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Abstract: The paper proposes an experimentally validated method of chaotization of the platform
movement process based on the principle of feedback control using a symmetrical (bidirectional)
controller. The significance is shown and the prospect of chaotization of platform oscillations for
vibration technologies, in particular, mixing of bulk materials, is disclosed. The proposed algorithm
was comprehensively experimentally studied with a laboratory vibratory setup, and the results of
experiments demonstrating its efficacy are presented.
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1. Introduction

Vibratory machines and vibration technologies are widely used in many fields of
industry and agriculture for influencing materials or products during their movement
and processing, such as grinding, sorting, mixing, and compacting; see [1–9]. Features of
the phenomenon of mixing granular media and technological aspects of this process are
discussed in detail in monograph [10]; see also Dolgunin et al. [11]. Chaotization of mixing
processes is known as a way of increasing their efficiency; cf. [12–15]. The idea of random
mixing of bulk materials was introduced into industrial practice in machines manufactured
by Kroosher Technologies (web page: http://www.kroosh.com/ (accessed 17 November
2022)), Kroosher products contain Kroosher© mechanical device attached to the shaker
shaft. Thanks to it, additional vibrations arise, which are mechanically transmitted to the
drive of the machine through wear-resistant liners. This vibration technology is based on
exposing the bulk material passing through the screen to vibrations with a continuous
frequency spectrum. According to their properties, these oscillations can be classified as
chaotic. Kroosher justifies his approach by arguing that the use of a narrow-spectrum
vibratory agitator may result in the separation of the granular material instead of mixing.
Chaotic (multi-frequency) mixing avoids this phenomenon. Thanks to the Kroosher©
device, the energy of single-frequency oscillations is redistributed between oscillations
with a wide frequency spectrum. The result of this impact is an increase in the efficiency
of loosening and mixing of the material. Chaotization of a DC motor for use in industrial
mixing processes is presented in [13], where time-delay feedback control was used. As
Chau et al. [13] notes, the proposed chaotic motion engine not only provides the desired
chaotic mixing but also has high performance and flexible controllability.

Recent publications related to nonlinear dynamic processes, including chaotic ones, in
applications in various fields of science and technology, such as the application of chaos to
communications, random number generation, game theory, and encryption systems, are re-
flected in the special issue [16]. In particular, the dynamics of a symmetrical panel absorber
fixed on a flexible wall is considered in [17], where the weighted residual elliptic integral
method is used. The nonlinear vibration control for suppressing nonlinear oscillations of a
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self-excited 1DoF system was considered in [18]. It was shown that, when the loop delays
are neglected, the performance of the proposed control strategy is proportional to the
product of the control and feedback gains and inversely proportional to the internal loop
feedback gain. Control of supply chains, subject to control input limitations, was studied
by Wang et al. [19]. The control scheme was proposed and equipped with a fixed time
disturbance observer and the super-twisting sliding mode algorithm. Chaotic attractors in
the closed-loop supply chain system were demonstrated. Schönfeld et al. [20] presented
a micromixer based on the consistent use of separation and recombination principles.
Mixing characteristics for Reynolds numbers approximately within the interval [1, 100]
have been studied, and the numerical results were experimentally confirmed by mixing
water–glycerol solutions.

Suzuki et al. [21] presented a magnetic force-driven mixer with a simple configuration,
designed to facilitate the mixing of magnetic beads and biomolecules in a microchannel.
The mixing device of [21] consists of embedded microconductors as a magnetic field source
and a microchannel that guides the streams of the working fluid. Micromixers have found
various applications in chemical and biological processes [22]. Chaotic micromixers were
studied in [23–27]. A chaotic micromixer with multiple side channels was developed
and studied by Niu and Lee [23]. Chaotic mixing in [23] was achieved by stretching and
folding the liquid in the main and side channels. Jen et al. [24] designed micromixers
with three-dimensional structures of the twisted microchannel to induce chaotic mixing.
Kang and Kwon [25] devoted a paper to numerical analysis methods for a detailed under-

standing of the mixing process in micromixers. The proposed numerical method makes it
possible to visualize mixing models and quantify mixing performance in chaotic micromix-
ers. Stremler et al. [26] described an approach to developing microfluidic mixers using
chaotic advection. As stated in [26], chaotic advection analysis (“designing for chaos”),
based on practical mixer design, is a promising approach in this emerging field.

The unbalanced actuators are the most widely used source for producing oscillations
in vibration machines [28–32]. These actuators are used in vibratory conveying machines,
lifters, screens, rammers, and many other technologies where circular, elliptical, or di-
rectional vibrations are required. Circular vibrations of the working body are generated
by a single imbalance or two imbalances rotating synchronously and in phase in the
same direction. Gouskov et al. [33], Panovko et al. [34] studied the phenomenon of self-
synchronization of a vibratory machine with two actuators driven by two AC induction
motors. They discussed the possibility of controlling a resonant vibration machine by
correcting the power frequency of vibro-actuators.

This work is devoted to improving the vibratory mixing of granular materials due to
the randomization of the movement of the vibrating platform. Unlike in [13], where the
drive (electric motor) directly affected the mixing process, in this study, platform vibrations
were caused indirectly by the rotation of two unbalanced rotors driven by induction motors.
To achieve the goal of the execution of platform movement chaotization of the process, in
this paper, the possibility of a phase shift between rotating rotors chaotization is considered,
which, in turn, leads to chaotization of the vibrational field of the platform. The symmetrical
(bidirectional) control law for drives of the unbalanced rotors is used to obtain the desired
phase-shift behavior.

This paper implements the idea expressed in [35,36]: the application of feedback
control methods for studying and improving various physical processes, including those
in vibration technologies. To do so, advanced vibration setups are being developed in the
form of computer-controlled mechatronic complexes. A laboratory model of such a setup,
the Multiresonance Mechatronic Laboratory Setup (MMLS) SV-2M of the IPME RAS, was
employed in the present study.

The remainder of the paper is organized as follows. In Section 2, a brief description of
the laboratory-based mechatronic setup, the SV-2M, is given. The symmetrical control law
for the drives of unbalanced rotors is presented in Section 3. Section 4 describes the results



Symmetry 2022, 14, 2460 3 of 17

of the experimental study. Concluding remarks and future work intentions are given in
Section 5.

2. Description of the Laboratory Mechatronic Setup

The MMLS SV-2M is described in detail in a series of papers, including [37–40]. For
the sake of clarity, the SV-2M is briefly described below.

The setup consists of the vibration stand, a pair of induction motors with unbalanced
rotors, an electronic converter/amplifier, a sensor unit, and a personal computer (PC).
The induction motors can be independently controlled from the side of the PC via the
corresponding amplifiers. The imbalance of the rotors is provided by the eccentrically
located weights. The rotors are connected to the motor shafts in a vertical plane on the stand
base. The mechanical part of the setup is pictured in Figure 1. The positive direction for the
“left” (conventionally) motor is clockwise, whereas for the “right” motor it is anti-clockwise.

Figure 1. Mechanical part of the mechatronic setup of the SV-2M.

For measuring platforms and rotor angles, the SV-2M is equipped with 12 optical
sensors measuring positions of the main and the extra platforms; rotors’ angular sensors
with a resolution of 4000 pulses/revolution; the optical motion sensors, DFRobot Smart
Grayscale Sensors, making it possible to obtain information about the 6DoF linear and
angular coordinates of each platform. Locations of the linear displacement sensors on the
main platform are schematically shown in Figure 2.

S1

S2S3 *
S5

S4

S6

1

2 3

402

19
5

18
5

1—main platform; 2—left AC motor with the unbalanced rotor;
3—right AC motor with the unbalanced rotor

Figure 2. Schematic diagram of the setup (top view) and placement of sensors S1–S6 on the main
platform. The asterisk “*” on the right plot marks the point of interest.
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Sensors S1–S3 measure the position of the main platform in the vertical plane, while
sensors S4–S6 measure its position in the horizontal plane; sensors S4 and S5 make mea-
surements along the x axis, sensor S6 measures displacement along the y axis. The optical
position sensors’ calibration has been performed to obtain their measuring characteristics
as mappings from output signals si of the digital board driver PCI826 to the distances di,
i = 1, . . . , 6. The experimentally taken measuring characteristics of sensors are shown in
Figure 3. The measurement nodes’ positions are marked by points; intermediate values
were obtained by linear interpolation.
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Figure 3. Characteristics of position sensors S1–S6.

The induction drives are independently controlled by the PC, which forms the gov-
erning signals ul and ur, setting the rotation speeds of the “left” and “right” drive systems
(respectively). These signals are fed to Altivar 12 Schneider Electric converters via a 16-bit
DAC in the form of DC voltages in the range of [0, 5] V. The converters have their own
local feedbacks, which are used in the “U/ f = const” control mode. The PC outputs are
integers in the range [0, 216 − 1], so the dimensionless control signals generated by the PC
are non-negative and limited to ū = 65,535. In the present work, for overloads preventing
and ensuring the equipment durability, ū was set to ū = 40,000.

Real-time data processing and control-signal generation were carried out by means of
Simulink Desktop Real-Time™ of MATLAB© R2015b software with a sampling rate up to
1000 Hz.

3. Symmetrical Control Law for Unbalanced Rotor Drives
3.1. Continuous-Time Symmetrical Control Law

As stated in the Introduction, in the present work for the chaotization of the platform
vibrations, the chaotic phase shift was organized by means of the feedback control for
the unbalanced rotors drives. To this end, the symmetrical (bidirectional) control law
proposed by Andrievsky and Boikov [41] (its adaptive version may be found in [42]) was
taken as an initial point. In [40,41], this control law was verified by numerical analysis
of the simplified model and the real-world experiments as well. According to this law,
the actuators’ velocities were controlled independently of each other by the separated PI
controllers, and an anti-symmetrical cross-coupling link was introduced by means of an
additional phase-control signal uψ between the control loops, which was generated by the
joint PI controller for the phase shift. For the considered aim, the symmetrical PI control
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law for ensuring the given angular velocity ω∗ for both rotors and the prescribed phase
shift ψ∗ between the rotation angles was as follows:

PI controller for left drive


eωl = ω∗ −ωl ,
σ̇ωl = eωl ,
uωl = Kiωl σωl + Kpωl eωl ,
ul = uωl + uψ,

(1)

PI controller for right drive


eωr = ω∗ −ωr,
σ̇ωr = eωr ,
uωr = Kiωr σωr + Kpeωr ,
ur = uωr − uψ,

(2)

Phase shift PI controller


ψ = ϕr − ϕl ,
eψ = ψ∗ − ψ,
σ̇ψ = sin eψ,
uψ = −Kiψσψ + Kpψ sin eψ,

(3)

where ω∗ denotes the desired rotation velocity; eωl and eωr are the motor’s velocity errors;
PI controllers for velocities of the left and right motors are described by (1) and (2), respec-
tively, where Kiωl and Kiωr are for the integral, and Kpωl and Kpωr are for the proportional
controller gains; for the phase-shift PI controller (3), variables ϕr and ϕl denote the phase
angles of the rotors and ψ stands for the phase shift between the rotation angles; the phase
shift error is denoted by eψ, where ψ∗ is the prescribed phase shift between the rotors; ul
and ur in (1) and (2) denote the control signals applied to the left and right drive systems.
The block-diagram of symmetrical controller (1)–(3) is depicted in Figure 4.

Figure 4. Block diagram of a symmetrical controller for rotational velocity/phase shift; see (1)–(3).

3.2. Discrete-Time Symmetrical Control Law with Anti-Windup Augmentation

Let us transform control law (1)–(3) into a discrete-time form to be implemented on
the controlling PC. Rotation angles ϕl(t) and ϕr(t) are measured by angular sensors with a
certain discretization interval T0, so that discrete-time values ϕl [n] and ϕr[n] are obtained
as ϕl(nT0), ϕr(nT0), where n = 0, 1, 2, . . . stands for the “discrete time” (the step number).
The values of control signals ul [n] and ur[n] are generated by the digital controller and then
interpolated over the entire sampling interval by zero order hold, so that the continuous-
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time input signals ul(t), ur(t) of the servo drives are found as ul(t) = ul [n], ur(t) = ur[n]
as t ∈

[
nT0, (n + 1)T0

)
.

In the system under consideration, the controlling signals, applied to the electric
converters, are limited: ul , ur ∈ [0, ū], and the control laws contain an integration procedure.
The control error is integrated by the controller, but when saturation occurs, the controlling
input does not change, and the value of the error integral accumulates (there appears, so
to speak, a break in the control feedback). This can lead to the emergence of oscillatory
or even divergent processes in the system, in which the normal functioning of the system
is impossible. This phenomenon is commonly known as “windup”, and measures to
prevent it by introducing additional feedback or series compensators are called anti-windup
correction (augmentation); see [43–45].

The Euler approximation for time derivatives in (1)–(3) results in the following iterative
procedure for the host PC:

PI controller for left drive



ωl [n] = (ϕl [n]− ϕl [n− 1])/T0,
el [n] = ω∗[n]−ωl [n],
ũl [n] = Kiωσl [n− 1] + Kpωel [n],

σl [n]=

{
σl [n−1], if ũl [n] /∈ [0, ū]
σl [n−1]+T0el [n], otherwice,

ul [n] = sat[0,ū]
(
ũl [n] + uψ[n]

)
,

(4)

PI controller for right drive



ωr[n] = (ϕr[n]− ϕr[n− 1])/T0,
er[n] = ω∗[n]−ωr[n],
ũr[n] = Kiωσr[n− 1] + Kpωer[n],

σr[n]=

{
σr[n−1], if ũr[n] /∈ [0, ū]
σr[n−1]+T0er[n], otherwice,

ur[n] = sat[0,ū]
(
ũr[n] + uψ[n]

)
,

(5)

Phase shift PI controller


ψ[n] = ϕr[n]− ϕl [n],
eψ[n] = ψ∗[n]− ψ[n],
σψ[n] = σψ[n− 1] + T0 sin

(
eψ[n]

)
,

uψ[n] = Kiψσψ[n] + Kpψ sin
(
eψ[n]

)
,

(6)

where function sat[0,ū](·) is defined as

sat[0,ū](z) =


z, if z ∈ [0, ū],
ū, if z > ū,
0, if z < 0.

(7)

The other notations are the same as in (1)–(3). A function sat[0,ū](·) is introduced into
the control algorithm, since the anti-windup correction only serves to prevent the tracking
error accumulation in integrators, but it cannot keep the signals, applied from the digital
controller, within the limits [0, ū]. Leaving these signals out of the prescribed area will lead
to an erroneous reaction of the converter. It is worth mentioning that no restrictions are
imposed on the phase shift controller (6) output uψ.

Remark 1. In the continuous-time representation, the limited nonlinear dynamic integrator with
input e(t), output σ(t), and the saturation level ū is described by the following model:

σ̇ =

{
0, if

(
|ũ| > ū) ∧ (e σ > 0),

e, otherwise,
(8)
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where ũ = Kiσ + Kpe; ∧, ∨ denote the logical “AND” operation.
Following the logic of [46,47], the nonlinear integrator (8) may be approximately described in

the Lur’e form as:

σ̇ = e− λ(u− ũ), u = sat[0,ū](ũ), ũ = Kiσ + Kpe, (9)

where gain λ > 0 is sufficiently large; cf. [47]. Thus, through substituting the limited integrator
by approximation (9), one can represent the actuator model in the form of a static saturation with
a linear system in a feedback loop. This makes it possible to apply the frequency-domain analysis
of [48–50] to this kind of system.

3.3. Chaotic Generation of a Reference Phase-Shift Signal

As noted in the Introduction, this work we target carrying out the chaotization of
the vibration fields of the working platform through a chaotic change in the phase shift
between the angles of rotation of the rotors. For this purpose, the symmetrical phase shift
controller, at a fixed (on average) speed of rotation of the rotors, is governed by a phase
reference signal generated by a chaotic oscillator. The amplitude and range of the main
oscillation frequencies of the generator were selected in accordance with the conditions of
the problem. In this work, the Lorentz system (cf. [51–54]), represented by the following
equations, was used as a source of the reference phase-shift signal:

ẋ1(t) = mt
(
28x3(t)− x1(t)− x2(t)x3(t)

)
,

ẋ2(t) = mt
(

x1(t)x3(t)− 2.666x2(t)
)
,

ẋ3(t) = 10mt
(
x1(t)− x3(t)

)
,

ψ∗(t) = cx1(t), (10)

where mt and c denote the time and output scaling factors, respectively.

4. Experimental Study

This section presents the results of experimental studies on the chaotization of the
vibration field of the working platform based on the chaotic change in the phase shift
between the rotating rotors.

4.1. Data Acquisition and Preprocessing

As stated in Section 2, rotation angles were measured by optical sensors with a
resolution of 4000 pulses/rev. The measured data were sampled in time with a frequency
of 1/T0 Hz and were used in PI controllers (4)–(6) to generate control signals ul and ur
coming from the controlling PC to servos through zero-order hold (ZOH) extrapolation.

The present work is focused on the vibrations of the main platform only. Optical
sensors S1–S6, shown in Figure 2, were used to obtain platform position data. These
sensor measurements—the values of respective displacements d1, . . . , d6, were read with
a sampling interval Ts and transferred to the PC for converting the sensor readings into
the corresponding platform deviations according to their static characteristics. Spline
interpolation (function interp1) was used in the MATLAB preprocessing program to restore
the values between the nodes, which were tabulated; see [55] for more detail. In the present
study, the platform position was not used in the feedback control algorithm (4)–(6); it was
aimed only at the post-processing examination of the platform’s motion. The positional
sensors’ measurement results were stored in a separate file for further processing. Therefore,
sampling time Ts was much less than that of the controller, T0. Taking into account that the
rotors’ revolving speeds can reach 25 rev/s, the value of Ts was chosen as Ts = 0.002 s.

At the next stage of data processing, the values of d1, . . . , d6 were cleared of noise and
oscillations caused by the movement of other parts of the setup, lying away from the area
under study in the vicinity of the fundamental frequency ω∗. For this purpose, a filtering
procedure based on the fast Fourier transform, implemented by utility fft of MATLAB,
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was used. Based on the cleared values of d1, . . . , d6, pitch and bank angles θ and Φ were
calculated (in radians) as

θ = arcsin
((

∆d2 − ∆d3
)
/402

)
, (11)

Φ = arctan
((
(∆d1 + ∆d2)/2− ∆d2

)
/97

)
, (12)

where ∆d1(t), ∆d2(t), and ∆d3(t) are the deviations (in mm) of d1(t), d2(t), and d3(t) with
respect to the neutral (initial) values d1(0), d2(0), and d3(0).

To visualize the platform’s oscillations, the trajectories of the platform’s chosen point
on the plane (∆d5, ∆d2) were plotted for various time intervals, [tb, t f ]. As a result of
processing, the signal envelopes were also revealed (ω∗ was taken as the modulation
frequency), and we subsequently calculated their autocorrelation functions. MATLAB
utilities amdemod and xcorr are employed to this end.

4.2. Conditions and Parameters for Experimental Study

The following controller parameters were taken for the experiments: Kpω =1680 s,
Kiω = 240, Kpψ = 200, and Kiψ = 2000 s−1. Controller discretization time: T0 = 0.01 s;
sampling time of platform position measurements: Ts = 0.002 s. Reference frequency ω∗

was set to 60 s−1. The Fourier filters’ bandpass was taken in the vicinity of ω∗ as [50, 70] s−1.
Three series of experiments were carried out. In the first of them, ψ-control was not

applied—i.e., uψ ≡ 0 was set. In the second series, a constant value ψ∗ = 0 was taken. In
the third one, a Lorentz generator (10) was used as a source of the reference signal ψ∗(t).
Parameter c = π/25 of (10) was chosen so that ψ∗(t) variations laid close to the boundaries
of ±π radians; time scaling factor mt = 0.1 was taken based on the available information
of the closed-loop system bandwidth with respect to a reference phase shift ψ∗.

An example of a time history of the Lorentz generator (10) output ψ∗(t) is shown
in Figure 5. The initial conditions were picked as x1(0) = −10, x2(0) = 10, x3(0) = 2.
The corresponding spectrogram, obtained by Lorentz system (10) simulation for the time
interval t ∈ [0, 103] s, is shown in Figure 6.

0 10 20 30 40 50 60 70 80

t, s

-2

0

2

*,
 r

a
d

Figure 5. Time history of Lorentz generator (10) output for mt = 0.1, c = π/25, x1(0) = −10,
x2(0) = 10, and x3(0) = 2.

Figure 6. Spectrogram of Lorentz generator (10) output ψ∗(t) for mt = 0.1 and c = π/25.
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4.3. Control of Rotation

Transients of ωl(t) for cases of free phase shift uψ ≡ 0, ψ∗ = 0, and ψ∗(t) as the Lorentz
generator (10) output are plotted in Figure 7. The corresponding time histories of control
signal ul(t) are depicted in Figure 8. The plots show that for both cases, the transient time
of ωl(t) with respect to the 5% zone of the initial error was about 7 s, the overshoot was
about 40 %, and the mean steady-state error can be neglected taking into account the usual
demands on vibration machines accuracy. It is also seen from Figure 8 that the presence of
the phase shift control signal uψ(t) does not make a visible impact on the processes of ωl(t)
and ul(t), despite that in the second case, ψ∗(t) changes in a wide range. Time histories of
phase shift ψ(t) and control signal ul(t) for cases of free phase shift uψ ≡ 0, ψ∗ = 0, and
ψ∗(t) as the Lorentz generator (10) output are plotted in Figures 9, 10 (respectively). It can
be seen that for the case of ψ∗ = 0, the steady-state error (modulo 2π) is negligibly small.
The steady-state phase shift between the rotors for the case of phase-shift control absence
(uψ ≡ 0) is close to zero too, demonstrating the self-synchronization effect between rotating
debalances; cf. [28,56].

0 1 2 3 4 5 6 7 8 9 10

t, s

0

20

40

60

80

l, 
ra

d
/s

 free

*=0

Lorenz

Figure 7. Transients of ωl(t) for cases of free phase shift uψ ≡ 0, ψ∗ = 0, and ψ∗(t) as Lorentz
generator (10) output.

0 5 10 15t, s

0

2

4

u
l

10
4

 free

0 5 10 15t, s
0

2

4

u
l

10
4

*=0

0 5 10 15t, s
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l
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Lorenz

Figure 8. Time histories of ul(t) for cases of free phase shift uψ ≡ 0, ψ∗ = 0, and ψ∗(t) as Lorentz
generator (10) output.
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Figure 9. Time histories of phase shift ψ(t) for cases of free phase shift uψ ≡ 0, ψ∗ = 0, and ψ∗(t) as
Lorentz generator (10) output.
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Figure 10. Time histories of uψ(t) for ψ∗ = 0 and ψ∗(t) as Lorentz generator (10) output.

4.4. Platform Motion

Let us now present the results of studying the movement of the main platform of the
stand, obtained as a result of the post-processing of experimental data. These studies were
aimed at studying the effect of rotation phase-shift chaotization on the platform motion
and were aimed at demonstrating that the proposed approach makes it possible to obtain a
more diverse, close to chaotic, movement of the platform, and consequently, as noted in the
Introduction, it improved the technological properties of the mixing process.

The platform’s movement in the horizontal direction has a significant impact on the
behavior of bulk materials; cf. [10,11,28,57]. Experimentally obtained time histories of the
platform horizontal coordinate d5(t) are plotted in Figure 11. The upper plot corresponds
to the case of ψ∗ = 0. The case of ψ∗(t) as a Lorentz generator (10) output is shown on the
lower plot. As can be seen in the plots, in the second case, there is a significant, pulsating,
change in the nature of the movement of the platform in the horizontal direction.
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Figure 11. Platform horisontal coordinate d5(t) time histories for the cases of: ψ-control absence,
uψ ≡ 0 (upper plot), ψ∗ = 0 (middle plot) and ψ∗(t) as Lorentz generator (10) output (lower plot).

Another important mixing characteristic of the movement of the platform is its
inclination—the pitch angle θ(t); see (11). The corresponding plots are shown in Figure 12.
The plots demonstrate the pulsating, chaotic nature of this process in the second case, and
in the first one the platform oscillates with an almost constant amplitude. In addition, when
the phase shift is chaotic, the amplitude of the platform oscillations turns out to be much
larger than without it (the graphs are plotted on the same scale). Note that this effect is
achieved at practically unchanged average rotation speeds ωl(t) and ωr(t) of the rotors,
and also due to a relatively small addition to the control signal, as shown in the plots in
Figure 8.
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Figure 12. Platform pitch angle θ(t) time histories for the cases of: ψ-control absence uψ ≡ 0 (upper
plot), ψ∗ = 0 (middle plot), and ψ∗(t) as Lorentz generator (10) output (lower plot).

The pitch angle oscillations’ chaotization when using the Lorentz generator as a phase-
shift generator is also visible from a comparison of the spectrograms of this process at a
fixed (zero) phase shift and a chaotic one, as shown in Figure 13. As can be seen, in the
second case, the averaged energy of process θ(t) is significantly higher, and the carrier
band of the signal spectrum is much wider than that in the first case, which also indicates
the chaotization of the platform’s oscillations.

57 58 59 60 61 62 63
, rad/s

0

0.02

0.04

0.06

S
(

)

*=0

Lorenz

Figure 13. Spectogramms of platform pitch angle θ(t) for ψ∗ = 0 and ψ∗(t) as Lorentz generator
(10) output.

The autocorrelation functions for the process envelope θ(t) were also obtained. To
extract the envelope, the amdemod amplitude demodulation procedure of the MATLAB
software was used. Plots of the normalized autocorrelation functions ρθ(τ) are shown in
Figure 14. The relatively faster decay of the autocorrelation function in the second case also
indicates the chaotization of the platform angular oscillations.
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Figure 14. Normalized autocorrelation function ρθ(τ) of platform pitch angle θ(t) for ψ∗ = 0 and
ψ∗(t) as Lorentz generator (10) output.

An impression of the process of platform oscillations can be obtained from the analysis
of its vibrational fields, represented by the trajectories of movement in time at specific
points of the platform. In this study, a point in the upper right corner of the platform
(marked with symbol “*”) was taken as this one. The trajectories of its movement in the
vertical plane are plotted in the coordinates (∆x, ∆y), corresponding to the longitudinal
and vertical displacement relative to the initial (equilibrium) position of the platform.

Figure 15 (upper plots) shows the development of the given point oscillations in time at
zero and chaotic phase shift. To do this, the whole time interval of the experimental run was
partitioned on subintervals [tbi

, t fi
] and the corresponding i-th trajectory was plotted in the

coordinates [t, ∆x, ∆y]. Instants tbi
formed the sequence {40, 41.5 . . . 79} s, and the respective

t fi
were calculated as t fi

= tbi
+ 0.2 s, which approximately corresponds to two oscillation

periods for each tbi
. For greater clarity, on the lower plots of Figure 15, red dots show the

maximum values of the coordinate ∆y in each oscillation cycle. As is shown in the graphs, in
the second case, the fluctuations turned out to be much more diverse than in the first one.

Figure 15. Cont.
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Figure 15. Trajectories of point #1 on the vertical plane (∆x, ∆y) for the cases of: ψ-control absence,
uψ ≡ 0 (upper plot), ψ∗ = 0 (middle plot), and ψ∗(t) as a Lorentz generator (10) (lower plot). Red
traces indicate ∆y maximums.

As is shown in the presented results, the absence of phase control (uψ ≡ 0), or its
stabilization at a certain level (ψ∗ = const), leads to oscillations, which are not enriched by
various frequencies; and the use of phase control with variable phase shift, set by a chaotic
generator, leads to a variety of platform movement without significant energy costs, and
therefore can potentially improve the quality of mixing materials. This result fits well to
the concept of changing the oscillating system behavior, by means of the “small” control
action; cf. [58,59].

5. Conclusions

Chaotization of vibrations of the platform of a two-rotor vibrating stand was consid-
ered. The suggested solution relies on the possibilities of feedback control and modern
computer technologies implemented on the mechatronic vibration machine. A digital
controller was developed with anti-windup correction, for ensuring the revolving speeds
of the unbalance rotors, and simultaneously, the given phase shift between the rotors’
angles. The chaotic Lorentz system was used as a source of the reference signal. The
proposed method of chaotization of platform vibrations was implemented and experimen-
tally studied on a laboratory vibration setup, the SV-2M. The results of experiments were
presented in the form of graphs of processes, their spectrograms, correlation functions,
and patterns of the vibrational field, confirming the efficacy of the proposed chaotization
method. From the presented results, it can be seen that the absence of phase control
(uψ ≡ 0), or its stabilization at a certain level (ψ∗ = const), leads to oscillations, which are
not enriched by various frequencies. The use of phase control with variable phase shift,
set by a chaotic generator, leads to a variety of platform movement without significant
energy costs, and therefore can potentially improve the quality of mixing materials. The
present work was focused on providing broadband frequency (chaotic) oscillations of the
vibration platform, which, under the influence of unbalanced rotors, performs complex
oscillatory movements. Oscillations of individual points of the platform differ from each
other, creating a “vibration field”, and for the example of the selected point, the results of
experiments on the bench using a symmetrical rotor speed controller and the phase angle
between them were given. It was found that the proposed method of “chaotization” of
oscillations allows, without significant energy costs, a significant complication of platform
oscillations, both in amplitude and in direction, which suggests the possibility of using this
approach for improving the quality of vibratory mixing of bulk or liquid materials. It is
worth mentioning, however, that the important consideration of the behavior of material
particles is out of the scope of the present work, and is the subject of further analytical and
experimental studies. For example, a situation is possible when a material particle, due to
its inertia, volume, and other factors, will vibrate in a petite range of displacements, and
not be in chaotic motion. In these studies, it is necessary to take into account the forces of
interaction between particles and the platform, the throw coefficient of a granule, the shape
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of its trajectory when moving on the vibrating table, the type of material, etc. Some useful
results on the analysis of particle motion on a vibrating base may be found in [28,57,60–68].

To control the speed and a phase shift, in the present study a symmetrical structure
with PI controllers modified by the introduction of an anti-windup correction was used.
This rather simple structure has proven itself in the problems of controlling the speed and
phase shift of the rotating rotors of a vibratory setup; cf. [40,55]. The application of more
complex control algorithms in the future is planned, particularly, the adaptive control with
an implicit reference model by Andrievsky et al. [42].
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