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Abstract: Partial discharge (PD) pattern recognition is a critical indicator for evaluating the insulation
state of gas-insulated switchgear (GIS). Aiming at the disadvantage of traditional PD pattern recogni-
tion methods, such as single feature extraction and low recognition accuracy, a pattern recognition
method of PD based on multi-feature information fusion is proposed in this paper. Firstly, a recogni-
tion model based on quasi-Hausdorff distance is established according to the statistical characteristics
of the phase-resolved partial discharge (PRPD) image, and then a modified convolutional neural
network recognition model is established according to the image features of the PRPD image. Finally,
Dempster–Shafer (D–S) evidence theory is used to fuse the two pattern recognition results and
complement the advantages of the two approaches to improve the accuracy of partial discharge
pattern recognition. The experimental results show that the total recognition accuracy rate of this
method for four typical PD is more than 94.00%, and the recognition rate is significantly improved
compared to support vector machine and normal convolution neural network. Maintaining stability
in typical bipedal robots is challenging due to two main reasons.

Keywords: partial discharge; pattern recognition; convolution neural network; multi-feature infor-
mation fusion; D–S evidence theory

1. Introduction

With the advantages of good insulation, high reliability, and small space, gas-insulated
switchgear (GIS) are widely used in power system. However, the GIS often works in
a complex environment of high temperature and high pressure which is easy to cause
insulation defects. Moreover, in the process of manufacturing, transportation, and assembly,
there will inevitably be some hidden dangers. The common insulation defects include
metal tip defects, free metal particle defects, floating electrode defects, and insulation void
defects [1]. When the insulation defects appear in GIS, partial discharge (PD) will occur
accompanied by an ultra-high frequency (UHF) signal. PD is not only the cause of insulation
deterioration of GIS in substation but also the cause of insulation deterioration [2]. If not
handled in time, it will eventually lead to the insulation breakdown of GIS. Because different
insulation fault defects need to take corresponding treatment methods, it is necessary to
accurately and effectively recognize the insulation fault types of equipment and then
take corresponding treatment to avoid insulation deterioration or even breakdown of
equipment [3,4]. It is an important technical means to ensure the stable operation of
substations and power systems.

Generally speaking, PD image is the main manifestation of PD features. There are
three types of commonly used PD images, including time-resolved partial discharge (TRPD)
image, phase-resolved partial discharge (PRPD) image, and phase-resolved pulse sequence
(PRPS) image [5]. In particular, the PRPD image can intuitively show the relationship
between discharge frequency phase (ϕ), discharge energy (q), and discharge times (n)
corresponding to partial discharge pulses, which are popularly used in PD pattern recogni-
tion [6,7]. In terms of the classification method of GIS PD pattern recognition based PRPD
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image, there are two types of popular methods, including traditional machine learning
methods supported by feature engineering and deep learning methods based on automatic
feature extraction. Based on auto-encoder, principal component analysis, probability statis-
tics, and feature engineering, the key feature parameters are extracted to represent the PD
pattern. In particular, the pulse feature method, wavelet transform, and Fourier transform
are used to construct the feature [8] in feature engineering. Then, PD pattern recognition is
performed by decision trees [9], random forests [10], support vector machines [11], artificial
neural networks [12], and other classifiers. With the rapid development of deep learning
algorithms, such as the convolution neural network (CNN) [13–15], deep belief network
(DBN) [16], and recurrent neural network (RNN) [17], they are popularly used for GIS PD
pattern recognition classification, and the feasibility is proved through practice. For in-
stance, a novel GIS PD pattern recognition method by using CNN and long short-term
memory (LSTM) was proposed in [18], and the effectiveness of this method is verified
by the experimental PD dataset. However, the current PD pattern recognition method is
mostly based on one type of statistical feature or image feature resulting in low accuracy for
PD pattern recognition. Therefore, proposing a new method for the fusion of multi-feature
information of the PRPD image for GIS PD pattern recognition is necessary.

This work proposes a GIS partial discharge pattern recognition method based on multi-
feature information fusion of the PRPD image, which takes advantage of statistical features
and image features to improve the recognition accuracy. This is implemented by applying
both machine learning methods and deep learning methods to GIS partial discharge pattern
recognition. In particular, the proposed PD pattern recognition method has two major
pattern recognition layers: the Hausdorff-like distance algorithm supported by statistical
features is utilized for GIS partial discharge pattern recognition, and modified CNN based
on automatically extracted image features is also used for GIS partial discharge pattern
recognition. Then, taking the results of these two PD pattern recognition models as inputs,
a fusion evaluation decision is made based on the D–S evidence theory. The proposed
method was validated and evaluated through an experiment in the laboratory and GIS
substation. The experimental results show the working of the proposed method for GIS
PD pattern recognition in improving recognition accuracy. The main contributions of this
work are threefold: (1) developing a modified convolutional neural network for GIS PD
pattern recognition; (2) proposing a GIS partial discharge pattern recognition method based
on multi-feature information fusion of PRPD image; (3) applying the proposed method to
laboratory and GIS substation PD pattern recognition experiment for method verification.

The rest of the paper is organized as follows. Section 2 details the proposed GIS PD
pattern recognition method. Section 3 applies the proposed method to the laboratory and
GIS substation and assessed the proposed method with results analyzed. The paper is
concluded in Section 4.

2. Method

The most common GIS PD pattern has 4 types, including corona discharge, free
metal discharge, surface discharge, and floating electrode discharge. The proposed GIS
PD pattern recognition method fuse PRPD image statistical feature and image feature
to improve the recognition accuracy. Following an overview of the proposed method,
the three components of the recognition method, including the Hausdorff-like distance
algorithm recognition model, modified convolutional neural network recognition model,
and fuse recognition decision based on D–S evidence theory are detailed in this section.

2.1. Method Overview

The overview of the proposed GIS PD pattern recognition method based on multi-
feature information fusion of the PRPD image is illustrated in Figure 1. The pattern
recognition method has two stages, including the recognition model training stage and the
recognition model test stage and the recognition model stage which has two recognition
channels, including the statistical features channel and the image features channel. The two



Symmetry 2022, 14, 2464 3 of 14

channels both take the PRPD image as inputs, the outputs of these two channels are
combined through the D–S evidence theory function, the results of which are then regarded
as the GIS PD pattern recognition results.
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Figure 1. The overview of the proposed GIS PD pattern recognition method.

2.2. Statistical Features Channel

The statistical features channel is implemented through the Hausdorff-like distance
algorithm in this work. The statistical features of PRPD spectra extracted by statistical
operators can reduce the influence of randomness of partial discharge to the greatest extent,
with high robustness and simple steps. Hausdorff-like distance is a distance measure for
two groups of feature vectors, and the nearest neighbor criterion is used to classify.

2.2.1. Statistical Features Extraction

The statistical calculation of one cycle PD signal can obtain three basic quantities:
discharge frequency phase (ϕ), discharge energy (q), and discharge times (n). These 3 basic
quantities are further processed to divide the local discharge signal of one cycle into m
phase windows equally, and then calculate its ϕ, q, and n values for each phase window
to obtain the ϕi, qi and ni sequence. Then, these three sequence values are used for the
four statistical features extraction in this work, including skewness (Sk), kurtosis (Ku),
asymmetry phases (Φ) and phase correlation coefficient (Cc) [19,20].

The skewness (Sk) is used to describe the difference in the shape of the PRPD image,
indicating the symmetric distribution of the image [21]. If the Sk value is 0, the image is
symmetrical; if the Sk value is greater than 0, it means that the image is left; and if the Sk
value is less than 0, it means that the image is biased to the right. The skewness of the
PRPD image can be computed as:

Sk =
m

∑
i=1

(ϕi − µ)3 · pi∆ϕ/δ3, (1)

where m represents the number of phase windows in the half power frequency period
of the PRPD image, ϕi is the phase of the i-th phase window, ∆ϕ stands for the phase
width, µ, pi and δ, respectively, denote the mean, probability density, and variance of PD
in the i-th phase window of PRPD image as the ϕi is the variable. In this paper, the Sk in
the positive half-cycle, negative half-cycle, and the whole power cycle are taken as three
feature parameters (l1, l2, l3) of the PRPD image, which is used to describe the left and
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right skewness of PD distribution relative to the normal distribution in the corresponding
phase window.

The kurtosis (Ku) is used to describe the prominence of the PRPD image shape com-
pared to the normal distribution. If the value is 0, the shape of the PRPD image is the same
as the normal distribution; if its value is positive, it means that the shape of the PRPD image
has a sharp and steep characteristic compared with the normal distribution. A negative
value indicates that the shape of the PRPD image has a flattering feature compared to the
normal distribution. In particular, kurtosis is defined as:

Ku =

[
m

∑
i=1

(ϕi − µ)4 pi∆ϕ/δ4

]
− 3, (2)

The Sk in the positive half-cycle, negative half-cycle, and the whole power cycle are
taken as the other three feature parameters (l4, l5, l6) of the PRPD image, which is utilized
to indicate the degree of protrusion of the PRPD image concerning the normal distribution
in the corresponding phase window.

The phase asymmetry (Φ) is used to describe the asymmetry of phase values corre-
sponding to max discharges of the PRPD image in the positive and the negative half of the
voltage cycle, which can be expressed as:

Φ =
ϕ−

ϕ+
, (3)

where ϕ+ and ϕ− represent the phase values corresponding to max discharges of the
PRPD image in the positive and the negative half of the voltage cycle, respectively. Then,
the phase asymmetry (Φ) is defined as the feature parameter (l7).

The phase correlation coefficient (Cc) is used to describe the degree of similarity
between the positive and negative half cycles of the profile of the PRPD image. The closer
the value is to 0, the greater the difference between the positive and negative half-perimetric
shapes of the image. The closer its value is to 1, the smaller the difference between the
positive and negative half-perimetric shape of the image. The Cc is defined as:

Cc =
∑n

i=1 q+i · q
−
i −∑m

i=1 q+i · q
−
i /m√[

∑m
i=1
(
q+i
)2 −

(
∑m

i=1 q+i
)2/m

]
·
[
∑m

i=1
(
q−i
)2 −

(
∑m

i=1 q−i
)2/m

] , (4)

where q+i and q−i represent the average discharge energy of positive and negative half
cycles within the i-th phase window in the PRPD image, respectively. For different types of
PD types, the correlation of positive and negative half-cycle distribution of the PRPD image
is different, so the phase correlation coefficient (Cc) is defined as the feature parameter (l8).

According to the above calculation, the statistical feature vector of the PRPD image
can be expressed as [l1, l2, l3, l4, l5, l6, l7, l8], which including skewness (Sk), kurtosis
(Ku), asymmetry phases (Φ) and phase correlation coefficient (Cc). The Sk indicates the
symmetric distribution of the PRPD image, the Ku is used to describe the prominence of
the PRPD image shape compared to the normal distribution, the Φ is used to describe the
asymmetry of phase values corresponding to max discharges of the PRPD image in the
positive and the negative half of the voltage cycle, and Cc is used to describe the degree of
similarity between the positive and negative half of the voltage cycles. The combination
of these features can fully reflect the shape characteristics of the PRPD image, so they are
selected as feature vectors in this work.

2.2.2. Hausdorff-like Distance Algorithm

The Hausdorff distance algorithm is used to measure the similarity between two
groups of feature vectors, and the nearest neighbor criterion is used to classify [22]. How-
ever, the Hausdorff distance algorithm is very sensitive to a single anomaly parameter.
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Therefore, to improve the adaptability of the algorithm to noise, this paper proposes
a Hausdorff-like distance algorithm to realize the PD pattern recognition based on the
statistical characteristics of the PRPD image.

The Hausdorff-like distance algorithm redefines the feature vector distance as the root
mean square of the distance from each point in feature vector A to the nearest point in
feature vector B, which can be expressed as:

hl(A, B) =
1
N

√√√√ N

∑
i=1

min
bj∈B

∣∣ai − bj
∣∣2, ai ∈ A, (5)

where N denotes the dimension of feature vector
∣∣ai − bj

∣∣ represents the geometric distance
between these two points. Therefore, the Hausdorff-like distance between vector A and B
can be expressed as follows:

HL(A, B) = max(hl(A, B), hl(B, A)), (6)

which means the maximum of the feature vector distance from vector A to vector B and the
distance from vector B to vector A.

2.2.3. Implementation of PD Type Recognition

The process of PD-type recognition is summarized below:
Step 1: The Hausdorff-like distance between statistical feature vectors of PRPD images

in the training sample set is calculated, which is marked as HL(A, B), A, B ∈ M, and M
stand for the set of statistical feature vectors of the training PRPD images sample.

Step 2: Finding standard PRPD images’ statistical feature vectors for specific PD types.
The statistical feature vectors of PRPD images training samples with the same PD type
is marked as Q, and the maximum of the minimum Hausdorff-like distance between the
statistical feature vectors within Q was calculated, which is marked as follows:

HAq = max
Aq∈Q

min
Bq∈Q

HL
(

Aq, Bq
)
. (7)

The statistical feature vectors with the smallest HAq were taken as the standard PRPD
images statistical feature vectors for this type of PD type, and marked as Qs.

Step 3: Calculate the critical classification Hausdorff distance d. The most Hausdorff
distance between the statistical feature vectors of the PRPD images set with the same PD
type and the type’s standard PRPD images’ statistical feature vectors is defined as the
critical classification Hausdorff distance, which is marked as follows:

d = max
Aq∈Q

HL
(

Aq, Qs
)
, (8)

Step 4: Calculate the probability of PD pattern classification. The statistical feature
vector Hausdorff distance Hms between the PRPD image to be identified and the standard
PRPD image was calculated. The difference between the critical classification Hausdorff
distance d and Hms is taken as the input, and the Sigmoid activation function is used to
calculate the classification activation value. Finally, the Softmax function is used to process
the relevant classification activation values and output the classification result probabilities
of the four PD types.

2.3. Image Features Channel

The convolutional neural network is a kind of feedforward neural network with a deep
structure including convolution calculation, which overcomes the limitations of traditional
machine learning in feature selection methods. To accurately identify the four typical PD
types, this paper develops a modified convolutional neural network to realize pattern
recognition based on PRPD image features, as shown in Figure 2. This method uses multi-
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layer CNN as the feature extractor and introduces the global mean pooling technology
to replace the fully connected layer part to reduce the training parameters and training
time of the model. The structure of the modified CNN algorithm is mainly composed of
an input layer, a feature extraction layer, and a classification output layer. The feature
extraction layer is similar to the traditional CNN, which can contain multiple convolution
layers, activation layers, and pooling layers stacked in turn. In the classification output
layer, a global mean pooling layer is designed to replace the fully connected layer, and then
the Softmax classifier is connected to PD pattern recognition.

Input layer Feature extraction layer Classification output layer

...... softmax

PD type 1

PD type 2

PD type 3

PD type 4

... softmax

PD type 1

PD type 2

PD type 3

PD type 4

Convolution Pooling Convolution Pooling Convolution Global mean pooling

Input layer Feature extraction layer Classification output layer

... softmax

PD type 1

PD type 2

PD type 3

PD type 4

Convolution Pooling Convolution Pooling Convolution Global mean pooling

Figure 2. The Network structure of PD pattern recognition based on modified convolutional neu-
ral network.

2.3.1. Input Layer

The input layer is used to perform necessary operations such as standardization and
format normalization on the acquired raw PRPD image, and convert the raw PRPD image
into the type that the CNN model can train. In this paper, the collected raw PRPD image is
first cut or supplemented into 100× 100 pixel pictures. Since the grayscale image of the
PRPD image can reflect all its information, this work uses image grayscale technology to
convert the PRPD image into a grayscale image. The acquired raw PRPD image is an RGB
image composed of red, green, and blue colors. The following formula can be used to gray:

H(i, j) = 0.30R(i, j) + 0.59G(i, j) + 0.11B(i, j), (9)

where H(i, j) represents the gray value at pixel (i, j), R(i, j), G(i, j) and B(i, j) are the red,
green and blue components at pixel point (i, j) of the PRPD image, respectively.

2.3.2. Feature Extraction Layer

The feature extraction layer consists of three operating functions, including convo-
lution operation, activation operation, and pooling operation. According to the needs of
PD pattern recognition, the feature extraction layer is constructed by alternately stacking
multiple operating functions.

The convolution operation has multiple convolution kernels, and its essence is to
operate on the receptive field by moving the convolution kernel. Each element that makes
up the convolution kernel contains a weight coefficient and bias [23]. The convolution
operation can be regarded as the convolution between the convolution kernel and the
feature maps of the previous layer, and the output feature maps are formed by nonlinear
transformation through the excitation function. The specific calculation can be expressed
as follows:

Xl+1
i,j = f

(
L

∑
j=1

m

∑
i=1

(
Xl

i,j × wl
i,j

)
+ b

)
, (10)

where Xl
i,j denotes the j-th eigenvalue of the i-th feature map in the l-th layer of the network,

L represents the width of the convolution kernel, m is the height of the convolution kernel,
wl

i,j indicates the weight coefficient, b is the bias, and f (·) is the activation function. In this
work, the Relu activation function is selected to complete nonlinear changes and improve
the expression ability of the model.
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As the convolution operation increases the number of output feature maps, the output
dimension also increases sharply while the feature extraction ability is improved, which
is easy to cause dimensional disaster. The pooling operation is used to minimize the
dimension of the output feature map without losing the original main features, which not
only reduces the calculation of parameters but also selects the main representative features.
In this work, the maximum pooling operation is used to calculate the pooling output, which
is defined as follows:

Yi = max
(
Xn×n

i r(n, n)
)
, (11)

where Yi stands for the pooling operation output, Xn×n
i is the i-th n× n size region, r(n, n)

represents a pooling window of size n× n. The pooling window traverses the entire feature
map by sliding, so as to realize the pooling operation of all signals.

2.3.3. Classification Output Layer

The classification output layer consists of global average pooling operation and Soft-
max classifier [24]. The global average pooling technology is introduced to replace the fully
connected operation in the traditional convolutional neural network to reduce the training
parameters and testing time of the model. The global average pooling operation is used to
integrate the local features which are extracted in the feature extraction layer.

The previous layer of the global average pooling operation is the convolution operation.
For the n classification problem, the output dimension of the convolution kernel of the last
convolutional operation in the feature extraction layer can be set to n, thus n output feature
maps will be obtained. Then, n global average pooling kernels are used to obtain the mean
value corresponding to each pooling kernel. That is, by making each feature map generate
a value, we can obtain n values that are equivalent to the output of the fully connected layer.
In the last, the n values are passed to the Softmax classifier. The mathematical expression
for global average pooling can be written as:

Sl
avg-pooling =

1
h · w

h

∑
i=1

w

∑
j=1

Xl
i,j, (12)

where Sl
avg-pooling represents the result obtained by global average pooling in l-th layer, Xl

i,j

indicates that the output feature map pixels, and the Xl
i,j area corresponding to the mean

pooling kernel ranges from pixels in row 1 to row h in the horizontal direction and from
pixels in column 1 to column w in the vertical direction.

The Softmax function is used to complete the design of the Softmax classifier. Suppose
that the set of training input samples is X = {x1, x2, . . . , xi, . . . , xT}, and the category of the
input sample elements is one of the set C = {c1, c2, . . . , ck, . . . , cK}, and then the probability
of classifying the input sample xi to be ck which is one of the set C can be expressed by the
Softmax function as follows:

P(ck | xi) = exT
i ck

1

∑K
k=1 exT

k ck
, (13)

where, exT
i ck is the correlation between category ck and the entire classification category xi,

and 1/ ∑K
k=1 exT

k ck is the normalization function.

2.4. Fusion Recognition Decision Based on D–S Evidence Theory

In this paper, D–S evidence theory is used to fuse the PD pattern recognition results
based on PRPD image statistical features and image features [25,26], to improve the accuracy
of PD pattern recognition. This paper identifies four PD types, and the recognition result
set can be expressed as: θ = {A1, A2, A3, A4}. The PD pattern recognition results based on
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PRPD image statistical features and image features were used as two independent pieces
of evidence. Then, the trust function of each piece of evidence can be expressed as:

mi
(

Aj
)
= αi

Aj

∑4
j=1 Aj

, (14)

where αi is the reliability coefficient of the i-th evidence, the value domain is 0∼1, and the
larger values represent the more credible evidence. In this paper, the α1 = 0.8 for image
statistical features and the α2 = 0.9 for image features. The PD pattern recognition accuracy
of individual evidence is used as its reliability coefficient in this work. Dempster’s rule
of combination is used to calculate the final decision result under the pieces of evidence
from the two recognition models. In other words, Dempster’s rule of combination is the
final output of the two recognition models’ fusion. Then, the calculation formula can be
expressed as:

m
(

Aj
)
= (m1 ⊕m2)

(
Aj
)
=

1
1− K ∑

D∩C=Aj

m1(D)m2(C) (15)

where D and C are the two subsets of the recognition result set θ, and K is the conflict
coefficient, which can be expressed as:

K = ∑
D∩C 6=∅

m1(D)m2(C). (16)

The D–S evidence combination theory is used to fuse the results obtained from the
two recognition models, which can more accurately identify the partial discharge pattern.

3. Experimentation

To facilitate the verification of the proposed PD pattern recognition method, a PD
experiment platform was set up in the laboratory environment with a PD detector as the ac-
quisition equipment. In particular, the PD signals for 4 PD types including corona discharge
(CD), free metal discharge (FMD), surface discharge (SD), and floating electrode discharge
(FED) were acquired for recognition model training and testing. In this experiment, 250 sets
of PD signals were acquired for each PD type, and 1000 sets of PD signals were acquired in
total. Then, the discharge frequency phase (ϕ), discharge energy (q), and discharge times
(n) of the PD signal in each power frequency cycle were obtained by statistical calculation.
The PD PRPD image was constructed based on these three basic quantities, as shown in
Figure 3.

There are obvious characteristic differences among the PRPD image of various PD
types: the phase distribution of PD pulse in the corona discharge type is mainly located at
the peak of applied voltage, and the amplitude is high. Under the free metal discharge type,
the PD pulse phase distribution is relatively scattered, the discharge times are less, and the
discharge quantity is average and spread throughout the whole phase. The PD pulse phase
distribution under the surface discharge type is mainly located at the rising edge of the
positive half circumference and the falling edge of the negative half circumference. The PD
pulse phase distribution of the floating electrode discharge type is symmetrical at the peak
of the applied voltage.
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(a) Corona discharge

(d) Surface discharge(d) Surface discharge

(b) Free metal discharge(b) Free metal discharge

(c) Floating electrode discharge(c) Floating electrode discharge

Figure 3. Typical PRPD map for each PD type.

3.1. Recognition Performance Based on Different Size Training Sets

To verify the recognition performance based on different size training sets of the PD
pattern recognition method proposed in this paper, the acquired 1000 PRPD sets are divided
into training sets and test sets randomly according to the ratio of 0.8:0.2, 0.6:0.4 and 0.4:0.6.
Three recognition models were obtained by using their three training sets for three times
model training. Then, the three test sets are, respectively, input into these three recognition
models, and the recognition results obtained are shown in Figure 4. The diagonal black box
indicates the number of samples whose predicted type is consistent with the actual type,
the white box represents the number of incorrectly identified samples, the last row gray box
represents the precision rate of the recognition model and refers to the number of correctly
predicted samples divided by the total number of predicted samples. The last column gray
box represents the recall rate, which refers to the number of correctly predicted samples
divided by the total number of actual samples. The dark gray box at the end represents the
total recognition accuracy rate.

It is clear that the recognition precision rate and the recall rate are both high as the
ratio of training sets and test sets is 0.8:0.2, exceeding 93%. The precision rate of floating
electrode discharge reached 95.95%, the recall rate of corona discharge reached 94.55%,
and the total recognition accuracy rate is 94.00%. As the number of training set decreases,
both the recognition precision rate and recall rate decrease. When the ratio of training sets
and test sets is 0.4:0.6, the recognition precision rate and recall rate are both lower than 89%.
Moreover, corona discharge and surface discharge are easy to identify confusion, and free
metal discharge and floating electrode discharge are easy to identify confusion.
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Figure 4. The recognition results of three recognition models under different size training sets: (a) The
ratio of training sets and test sets is 0.8:0.2; (b) The ratio of training sets and test sets is 0.6:0.4; (c) The
ratio of training sets and test sets is 0.4:0.6.

3.2. Recognition Performance Based on Different Recognition Method

To verify the performance of the proposed recognition model, a support vector ma-
chine (SVM) and normal convolutional neural network (CNN) algorithm are used to
conduct comparative experiments, and then the recognition results are compared and ana-
lyzed. In particular, the SVM uses the statistical features of the PRPD image and chooses the
radial basis function as the kernel function with the parameter of 0.01 and a penalty factor
of 1200. The traditional convolutional neural network algorithm adopts PRPD spectrogram
image features, and its recognition process is detailed in Section 2.3.

According to the above experiment, increasing the number of training samples helps
to improve the precision rate and recall rate. Therefore, in this experiment, the acquired
1000 PRPD sets are divided into training sets and test sets randomly according to the ratio
of 0.8:0.2. The recognition results of normal CNN and SVM are shown in Figure 5. The total
recognition accuracy rates based on SVM, normal CNN, and the proposed method are
85.50% and 86.00%, respectively. The normal CNN has a good effect on corona discharge
and floating electrode discharge recognition, the precision rate is 88.24% and 88.89%,
and the recall rate reaches 86.54% and 90.57%, respectively. The recognition performance
of surface discharge is relatively poor, it is mainly manifested as a low precision rate and
recall rate, as 82.61% and 79.17%, respectively. The SVM has a good effect on surface
discharge recognition, and the precision rate and the recall rate reach 89.13% and 87.76%,
respectively. It can be seen that the recognition performance of these two methods does not
reach satisfactory results.
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Figure 5. The recognition results of normal CNN and SVM: (a) The normal CNN recognition results;
(b) The SVM recognition results.

The recognition performance improvement of the proposed recognition method in
this paper compared with normal CNN and SVM for the four PD types are summarized
in Figure 6. It can be seen that the precision rate and recall rate of the proposed method
is significantly improved compared with normal CNN, the precision rate improved by
more than 9%, except for floating electrode discharge, the recall rate of the other three PD
types increased by more than 9%. The normal CNN realizes the PD type recognition by
automatically obtaining PRPD map features. The shape and contour of similar images
are relatively close, which seriously affects the accuracy of the local placement pattern
recognition [27]. In contrast to SVM, the precision rate and recall rate of the proposed
method also have significantly improved, the lowest promotion is the precision rate of
floating electrode discharge recognition which is 5%. SVM uses the statistical characteristic
parameter for PD-type recognition. For very close statistical characteristic parameter values,
it is difficult to accurately identify PD type by a single analysis [28]. The method proposed in
this paper improves the accuracy of PD-type recognition by complementing the advantages
of image features and statistical features. Overall, the recognition model proposed in this
paper is better than normal CNN and SVM in terms of PD pattern recognition.
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Figure 6. The recognition performance improvement of the proposed recognition method compared
with normal CNN and SVM: (a) The precision rate results; (b) The recall rate results.

3.3. Field Case Analysis

The recognition model trained by the experimental data is applied to the PD pattern
recognition of GIS in the field, and the practical application effect of the model is tested. PD
signals were collected at a GIS substation in Pingdingshan, the photo of the field acquisition
process is given in Figure 7.
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Figure 7. The photo of PD signals field acquisition process at a GIS substation.

A randomly selected PRPD image is shown in Figure 8, the phase distribution of PD
pulse spread at the peak of applied voltage and has a certain symmetry. The PRPD image
is input into the trained recognition model, and the output result is determined that the
possibility of floating electrode discharge is 99.2%, which needs to be paid more attention
to and repaired as soon as possible.

Figure 8. A randomly selected PRPD image.

A large number of PRPD images of unknown types were collected in the field and
input to the trained recognition model for classification, the output results are shown in
Table 1. Among them, the number of surface discharge and floating electrode discharge
defects was more, which were 19 and 26, respectively. The number of corona discharge
and free metal discharge was small, with only 2 and 5, respectively. The detection pattern
recognition results have a certain reference value.

Table 1. Recognition results of PRPD image of unknown PD defects.

PD Defect
Type

Corona
Discharge

Floating Electrode
Discharge

Free Metal
Discharge

Surface
Discharge Total

Number 2 26 5 19 52

4. Conclusions

PD pattern recognition plays a key role in evaluating the insulation state of gas-
insulated switchgear. Focusing on improving the PD accuracy of PD pattern recognition,
this paper presents a GIS PD pattern recognition method based on multi-feature information
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fusion of the PRPD image. In particular, the proposed method has two recognition channels:
the Hausdorff-like distance algorithm recognition channel supported by PRPD statistical
features, and the modified CNN recognition channel based on the automatically extracted
image feature. The results based on two case experiments demonstrate that increasing the
number of training samples could improve the recognition accuracy rate, and using the
same training samples, the recognition accuracy rate of the proposed method is significantly
improved compared to SVM and normal CNN.
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