Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series
Abstract
:1. Introduction and Definitions
2. Preliminary Results
3. Formulas for the Kampé de Fériet’s Functions
4. Formulas for the Srivastava’s General Triple Hypergeometric Series
5. Concluding Remarks and a Question
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taurus J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Choi, J.; Srivastava, H.M. A reducible case of double hypergeometric series involving the Riemann ζ-function. Bull. Korean Math. Soc. 1996, 33, 107–110. [Google Scholar]
- Cvijović, C.; Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. On Eulerian integrals associated with Kampé de Fériet’s function. Publ. Inst. Math. (Beograd) (N.S.) 1969, 9, 199–202. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. Certain generalized Neumann expansions associated with the Kampé de Fériet function. Nederl. Akad. Wetensch. Indag. Math. 1969, 31, 449–457. [Google Scholar]
- Srivastava, H.M.; Miller, E.A. A simple reducible case of double hypergeometric series involving Catalan’s constant and Riemann’s ζ-function. Int. J. Math. Educ. Sci. Technol. 1990, 21, 375–377. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. In More Special Functions; Nauka: Moscow, Russia, 1986; Volume 3. (In Russian). It was translated in English from the Russian by Gould, G.G., and the translated version was published in Gordon and Breach Science Publishers: New York, NY, USA; Philadelphia, PA, USA; London, UK; Paris, France; Montreux, Switzerland; Tokyo, Japan; Melbourne, Australia, 1990 [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Bradley, D.M. Representations of Catalan’s Constant, Researchgate, February 2001. Available online: https://www.researchgate.net/publication/2325473_Representations_of_Catalan’s_Constant/citations (accessed on 17 September 2022).
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Appell, P.; de Fériet, J.K. Fonctions Hypergéométriques et Hypersphérique Polyno^mes d’Hermité; Gauthiers Villars: Paris, France, 1926. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinb. 1920–1921, 4-1, 73–96. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- de Fériet, J.K. Les fonctions hypergéometriques of ordre supérieur aˇ deux variables. C. R. Acad. Sci. Paris 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Quart. J. Math. 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Quart. J. Math. 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. London Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Hái, N.; Marichev, O.I.; Srivastava, H.M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 1992, 164, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Srivastava, H.M. Generalized Neumann expansions involving hypergeometric functions. Proc. Camb. Philos. Soc. 1967, 63, 425–429. [Google Scholar] [CrossRef]
- Srivastava, H.M. Hypergeometric functions of three variables. Ganita 1964, 15, 97–108. [Google Scholar]
- Srivastava, H.M. On transformations of certain hypergeometric functions of three variables. Publ. Math. Debrecen 1965, 12, 47–57. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some integrals representing triple hypergeometric functions. Rent. Circ. Mat. Palermo. 1967, 16, 99–115. [Google Scholar] [CrossRef]
- Saigo, M. On properties of hypergeometric functions of three variables, FM and FG. Rend. Circ. Mat. Palermo Ser. II 1988, 37, 449–468. [Google Scholar] [CrossRef]
- Baboo, M.S. Exact Solutions of Outstanding Problems and Novel Proofs through Hypergeometric Approach. Ph.D. Thesis, Jamia Millia Islamia, New Delhi, India, August 2017. [Google Scholar]
- Qureshi, M.I.; Baboo, M.S. Power series and hypergeometric representations with positive integral powers of arctangent function. South Asian J. Math. 2018, 8, 11–17. [Google Scholar]
- Li, C.; Chu, W. Improper integrals involving powers of inverse trigonometric and hyperbolic functions. Mathematics 2022, 10, 2980. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 7th ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego, CA, USA; San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, M.I.; Choi, J.; Baboo, M.S. Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry 2022, 14, 2502. https://doi.org/10.3390/sym14122502
Qureshi MI, Choi J, Baboo MS. Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry. 2022; 14(12):2502. https://doi.org/10.3390/sym14122502
Chicago/Turabian StyleQureshi, Mohd Idris, Junesang Choi, and Mohd Shaid Baboo. 2022. "Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series" Symmetry 14, no. 12: 2502. https://doi.org/10.3390/sym14122502
APA StyleQureshi, M. I., Choi, J., & Baboo, M. S. (2022). Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry, 14(12), 2502. https://doi.org/10.3390/sym14122502