full global
integration range is explained by the arbitrary order derivatives, which are mostly definite
integrals. The optimization of differential equations, and numerical and qualitative research
has benefited tremendously from the work of researchers. It is important to remember
that recent derivative operators were developed using definite integral techniques. It is
a well-known reality that there is no fundamental formula for solving this. As a result,
different definitions are involved with both types of kernels. The Atangana, Baleanu
(ABC) fractional-order derivative [28] is the fundamental formulation that is the most
attractive. Nonlinear equations are typically difficult to solve analytically or exactly. As a
result, numerous numerical methods have been developed to evaluate the aforementioned
equations. In order to examine FDE under ABC derivatives, many academics have recently
looked into numerical approaches [29–33].

There are many published papers about the interpretation of nonlinear phenomena
that can be generated and propagated in different plasma models. Most researchers have
focused on reducing the basic equations of different plasma models to evolution equations
in the form of partial differential equations such as the Korteweg–de Vries (KdV) equation,
modified KdV (mKdV) equation, extended KdV equation, Kawahara-type equation, and
so on [34–36]. A few studies reduced the fluid equations of different plasma models to
fractional differential equations (FDEs) to gain a lot of information about how these waves
propagate. Fractional coupled systems are frequently employed to study the complicated
behavior of many nonlinear structures in different plasma models. Many experts have
made an effort to assess this behavior. Recent research on the KdV equation and mKdV
equation was conducted by Paul Kersten and Joseph Krasil’shchik. They proposed absolute
complexity between coupled KdV-mKdV nonlinear systems for the analysis of nonlinear
system behavior [37–39]. This Kersten–Krasil’shchik-coupled KdV-mKdV nonlinear system
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has been the subject of various variations, as noted in [40–43]. The nonlinear fractional
Kersten–Krasil’shchik-coupled KdV-mKdV system is one of these variations and offers a
mathematical explanation for the behavior of multi-component plasma for waves traveling
down the positive κ axis:

Dρ
=u + uκκκ − 6uuκ + 3vvκκκ + 3vκvκκκ − 3uκv2 + 6uvvκ = 0, = > 0, κ ∈ R, 0 < ρ ≤ 1,

Dρ
=v + vκκκ − 3v2vκ − 3uvκ + 3uκv = 0, = > 0, κ ∈ R, 0 < ρ ≤ 1,

(1)

where κ denotes a spatial coordinate and = denotes a time coordinate. Factor ρ denotes
the order of the fractional operator. This operator is studied using the Caputo form. The
fractional coupled system turns into a classical system when ρ = 1, as shown below:

u= + uκκκ − 6uuκ + 3vvκκκ + 3vκv2κ − 3uκv2 + 6uvvκ = 0, = > 0, κ ∈ R,

v= + vκκκ − 3v2vκ − 3uvκ + 3uκv = 0, = > 0, κ ∈ R.
(2)

The well-known KdV system is created from the Kersten–Krasil’shchik-linked KdV-
mKdV system as follows if we put v = 0.

u= + uκκκ − 6uuκ = 0, = > 0, κ ∈ R. (3)

The well-known modified KdV system is created as follows when the Kersten–Krasil’
shchik-connected KdV-mKdV system at u = 0.

v= + vκκκ − 3v2vκ = 0, = > 0, κ ∈ R. (4)

The Kersten–Krasil’shchik-linked KdV-mKdV system can, therefore, be thought of as
a combination of the KdV system and the mKdV system, which are described by (2) to (4).
In this work, we also look at the third-order KdV system with two components that are
fractionally nonlinear and homogeneously coupled in time:

Dρ
=u− uκκκ − uuκ − vvκ = 0, = > 0, κ ∈ R, 0 < ρ ≤ 1,

Dρ
=v + 2vκκκ − uvκ = 0, = > 0, κ ∈ R, 0 < ρ ≤ 1,

(5)

where ρ is the order factor of the fractional operator, = is the temporal coordinate amd κ is
the spatial coordinate. This operator is studied using Caputo form. The fractional coupled
system turns into a classical system when ρ = 1, as shown below:

u= − uκκκ − uuκ − vvκ = 0, = > 0, κ ∈ R,

v= + 2vκκκ − uvκ = 0, = > 0, κ ∈ R.
(6)

Finding the exact solution to nonlinear partial differential equations is still a major
problem in physics and applied mathematics, necessitating the use of various techniques
to obtain innovative approximate or exact solutions. Many approximation and numerical
techniques have been used to solve fractional differential equations [44–46]. In this work,
we propose a new easy and effective semi-analytical method to solve fractional PDE systems
with variable coefficients. Our recommended method, LRPSM, which combines RPSM
and the Laplace transform, was put into practice. In comparison to the RPS technique,
which requires fractional differentiation in each phase, the main advantage of the present
technique is that it can identify the unknown components of the suggested solutions by
utilizing limits in the Laplace space, which, in turn, reduces the number of calculations
needed and saves time [47–49]. For a variety of FDEs and time-fractional PDEs, the LRPS
approach has been effectively used to develop approximative series solutions in closed
forms [50–52].

The remaining parts of the ongoing work are structured as follows: The Laplace
transform, Laplace fractional expansion, and certain fundamental definitions and theorems
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relating to fractional calculus are reviewed in Section 2. The concept of the suggested
method for constructing the approximate solution of the fractional model under consid-
eration (5) is provided in Section 3. To demonstrate the applicability and effectiveness of
examining the solutions of time-PDEs of fractional order, the LRPS technique is used in
Section 4 to solve fractional Kersten–Krasil’shchik-coupled KdV-mKdV systems. Finally,
Section 5 presents possible interpretations of our findings.

2. Preliminaries

Here we presented some essential definitions related to our present work.

Definition 1. The Caputo fractional derivative is stated as [53–55]

CDρ
=u(κ,=) = Jm−ρ

= um(κ,=), m− 1 < ρ ≤ m, = > 0. (7)

where m ∈ N and Jρ
= is the fractional Riemann-Liouville (RL) integral stated as

Jρ
=u(κ,=) = 1

Γ(ρ)

∫ =
0

(=− t)ρ−1u(κ, t)dt (8)

considering that the given integral exists.

Definition 2. For a function u(κ,=), the Laplace transform is stated as [53]

u(κ, v) = L=[u(κ,=)] =
∫ ∞

0
e−v=u(κ,=)d=, v > ρ, (9)

where the inverse LT is stated as

u(κ,=) = L−1
= [u(κ, v)] =

∫ l+i∞

l−i∞
ev=u(κ, v)dv, l = Re(v) > l0, (10)

where l0 is in the right half-plane of the Laplace integral’s absolute convergence.

Lemma 1. Let us consider that u(κ,=) is a continuous piecewise function having exponential
order ζ and U(κ, v) = L=[u(κ,=)], we get

1. L=[J
ρ
=u(κ,=)] = U(κ,v)

vρ , ρ > 0.
2. L=[D

ρ
=u(κ,=)] = vρU(κ, v)−∑m−1

k=0 vρ−k−1uk(κ, 0), m− 1 < ρ ≤ m.

3. L=[D
nρ
= u(κ,=)] = vnρU(κ, v)−∑n−1

k=0 v(n−k)ρ−1Dkρ
= u(κ, 0), 0 < ρ ≤ 1.

Proof. Check Ref. [56].

Theorem 1. Let u(κ,=) be a piecewise continuous function on I × [0, ∞) with exponential order
ζ. Assume the U(κ, v) = L=[u(κ,=)] function has the below fractional expansion:

U(κ, v) =
∞

∑
n=0

fn(κ)

v1+nρ
, 0 < ρ ≤ 1, κ ∈ I, v > ζ. (11)

Thus, fn(κ) = Dnρ
= u(κ, 0).

Proof. Check Ref. [53].

Remark 1. The inverse LT of Equation (11) is stated as [53]:

u(κ,=) =
∞

∑
i=0

Dρ
=u(κ, 0)

Γ(1 + iρ)
=i(ζ), 0 < ζ ≤ 1, = ≥ 0. (12)
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which is equal to the fractional Taylor’s formula as given in [57].
The FPS convergence of Theorem (1) is determined in the below theorem.

Theorem 2. Consider u(κ,=) is piecewise continuous on I × [0, ∞) having order ξ and is as
given in Theorem (1), u(κ, v) = L=[u(κ,=)] can be stated to be in the form of fractional Taylor’s
formula. If

∣∣∣vL=[Diρ+1
= u(κ,=)]

∣∣∣ ≤ M(κ), on I× (ξ, γ] where 0 < ρ ≤ 1, then Ri(κ, v) is the
remainder of the form of fractional Taylor’s formula in Theorem (1), proving the below inequality.

|Ri(κ, v)| ≤ M(κ)

S1+(i+1)ρ
, κ ∈ I, ξ < v ≤ γ. (13)

Proof. Check Ref. [53].

3. Idea of LRPS

In this part, we will discuss the general methodology of LRPS to solve the system of
fractional partial differential equations.

On taking LT of Equation (5), we have

U(κ, v)− f0(κ, ξ)

v
+

1
vρL=

[
L−1
= [Uκκκ ] + L−1

= [U]L−1
= [Uκ ] + L−1

= [V]L−1
= [Vκ ]

]
= 0,

V(κ, v)− g0(κ, ξ)

v
+

1
vρL=

[
2L−1
= [Vκκκ ]−L−1

= [U]L−1
= [Vκ ]

]
= 0.

(14)

Considering that Equation (14)’s solution has the below expansion

U(κ, v) =
∞

∑
n=0

fn(κ, v)

vnρ+1 , V(κ, v) =
∞

∑
n=0

gn(κ, v)

vnρ+1 . (15)

The series for the kth-truncated term is

U(κ, v) =
f0(κ, v)

v
+

k

∑
n=1

fn(κ, v)

vnρ+1 , V(κ, v) =
g0(κ, v)

v
+

k

∑
n=1

gn(κ, v)

vnρ+1 . k = 1, 2, 3, 4 · · · (16)

The Laplace residual functions (LRFs) [58] are

L=Resu(κ, v) =U(κ, v)− f0(κ, v)

v
+

1
vρL=

[
L−1
= [Uκκκ ] + L−1

= [U]L−1
= [Uκ ] + L−1

= [V]L−1
= [Vκ ]

]
,

L=Resv(κ, v) =V(κ, v)− g0(κ, v)

v
+

1
vρL=

[
2L−1
= [Vκκκ ]−L−1

= [U]L−1
= [Vκ ]

]
.

(17)

The kth-LRFs as:

L=Resu,k(κ, v) =Uk(κ, v)− f0(κ, v)

v
+

1
vρL=

[
L−1
= [Uκκκ,k] + L−1

= [Uk]L−1
= [Uκ,k] + L−1

= [Vk]L−1
= [Vκ,k]

]
,

L=Resv,k(κ, v) =Vk(κ, v)− g0(κ, v)

v
+

1
vρL=

[
2L−1
= [Vκκκ,k]−L−1

= [Uk]L−1
= [Vκ,k]

]
.

(18)

There are some properties that arise in the LRPSM [58] to point out some facts:

• L=Res(κ, v) = 0 and limj→∞ L=Resu,k(κ, v) = L=Resu(κ, v) for each v > 0.
• limv→∞ vL=Resu(κ, v) = 0⇒ limv→∞ vL=Resu,k(κ, v) = 0.
• limv→∞ vkρ+1L=Resu,k(κ, v) = limv→∞ vkρ+1L=Resu,k(κ, v) = 0, 0 < ρ ≤ 1,

k = 1, 2, 3, · · · .
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Now to get coefficients fn(κ, v) and gn(κ, v), we recursively solve the below system

lim
v→∞

vkρ+1L=Resu,k(κ, v) = 0, k = 1, 2, · · · ,

lim
v→∞

vkρ+1L=Resv,k(κ, v) = 0, k = 1, 2, · · · ,
(19)

Lastly, we employ inverse LT to Equation (16) to obtain the kth approximate solutions
of uk(κ,=) and vk(κ,=).

4. Numerical Problem

In this part, we implemented the suggested scheme for solving fractional Kersten–
Krasil’shchik-linked KdV-mKdV systems.

4.1. Problem

Assume a time-fractional homogeneous two component-coupled KdV system of third-
order as:

Dρ
=u− uκκκ − uuκ − vvκ = 0,

Dρ
=v + 2vκκκ − uvκ = 0.

(20)

subjected to initial conditions:

u(κ, 0) = 3− 6 tanh2
(κ

2

)
,

v(κ, 0) = −3c
√

2 tanh
(κ

2

)
.

(21)

On taking LT from Equation (20) and by means of Equation (21), we obtain

U(κ, v)−
3− 6 tanh2( κ

2
)

v
− 1

vρL=
[
L−1
= [Uκκκ ] + L−1

= [U]L−1
= [Uκ ] + L−1

= [V]L−1
= [Vκ ]

]
= 0,

V(κ, v)−
−3c
√

2 tanh
(

κ
2
)

v
− 1

vρL=
[
−2L−1

= [Vκκκ ] + L−1
= [U]L−1

= [Vκ ]
]
= 0,

(22)

The series for kth-truncated term is

U(κ, v) =
3− 6 tanh2( κ

2
)

v
+

k

∑
n=1

fn(κ, v)

vnρ+1 , V(κ, v) =
−3c
√

2 tanh
(

κ
2
)

v
+

k

∑
n=1

gn(κ, v)

vnρ+1 , k = 1, 2, 3, 4 · · · (23)

and the kth-LRFs as:

L=Resu,k(κ, v) =Uk(κ, v)−
3− 6 tanh2( κ

2
)

v
− 1

vρL=
[
L−1
= [Uκκκ,k] + L−1

= [Uk]L−1
= [Uκ,k] + L−1

= [Vk]L−1
= [Vκ,k]

]
,

L=Resv,k(κ, v) =Vk(κ, v)−
−3c
√

2 tanh
(

κ
2
)

v
− 1

vρL=
[
−2L−1

= [Vκκκ,k] + L−1
= [Uk]L−1

= [Vκ,k]
]
.

(24)

Now, to find fk(κ, v) and gk(κ, v), k = 1, 2, 3, · · · , we put the kth-truncated series
Equation (23) into the kth-Laplace residual function Equation (24), multiply the resulting
equation by vkρ+1, and now solve the relation recursively limv→∞(vkρ+1L=Resu,k(κ, v)) =
0, and limv→∞(vkρ+1L=Resv,k(κ, v)) = 0, k = 1, 2, 3, · · · .
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We get some components as:

f1(κ, v) =3− 6 tanh2
(κ

2

)
,

g1(κ, v) =− 3c
√

2 tanh
(κ

2

)
,

f2(κ, v) =6 sech2
(κ

2

)
tanh

(κ

2

)
,

g2(κ, v) =3c
√

2 sech2
(κ

2

)
tanh

(κ

2

)
,

f3(κ, v) =3[2 + 7 sech2
(κ

2

)
− 15 sech4

(κ

2

)
] sech2

(κ

2

)
g3(κ, v) =

3c
√

2
2

[
2 + 21 sech2

(κ

2

)
− 24 sech4

(κ

2

)]
sech2

(κ

2

)
.

(25)

and so on.
Now, by substituting fk(κ, v) and gk(κ, v), k = 1, 2, 3, · · · , in Equation (23), we obtain

U(κ, v) =
3− 6 tanh2( κ

2
)

v
+

6 sech2( κ
2
)

tanh
(

κ
2
)

vρ+1 +

3[2 + 7 sech2( κ
2
)
− 15 sech4( κ

2
)
] sech2( κ

2
)

v2ρ+1 + · · · ,

V(κ, v) =
−3c
√

2 tanh
(

κ
2
)

v
+

3c
√

2 sech2( κ
2
)

tanh
(

κ
2
)

vρ+1 +

3c
√

2
2

[
2 + 21 sech2( κ

2
)
− 24 sech4( κ

2
)]

sech2( κ
2
)

v2ρ+1 + · · · .

(26)

On taking the inverse LT, we have

u(κ,=) =
(

3− 6 tanh2
(κ

2

)
+ 6 sech2

(κ

2

)
tanh

(κ

2

) =ρ

Γ(ρ + 1)
+

3[2 + 7 sech2
(κ

2

)
− 15 sech4

(κ

2

)
] sech2

(κ

2

) =2ρ

Γ(2ρ + 1)
+ · · ·

)
,

v(κ,=) =
(
− 3c
√

2 tanh
(κ

2

)
+ 3c
√

2 sech2
(κ

2

)
tanh

(κ

2

) =ρ

Γ(ρ + 1)
+

3c
√

2
2

[
2 + 21 sech2

(κ

2

)
− 24 sech4

(κ

2

)]
sech2

(κ

2

) =2ρ

Γ(2ρ + 1)
+ · · ·

)
.

we obtain exact solutions by taking ρ = 1 as

u(κ,=) = 3− 6 tanh2
(κ +=

2

)
,

v(κ,=) = −3c
√

2 tanh
(κ +=

2

)
.

(27)

4.2. Problem

Assume the time-fractional Kersten–Krasil’shchik-coupled KdV-mKdV system as:

Dρ
=u− uκκκ − 6uuκ + 3vvκκκ + 3vκvκκ − 3uκv2 + 6uvvκ = 0,

Dρ
=v + vκκκ − 3v2vκ − 3uvκ + 3uκv = 0.

(28)
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subjected to initial conditions:

u(κ, 0) = c− 2c sech2(
√

cκ),

v(κ, 0) = 2
√

c sech(
√

cκ).
(29)

On taking the LT of Equation (28) and by means of Equation (29), we obtain

U(κ, v)− c− 2c sech2(
√

cκ)

v
− 1

vρL=

[
L−1
= [Uκκκ ] + 6L−1

= [U]L−1
= [Uκ ]− 3L−1

= [V]L−1
= [Vκκκ ]−

3L−1
= [Vκ ]L−1

= [Vκκ ] + 3L−1
= [Uκ ]L−1

= [V2]− 6L−1
= [U]L−1

= [V]L−1
= [Vκ ]

]
= 0,

V(κ, v)− 2
√

c sech(
√

cκ)

v
− 1

vρL=

[
−L−1

= [Vκκκ ] + 3L−1
= [V2]L−1

= [Vκ ] + 3L−1
= [U]L−1

= [Vκ ]−

3L−1
= [Uκ ]L−1

= [V]

]
= 0,

(30)

The series for the kth-truncated term is

U(κ, v) =
c− 2c sech2(

√
cκ)

v
+

k

∑
n=1

fn(κ, v)

vnρ+1 , V(κ, v) =
2
√

c sech(
√

cκ)

v
+

k

∑
n=1

gn(κ, v)

vnρ+1 , k = 1, 2, 3, 4 · · · (31)

and the kth-LRFs as:

L=Resu,k(κ, v) =Uk(κ, v)− c− 2c sech2(
√

cκ)

v
+

1
vρL=

[
L−1
= [Uκκκ,k] + 6L−1

= [Uk]L−1
= [Uκ,k]− 3L−1

= [Vk]L−1
= [Vκκκ,k]−

3L−1
= [Vκ,k]L−1

= [Vκκ,k] + 3L−1
= [Uκ,k]L−1

= [V2
k ]− 6L−1

= [Uk]L−1
= [Vk]L−1

= [Vκ,k]

]
,

L=Resv,k(κ, v) =Vk(κ, v)− 2
√

c sech(
√

cκ)

v
+

1
vρL=

[
−L−1

= [Vκκκ,k] + 3L−1
= [V2

k ]L
−1
= [Vκ,k] + 3L−1

= [Uk]L−1
= [Vκ,k]−

3L−1
= [Uκ,k]L−1

= [Vk]

]
.

(32)

Now, to find fk(κ, v) and gk(κ, v), k = 1, 2, 3, · · · , we put the kth-truncated series
Equation (31) into the kth-Laplace residual function Equation (32), multiply the resulting
equation by skρ+1, and now solve the relation recursively limv→∞(vkρ+1L=Resu,k(κ, v)) = 0,
and limv→∞(vkρ+1L=Resv,k(κ, v)) = 0, k = 1, 2, 3, · · · .

We get some components as:

f1(κ, v) =c− 2c sech2(
√

cκ),

g1(κ, v) =2
√

c sech(
√

cκ),

f2(κ, v) =8c
5
2 sinh(

√
cκ) sech3(

√
cκ),

g2(κ, v) =− 4c2 sinh(
√

cκ) sech2(
√

cκ),

f3(κ, v) =− 16c4[2 cosh2(
√

cκ)− 3] sech4(
√

cκ)

g3(κ, v) =8c
7
2 [cosh2(

√
cκ)− 2] sech3(

√
cκ).

(33)

and so on.
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Now, by substituting fk(κ, v) and gk(κ, v), k = 1, 2, 3, · · · , into Equation (31), we obtain

U(κ, v) =
c− 2c sech2(

√
cκ)

v
+

8c
5
2 sinh(

√
cκ) sech3(

√
cκ)

vρ+1 +

−16c4[2 cosh2(
√

cκ)− 3] sech4(
√

cκ)

v2ρ+1 + · · · ,

V(κ, v) =
2
√

c sech(
√

cκ)

v
+
−4c2 sinh(

√
cκ) sech2(

√
cκ)

vρ+1 +

8c
7
2 [cosh2(

√
cκ)− 2] sech3(

√
cκ)

v2ρ+1 + · · · .

(34)

On taking inverse LT, we have

u(κ,=) =
(

c− 2c sech2(
√

cκ) + 8c
5
2 sinh(

√
cκ) sech3(

√
cκ)

=ρ

Γ(ρ + 1)
−

16c4[2 cosh2(
√

cκ)− 3] sech4(
√

cκ)
=2ρ

Γ(2ρ + 1)
+ · · ·

)
,

v(κ,=) =
(

2
√

c sech(
√

cκ)− 4c2 sinh(
√

cκ) sech2(
√

cκ)
=ρ

Γ(ρ + 1)
+

8c
7
2 [cosh2(

√
cκ)− 2] sech3(

√
cκ)

=2ρ

Γ(2ρ + 1)
+ · · ·

)
.

we obtain exact solutions by taking ρ = 1 as

u(κ,=) = c− 2c sech2(
√

c(κ + 2c=)),
v(κ,=) = 2

√
c sech(

√
c(κ + 2c=)).

(35)

5. Results and Discussion

The solutions to u(κ,=) using the exact and suggested approach are calculated in
Figure 1 with ρ = 1. The graphical representations of u(κ,=) for ρ = 0.8 and 0.6 are
shown in Figure 2. Figure 3 illustrates the 2D and 3D behavior of u(κ,=) for various
fractional orders. The solutions to v(κ,=) using the actual and suggested approach are
calculated in Figure 4 with ρ = 1. The graphical representations of v(κ,=) for ρ = 0.8
and 0.6 are shown in Figure 5. Figure 6 illustrates the 2D and 3D behavior of v(κ,=) for
various fractional orders. The graphical representation of System 1 demonstrates great
agreement between our solutions and the correct answer. Similar to Figure 6, Figure 7
presents the actual and suggested methods solutions for u(κ,=) for ρ = 1. Figure 8 exhibits
the graphical representations of u(κ,=) for ρ = 0.8 and 0.6, respectively, while Figure 9
depicts the 2D and 3D behaviors of u(κ,=) for various fractional orders. Additionally,
Figure 10 shows both the actual and proposed technique’s solutions for v(κ,=) for ρ = 1.
Figure 11 presents the graphical representations of v(κ,=) for ρ = 0.8 and 0.6, respectively,
while Figure 12 depicts the 2D and 3D behaviors of v(κ,=) for various fractional orders. In
a similar manner, System 2’s graphical appearance demonstrates the fact that our solutions
are in close agreement with the accurate solutions. Each and every figure was generated at
c = 0.1 and = ∈ [0, 0.1] within the range −3 ≤ κ ≥ 3. Additionally, Tables 1 and 2 display
the approximate solution to System 1 for various values of κ and =, while the approximate
solution of System 2 for various values of κ and = is shown in Tables 3 and 4, respectively.
The figures and tables show that the exact solution and our approach solution are quite
similar to one another and have a greater level of precision. Further, from the figures and
tables, it is observed that the proposed method solution gets closer to the exact solution as
the value of ρ tends from the fractional order toward the integer order. Moreover, from the
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comparison, it is clear that the LRPS technique solution and the exact solutions are very
close. Thus, the LRPS technique is a dependable new study that requires less computation,
is adaptable, and is simple to use.

Figure 1. The accurate and suggested approach solution for u(κ,=) for System 1 at ρ = 1.

Figure 2. The suggested approach solution for System 1 at ρ = 0.8, 0.6 of u(κ,=).

Figure 3. The solution of the suggested approach for u(κ,=) of System 1 at various ρ values.

Figure 4. The accurate and suggested approach solution for v(κ,=) for System 1 at ρ = 1.
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Figure 5. The suggested approach solution for System 1 at ρ = 0.8, 0.6 of v(κ,=).

Figure 6. The solution of the suggested approach for v(κ,=) of System 1 at various ρ values.

Figure 7. The accurate and suggested approach solution for u(κ,=) for System 2 at ρ = 1.

Figure 8. The suggested approach solution for System 2 at ρ = 0.8, 0.6 of u(κ,=).



Symmetry 2022, 14, 2452 12 of 17

Figure 9. The solution of the suggested approach for u(κ,=) of System 2 at various ρ values.

Figure 10. The accurate and suggested approach solution for v(κ,=) for System 2 at ρ = 1.

Figure 11. The suggested approach solution for System 2 at ρ = 0.8, 0.6 of v(κ,=).

Figure 12. The solution of the suggested approach for v(κ,=) of System 2 at various ρ values.



Symmetry 2022, 14, 2452 13 of 17

Table 1. Solution to u(κ,=) at various fractional orders for System 1.

(κ,=) u(κ,=) at ρ = 0.5 u(κ,=) at ρ = 0.75 (LRPSM) at ρ = 1 Exact Result

(0.2, 0.01) 2.9522951 2.9463031 2.9403977 2.9403977

(0.4, 0.01) 2.7892015 2.7772263 2.7662578 2.7662578

(0.6, 0.01) 2.5227923 2.5068021 2.4908217 2.4908217

(0.2, 0.02) 2.9523242 2.9463522 2.9403977 2.9403977

(0.4, 0.02) 2.7892041 2.7762190 2.7662578 2.7662578

(0.6, 0.02) 2.5227863 2.5068015 2.4908217 2.4908217

(0.2, 0.03) 2.9523245 2.9463621 2.9403977 2.9403977

(0.4, 0.03) 2.7891987 2.7762124 2.7662578 2.7662578

(0.6, 0.03) 2.5227921 2.5068105 2.4908217 2.4908217

(0.2, 0.04) 2.9523183 2.9463561 2.9403977 2.9403977

(0.4, 0.04) 2.7892124 2.7762321 2.7662578 2.7662578

(0.6, 0.04) 2.5227833 2.5068103 2.4908217 2.4908217

(0.2, 0.05) 2.9523133 2.9463562 2.9403977 2.9403977

(0.4, 0.05) 2.7892189 2.7762488 2.7662578 2.7662578

(0.6, 0.05) 2.5228021 2.5068111 2.4908216 2.4908216

Table 2. Solution to v(κ,=) at various fractional orders for System 1.

(κ,=) v(κ,=) at ρ = 0.5 v(κ,=) at ρ = 0.75 (LRPSM) at ρ = 1 Exact Result

(0.2, 0.01) −0.0004074 −0.0004127 −0.0004228 −0.0004228

(0.4, 0.01) −0.0008051 −0.0008202 −0.0008373 −0.0008373

(0.6, 0.01) −0.0011923 −0.0012126 −0.0012359 −0.0012359

(0.2, 0.02) −0.0004024 −0.0004087 −0.0004228 −0.0004228

(0.4, 0.02) −0.0008051 −0.0008212 −0.0008373 −0.0008373

(0.6, 0.02) −0.0012003 −0.0012217 −0.0012359 −0.0012359

(0.2, 0.03) −0.0004034 −0.0004126 −0.0004228 −0.0004228

(0.4, 0.03) −0.0008111 −0.0008202 −0.0008373 −0.0008373

(0.6, 0.03) −0.0012004 −0.0012127 −0.0012359 −0.0012359

(0.2, 0.04) −0.0004024 −0.0004106 −0.0004228 −0.0004228

(0.4, 0.04) −0.0008061 −0.0008203 −0.0008374 −0.0008374

(0.6, 0.04) −0.0012005 −0.0012127 −0.0012359 −0.0012359

(0.2, 0.05) −0.0004033 −0.0004126 −0.0004228 −0.0004228

(0.4, 0.05) −0.0008072 −0.0008213 −0.0008374 −0.0008374

(0.6, 0.05) −0.0012016 −0.0012137 −0.0012359 −0.0012359
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Table 3. Solution to u(κ,=) at various fractional orders for System 2.

(κ,=) u(κ,=) at ρ = 0.5 u(κ,=) at ρ = 0.75 (LRPSM) at ρ = 1 Exact Result

(0.2, 0.01) −0.0991522 −0.0991843 −0.0992005 −0.0992005

(0.4, 0.02) −0.0967362 −0.0967994 −0.0968306 −0.0968306

(0.6, 0.03) −0.0928263 −0.0929185 −0.0929647 −0.0929647

(0.2, 0.01) −0.0991503 −0.0991826 −0.0991989 −0.0991989

(0.4, 0.02) −0.0967322 −0.0967953 −0.0968275 −0.0968275

(0.6, 0.03) −0.0928212 −0.0929134 −0.0929601 −0.0929601

(0.2, 0.01) −0.0991480 −0.0991812 −0.0991973 −0.0991973

(0.4, 0.02) −0.0967281 −0.0967922 −0.0968244 −0.0968244

(0.6, 0.03) −0.0928152 −0.0929094 −0.0929556 −0.0929556

(0.2, 0.01) −0.0991473 −0.0991795 −0.0991957 −0.0991957

(0.4, 0.02) −0.0967250 −0.0967891 −0.0968212 −0.0968212

(0.6, 0.03) −0.0928102 −0.0929044 −0.0929510 −0.0929510

(0.2, 0.01) −0.0991454 −0.0991776 −0.0991941 −0.0991941

(0.4, 0.02) −0.0967214 −0.0967866 −0.0968181 −0.0968181

(0.6, 0.03) −0.0928051 −0.0928992 −0.0929464 −0.0929464

Table 4. Solution to v(κ,=) at various fractional orders for System 2.

(κ,=) v(κ,=) at ρ = 0.5 v(κ,=) at ρ = 0.75 (LRPSM) at ρ = 1 Exact Result

(0.2, 0.01) 0.6311140 0.6311641 0.6311902 0.6311902

(0.4, 0.02) 0.6272731 0.6273743 0.6274244 0.6274244

(0.6, 0.03) 0.6210090 0.6211581 0.6212322 0.6212322

(0.2, 0.01) 0.6311112 0.6311624 0.6311876 0.6311876

(0.4, 0.02) 0.6272672 0.6273683 0.6274194 0.6274194

(0.6, 0.03) 0.6210013 0.6211506 0.6212248 0.6212248

(0.2, 0.01) 0.6311083 0.6311596 0.6311851 0.6311851

(0.4, 0.02) 0.6272620 0.6273632 0.6274144 0.6274144

(0.6, 0.03) 0.6209921 0.6211423 0.6212175 0.6212175

(0.2, 0.01) 0.6311052 0.6311564 0.6311826 0.6311826

(0.4, 0.02) 0.6272561 0.6273583 0.6274094 0.6274094

(0.6, 0.03) 0.6209844 0.6211358 0.6212101 0.6212101

(0.2, 0.01) 0.6311023 0.6311457 0.6311800 0.6311800

(0.4, 0.02) 0.6272500 0.6273532 0.6274044 0.6274044

(0.6, 0.03) 0.6209764 0.6211275 0.6212027 0.6212027
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6. Conclusions

The fractional Kersten–Krasil’shchik-linked KdV-mKdV analytical approximate so-
lution, together with the necessary initial data, was successfully developed in this work
using the LRPS technique. The major goal of the suggested method is to use the limit
concept to find the unknown LFSE coefficients for the new equation in Laplace space.
Without perturbation, discretization, or physical hypotheses, the analytical approximations
for the solved fractional Kersten–Krasil’shchik-coupled KdV-mKdV systems’ starting value
equations are obtained in rapidly convergent MFPS formulas. Two illustrated examples
were used to study the LRPS technique’s performance and reliability. As a result, the LRPS
technique is a straightforward, simple, and useful tool for treating a variety of nonlinear
time-fractional PDEs that occur in engineering and science problems.
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