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Abstract: The method presented in this paper is developed to assess the parameters (the application
moment and the magnitude of a velocity impulse) of a maneuver-like perturbation of motion of the
center of mass of a spacecraft in a near-circular orbit. The assessment is based on the information
on the spacecraft’s trajectory before the maneuver and the optical observations of the spacecraft’s
angular position (right ascension and declination angles) after the maneuver. This study considers the
cases of solely transversal (in-track) or transversal and radial components of the velocity increment
vector. A single pair of the values of angles is used for the assessment of the single transversal
maneuver parameters and two pairs are used in the other cases. The method also makes it possible
to estimate the parameters of a continuous maneuver performed with low-thrust engines. For this
case the property of its symmetry is used. The approach described in this article makes it possible to
determine the spacecraft’s orbit after the maneuver much faster and more accurately in comparison
to traditional methods.

Keywords: maneuver; spacecraft; maneuver assessment; geostationary orbit; optic observations;
perturbing accelerations; nonmodeling perturbations assessment; continuous maneuver symmetry

1. Introduction

Presently, the orbital information on approximately 26,000 space objects in near-Earth
orbits is available from public sources accessible via the Internet. It is relatively easy
to propagate motion for most of them since all considerable natural perturbing factors
which define this motion are described with acceptable accuracy by the known motion
models. However, there are space objects whose motion is heavily influenced by additional
perturbations. These perturbations are hard to account for directly in the process of the
determination and propagation of the parameters of motion of the space object’s center of
mass. First of all, it concerns the maneuvering spacecraft. At present, there are more than
five thousand such objects in orbit and their number is increasing fast due to very large
spacecraft constellation deployments. These objects perform maneuvers to maintain their
orbits or change them for the fulfillment of new tasks. As a rule, only the operators of these
maneuvering spacecraft have a priori and actual data about the orbit parameter alterations.
Furthermore, maneuvering spacecraft of some design have the ability to calculate their
maneuvers on board. In the course of the space object catalogue maintenance process,
one has to wait for the accumulation of the sufficient amount of observation data for the
accurate determination of new orbits of these objects after the maneuver is performed.

The use of the observation information for the assessment of parameters of motion
of the center of mass of maneuvering spacecraft, simultaneously with the assessment of
parameters of the performed maneuver, allows speeding up the process of orbits updating
in the space object catalogue. This catalogue is necessary for solving different tasks. For
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example, it allows to predict and assess the potentially hazardous close approaches between
space objects with the maneuvering spacecraft being one of them.

Numerous modern approaches to the determination and assessment of the maneuver
parameters of spacecraft are based on the improvement and modification of Kalman type
filters, which were actively developed at the end of the last century for atmospheric air-
craft [1,2]. Some of the first works to take into account the peculiarities of near-Earth space
flight were [3,4]. The work [3] shows the feasibility of the application of a sequential filter
for the procession of radiolocation measurements for the determination of long-duration
and impulsive maneuver parameters. Woodburn et al. in [4] considers the maneuvers of
small duration and uses the radiolocation measurements as preliminary ones. The solution
is based on the application of the sequential filter for the assessment of the parameters of
motion from the initial point after the moment of the impulse application to the moment
of the last measurement. Then, the state vectors before and after the maneuver allow
assessing the parameters of the impulsive maneuvers. As the approaches to the solution of
the cataloging problem of the maneuvering objects developed, the methods allowing dis-
tinguishing the fact of maneuvering were divided into separate groups [5–9]. The methods
of the maneuver parameter assessment can be divided into the following criteria: the pro-
cessing of data on state vectors and covariance matrices exclusively [10,11] or the inclusion
of trajectory measurements [3,4,12–17]—the usage of radiolocation measurements [12–14]
or optical measurements [15–17]. The methods based on radar measurements are aimed to
raise the resistance of filters to the occurrence of unaccounted accelerations. This can be
achieved through the combination and modification of Kalman filters: extended Kalman
filter (EKF), state smoothing, limited batch least-squares data reduction (BLSQ) in [13]
and predictive corrective iterations for the EKF and unscented Kalman filter (UKF) in [14].
The work [14] describes the concept of the variable structure estimator (VSE), which also
uses the EKF and belongs to the multiple model adaptive estimation (MMAE) family. The
works [15–17] should be noted as they present the problem statement most close to the
statement of this research. G. Escribano et al. [15] suggests a new method based on the
presentation of the space of states as a stochastic hybrid system, which allows implementing
the methods of successive Monte Carlo filtration, with which the maneuver parameters are
determined during the process of Bayesian inference. The lack of dynamical constrictions
and effectiveness of the problem solution from the fuel expenditures point of view can
be treated as a disadvantage of this method. In the meantime, the work [16] contains an
approach for narrowing the space of permissible solutions on the basis of the limitation
of the finite energy expenditures. This approach is complemented with the algorithm of
analyses of the previous spacecraft maneuvers which allows propagating the probability
density of the alteration of the orbital parameters for the given moments of time after
the last realized maneuver. K. Hill [17] suggests the two angle pairs initial orbit with
conjunction analysis method (TAPIOCA), which consists of the preliminary assessment
of the orbit on the basis of two angular measurements after the maneuver realization and
successive search for the point of the closest approach between the maneuvering spacecraft
before and after the maneuver. The obtained maneuver parameters are used in the least
squares method for the refinement of the orbit after the maneuver. The inability of the
assessment of the long-duration maneuver parameters during measurement gathering in
the process of the dynamic operation fulfillment can be treated as a disadvantage of this
method. The simultaneous maneuver assessment along with the orbit determination after
the maneuver are also used in [18]. Although many methods have been proposed, they all
come down to filtering in one form or another, which has significant computational costs.

The maneuvers of space objects in near-circular orbits are assessed in this paper and
the preceding works of the authors. This simplifies the problem and allows suggesting
semianalytical methods of its solution, which decreases the problem solution time sub-
stantially. The crucial importance of the performance arises from the necessity of regular
operative assessments of maneuvers of a large number of real maneuvering spacecraft.
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Especially important is the problem of the maneuver parameter assessment [19] when
the orbit shaped by the maneuver is determined with the use of observation data with
considerable uncertainties. These uncertainties arise due to the small number of used
observations with low accuracy. An example of solving a similar problem using the method
developed in [19] as applied to a real maneuvering spacecraft is provided in Table 1.

Table 1. Assessment of one single-impulse coplanar maneuver with the presence of errors in
orbit determination.

Maneuver
Parameters

Traditional
Method

With the Uncertainty
Accountancy

Reference
(Actual Values)

∆Vt (m/s) −0.392 0.419 0.419

Maneuver application time 18 h 7 min 33 s 18 h 8 min 17 s 18 h 9 min 54 s

Table 1 contains the results of the assessment of a single-impulse coplanar maneuver
of a spacecraft in a geostationary orbit with errors in the orbit determination [19]. The
second column indicates the result of the traditional method of maneuver assessment (the
velocity difference in the point of maximum proximity) obtained without the accountancy
of orbit determination errors. The third one shows the assessment result obtained with
the accountancy of the determination error. The fourth one provides the magnitude of
the real implemented velocity impulse. In the case when the orbit after the maneuver
was determined with the use of the observation information of the short observation
interval with substantial uncertainties, the traditional method provides an assessment of
the maneuver parameters which is far from the actual values. The method described in [19]
allows increasing considerably the accuracy of the maneuver parameters assessment (the
magnitudes and the application moments). Furthermore, one can obtain the terminal orbit
considerably closer to the real orbit than the orbit obtained with the help of observations
on the short observation interval if the estimated velocity impulse was applied to the
initial orbit.

The use of the refined orbital parameters after performing the maneuver makes it possi-
ble to significantly increase the speed of the reliable recognition and evaluation of potentially
dangerous encounters of space objects (one of them being a maneuvering spacecraft).

The next step is taken in this work. The maneuver parameters are assessed directly
from the minimal number of observations without waiting for the sufficient number of
observations needed for the initial approximate orbit determination to accumulate. The
developed method of the maneuver assessment allows substantially speeding up the
process of the acquisition of reliable and accurate enough assessments of the motion
parameters of these objects. This result is possible thanks to the use of the minimal number
of pairs α and δ (the angles of the right ascension and declination), which define the
direction from the observer on the Earth’s surface to the points on the celestial sphere. At
these points, the maneuvering spacecraft is detected at the corresponding moments of time
during the optical monitoring session.

The suggested method of the maneuver assessment allows determining the parameters
of the single-impulse maneuvers with different attitudes of the thrust vector in the case of
the use of the high- and low-thrust engines.

2. Materials and Methods
2.1. Variants of the Problems Being Solved
2.1.1. Basic Problem Statement

Let the state vector of the maneuvering space object X = X(t0) be accurately known at
the moment t0. The observers’ positions on the Earth’s surface Y = Y(ti) at the moment ti
(ti > t0) and the angles αi and δi, which set the direction from the observer to the maneuver-
ing space object at this moment, are known. It is necessary to determine the moment of
application, the magnitude and the attitude of the velocity impulse for maneuvers close to
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impulses, and for maneuvers performed with a low-thrust engine, to evaluate the moments
of switching the propulsion system on and off and the attitude of the thrust vector, as well
as the acceleration caused by the operation of the propulsion system.

2.1.2. Equations for the Velocity Impulse Influence

Orbit parameters change instantaneously if the interval of the engines’ work is small
with respect to the maneuvering space object’s orbit period.

The spacecraft moves along an orbit that is close to a circular orbit (geostationary
orbit), which we call the reference orbit. This allows one to write down the equations
of motion in deviations of the real orbit from a circular one in a cylindrical coordinate
frame [20]. The solution of the linearized equations allows one to write down the influence
of velocity impulses.

Each of these velocity impulses, applied at the point with the angles ϕi defined as an
argument of latitude on the reference orbit at time ti (i = 1, . . . , N), causes the alteration of
orbit elements at the point defined by the angle ϕf. The sum of these deviations caused by
N velocity impulses can be written as [21]:

N

∑
i=1

r0(
∆Vri
V0

sin(ϕ f − ϕi) + 2
∆Vti
V0

(1− cos(ϕ f − ϕi))) = ∆r, (1)

∑N
i=1(∆Vricos(ϕ f − ϕi) + 2∆Vtisin(ϕ f − ϕi)) = ∆Vr, (2)

N

∑
i=1

(−∆Vrisin(ϕ f − ϕi)− ∆Vti(1− 2cos(ϕ f − ϕi))) = ∆Vt, (3)

N

∑
i=1

r0(−2
∆Vri
V0

(1− cos(ϕ f − ϕi))−
∆Vti
V0

(3(ϕ f − ϕi)− 4sin(ϕ f − ϕi))) = ∆n, (4)

N

∑
i=1

r0
∆Vzi
V0

sin(ϕ f − ϕi) = z, (5)

N

∑
i=1

∆Vzicos(ϕ f − ϕi) = Vz. (6)

Here, r0 and V0 are the radius and velocity of the reference circular orbit in the vicinity
of which the motion occurs; ∆Vri, ∆Vti and ∆Vzi are the radial, transversal and lateral
components of the i-th velocity impulse, correspondingly; ∆r, ∆Vr, ∆Vt and ∆n are the
deviation along the radius vector, deviations of the radial and transversal components, and
deviation along the orbit caused by the velocity impulses; and the angles ϕi and ϕf are
measured from the maneuvering space object’s position at the moment t0 to the direction
of the maneuvering space object’s motion.

2.1.3. Determination of Deviations Along the Radius and Along the Orbit
Using Observations

In order to solve the stated problem, one should first calculate the deviations caused
by the maneuver at the moment ti along the radius ∆ri and along the orbit ∆ni using the
information about the known angles αi and δi at the moment ti.

For this purpose, at first, it is necessary to find the intersection point of the beam
originating at the observer’s position on the Earth’s surface with the right ascension and
declination angles αi and δi and the plane of the initial maneuvering space object’s orbit.
This plane’s orientation can be determined with the help of numerical integration with
the use of the initial conditions vector X(t0) at the moment ti. Note that the numerical
propagation of the orbit from time t0 to ti should be performed with a fairly accurate model
that incorporates major disturbances. Then, ∆ri = rp(ti)− rorbi is calculated, where rp(ti) is
the magnitude of the vector rp(ti), which is pointed out of the Earth’s center to the point of
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intersection (this vector lies in the plane of the initial maneuvering space object’s orbit) and
rorbi is the magnitude of the radius vector of the initial orbit aimed along the vector rp(ti).
Therefore, ∆ri indicates the difference in the radius vector magnitude of the real observed
orbit, which exhibits the yet undefined impulse and propagates the initial orbit without
the impulse. In addition, the distance along the orbit ∆ni between the position of the
maneuvering space object in the initial orbit propagated at the moment ti (it is determined
by the vector r(ti)) and its position in the orbit shaped by the maneuver at this moment (it
is set by the vector rp(ti)) is calculated. To calculate ∆ni, the angle between the vectors r(ti)
and rp(ti) is multiplied by r0 in a framework of linearized equations of relative motion.

Further on, we work with ∆r and ∆n directly. The technical part of the work described
in this section requires the main efforts in writing programs.

2.1.4. Possible Variants of the Problems Being Solved

As the different variants of maneuver realizations are possible, there are several
problems that need to be solved. The methods of solving these problems and the number of
∆r and ∆n (α and δ) pairs used also differ. Only the problem statements relating to coplanar
maneuvers are provided.

These problems are:

1. A transversal velocity impulse is performed. Its application angle ϕ and the magni-
tude of the transversal component ∆Vt should be determined. There are two unknown
variables in the problem, hence, one pair of ∆r and ∆n (α and δ) is enough for its
solution. It is the most frequently met problem;

2. The same as above but the impulse is radial. The problem in this statement is solved
in some rare special cases;

3. A velocity impulse with the transversal and radial components is performed. Its
application angle ϕ and the magnitudes of the transversal and radial components ∆Vt
and ∆Vr should be determined. There are three unknown variables in the problem,
hence, two pairs of deviations ∆r and ∆n are needed for its solution;

4. A long-duration transversal maneuver is performed. The angular duration of the
maneuver ∆ϕ, the angle which corresponds to its medium point ϕm and the constant
acceleration of the maneuvering space object during the maneuver wt should be found.
There are three unknown variables in the problem, hence, two pairs of deviations ∆r
and ∆n are needed for its solution;

5. A long-duration maneuver with the transversal and radial components is performed.
The angular duration of the maneuver ∆ϕ, the angle which corresponds to its medium
point ϕm and the transversal wt and radial wr constant accelerations are to be derived.
There are four unknown variables in the problem, hence, two pairs of deviations ∆r
and ∆n (α and δ) are needed for its solution.

There are only three unknown variables in the third and the fourth problems. Two
pairs of ∆r and ∆n are used which provide four equations using Equations (1) and (4).
Three equations out of four are directly used to find problem parameters, while the fourth
equation can be used for a selection of a more accurate solution. This is discussed in detail
when solving specific problems.

2.2. Small-Duration Maneuver Parameters Assessment
2.2.1. Transversal and Radial Velocity Impulse Assessment

The equations for the determination of the velocity transversal impulse application
angle ϕ and the magnitude ∆Vt can be described as:

2r0
∆Vt
V0

(1− cos(ϕ f − ϕ)) = ∆r,

r0
∆Vt
V0

(3(ϕ f − ϕ)− 4sin(ϕ f − ϕ)) = ∆n.

Here, the angle ϕf corresponds to the point in which the deviations ∆r and ∆n
are calculated.
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Figure 1 shows a change in the shape of the orbit, accompanied by a deviation along
the radius caused by the transversal component of the velocity impulse. Figure 2 shows
the deviation along the orbit depending on the angular distance from the moment of
application of the velocity impulse.
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The deviations along the radius ∆r and along the orbit ∆n = ∆u · r0 shown in
Figures 1 and 2 can be calculated in the program using the angles αi and δi. Then, they
themselves are used to determine the maneuver parameters.

The parameter ∆Vt in Equation (7) is determined from the first equation and is used
in the second one. This leads to Equation (8) for the determination of ϕ, which is in turn
used in Equation (7) so ∆Vt can be determined.

∆Vt = V0
∆r

2r0(1− cos(ϕ f − ϕ))
, (7)

∆r
3(ϕ f − ϕ)− 4sin(ϕ f − ϕ)

2− 2cos(ϕ f − ϕ)
= ∆n. (8)

This is the simplest problem in which the unique solution can be found. The accuracy
of the deviation calculations ∆r and ∆n effect the solution quality.

Similarly, one can obtain formulas for determining the parameters of the radial veloc-
ity impulse.

∆Vr =
V0∆r

r0sin(ϕ f − ϕ)
, (9)

∆r(1− cos(ϕ f − ϕ))

sin(ϕ f − ϕ)
= ∆n. (10)

This is also a relatively easy problem, in which the unique solution can also be found
fast. The radial velocity impulses can rarely be met, but the possibility of obtaining the
parameters of such a maneuver should be provided.
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2.2.2. Assessment of the Velocity Impulse with Transversal and Radial Components

There are three unknown variables in the problem: the application angle ϕ and the
magnitudes of the transversal and radial components ∆Vt and ∆Vr, hence, two pairs of
deviations ∆r and ∆n calculated at the given moments ϕ1 and ϕ2 should be used for
its solution.

The equations for the determination of the velocity impulse application angle ϕ and
the magnitudes of the transversal and radial components of the velocity impulse ∆Vt and
∆Vr are:

r0(
∆Vr

V0
sin(ϕ1 − ϕ) + 2

∆Vt

V0
(1− cos(ϕ1 − ϕ))) = ∆r1, (11)

r0(
∆Vr

V0
sin(ϕ2 − ϕ) + 2

∆Vt

V0
(1− cos(ϕ2 − ϕ))) = ∆r2, (12)

r0(−2
∆Vr

V0
(1− cos(ϕ1 − ϕ))− ∆Vt

V0
(3(ϕ1 − ϕ)− 4sin(ϕ1 − ϕ))) = ∆n1, (13)

r0(−2
∆Vr

V0
(1− cos(ϕ2 − ϕ))− ∆Vt

V0
(3(ϕ2 − ϕ)− 4sin(ϕ2 − ϕ))) = ∆n2. (14)

We determine ∆Vt in Equation (15) and ∆Vr in Equation (16) from Equations (11) and (12)
and use them in Equation (14). Equation (14) is preferred over Equation (13) because it has
a greater deviation of ∆n than in Equation (13), which reduces the effect of the error in
the determination of the value of ∆n. We obtain Equation (17) for determining ϕ. Having
determined ϕ, we use it in Equations (15) and (16) and determine ∆Vt and ∆Vr.

∆Vt =
V0(∆r1sin(ϕ2 − ϕ)− ∆r2sin(ϕ1 − ϕ))

2r0((1− cos(ϕ1 − ϕ))sin(ϕ2 − ϕ)− (1− cos(ϕ2 − ϕ))sin(ϕ1 − ϕ))
, (15)

∆Vr =
V0(∆r1(1− cos(ϕ2 − ϕ))− ∆r2(1− cos(ϕ1 − ϕ)))

r0(sin(ϕ1 − ϕ)(1− cos(ϕ2 − ϕ))− sin(ϕ2 − ϕ)(1− cos(ϕ1 − ϕ)))
, (16)

∆n2 = − 2(∆r1(1−cos(ϕ2−ϕ))−∆r2(1−cos(ϕ1−ϕ)))
r0(sin(ϕ1−ϕ)(1−cos(ϕ2−ϕ)−sin(ϕ2−ϕ)(1−cos(ϕ1−ϕ))

(1− cos(ϕ2 − ϕ))−
(∆r1sin(ϕ2−ϕ)−∆r2sin(ϕ1−ϕ))(3(ϕ2−ϕ)−4sin(ϕ2−ϕ))
2((1−cos(ϕ1−ϕ))sin(ϕ2−ϕ)−(1−cos(ϕ2−ϕ))sin(ϕ1−ϕ))

).
(17)

Equation (17) sometimes has several solutions for this problem. In this case, the
velocity impulse parameters for each solution are used in Equation (13). The solution for
which the right and the left parts of Equation (13) match with higher accuracy is taken as
the final solution of the problem.

By applying the calculated velocity impulse to the initial orbit, we can obtain the orbit
after the maneuver. This orbit can already be used to calculate the rendezvous with this
object and for other purposes.

2.3. Long-Duration Maneuver Parameters Assessment

For determination of the influence of transversal and radial thrust vector compo-
nents on deviations along the radius vector and along the orbit, it is assumed that the
thrust and the acceleration created by it are constant over the entire interval of the engine
operation time.

First, let us find the influence of the maneuver performed with the low-thrust engine,
directed along the transversal component in the orbital coordinate frame, on the deviation
along the radius vector at the moment set by the angle ϕf.

It is assumed that the maneuver has the angular duration ∆ϕ, the middle of the
maneuver is set by the angle ϕm and the constant acceleration of the maneuvering space
object within the maneuver is wt. The key is the assumption that the maneuver is symmetric
about its center. By using Equation (1), along with the assumption of maneuver symmetry,
one can find the deviation along the radius produced after the ∆Vt application (∆Vt = wt∆t
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and ∆t is the operating time of the propulsion system), which is equally distributed on the
interval of the latitude argument ∆ϕ:

∆rt = 2
r0

V0

∆Vt

∆φ

∫ ∆ϕ/2

−∆ϕ/2
(1− cos(ϕ f − ϕm − ϕ))dϕ = 2

r0

V0

∆Vt

∆ϕ
(∆ϕ− 2sin

∆ϕ

2
cos(ϕ f − ϕm)).

By using the equation ∆ϕ = λ0∆t = k ∆V
V0

= wc
w

∆V
V0

, where λ0 = V0
r0

, k =
mV2

0
P r0

= wc
w ,

wc is the centripetal acceleration of the reference circular orbit (wc =
V2

0
r0

) and wt is the
acceleration produced by the spacecraft’s engine (w = P

m ), we obtain the final formula for
the deviation:

∆rt = 2r0
wt

wc
(∆ϕ− 2sin

∆ϕ

2
cos(ϕ f − ϕm)). (18)

Similarly, the influence of the radial component distributed on the interval of the
latitude argument ∆ϕ on the deviation along the radius can be found:

∆rr =
r0

V0

∆Vr

∆φ

∫ ∆ϕ/2

−∆ϕ/2
sin(ϕ f − ϕm − ϕ)dϕ = 2

r0

V0

∆Vr

∆ϕ
sin

∆ϕ

2
sin(ϕ f − ϕm),

∆rr = 2r0
wr

wc
sin

∆ϕ

2
sin(ϕ f − ϕm). (19)

By using Equation (4), we can find the influence of the maneuver performed with the
low-thrust engine, the orientation of which is fixed by the transversal component in the
orbital coordinate frame, on the deviation along the orbit. Just as before it is assumed that
the maneuver has the angular duration ∆ϕ, the middle of the maneuver is determined by
the angle ϕm:

∆nt = − r0
V0

∆Vt
∆φ

∫ ∆ϕ/2
−∆ϕ/2(3(ϕ f − ϕm − ϕ)− 4sin(ϕ f − ϕm − ϕ))dϕ

= r0
V0

∆Vt
∆φ (3(ϕ f − ϕm)∆ϕ− 8sin ∆ϕ

2 sin(ϕ f − ϕm)),

∆nt = r0
wt

wc
(3(ϕ f − ϕm)∆ϕ− 8sin

∆ϕ

2
sin(ϕ f − ϕm)). (20)

Similarly, the influence of the radial component distributed on the interval of the
latitude argument ∆ϕ on the deviation along the orbit can be found:

∆nr = −2
r0

V0

∆Vr

∆φ

∫ ∆ϕ
2

− ∆ϕ
2

(1− cos(ϕ f − ϕm − ϕ))dϕ = −2
r0

V0

∆Vr

∆ϕ
(∆ϕ + 2sin

∆ϕ

2
cos(ϕ f − ϕm)),

∆nr = −2r0
wr

wc
(∆ϕ + 2sin

∆ϕ

2
cos(ϕ f − ϕm)), (21)

where ϕf is the point in which the deviations are calculated.
In the problem of determining the parameters of the maneuver performed with a low-

thrust engine, there are four unknown variables ϕm, ∆ϕ, wt and wr, hence, it is necessary to
use two pairs of deviations ∆r and ∆n (α and δ) for its solution. By solving the equation
system of four equations, in which the influence of the engines’ work is determined by
Equations (18)–(21), we obtain the values of all unknowns. If it is known that the object uses
only transversal orientation while performing the maneuver, there are only three unknown
variables ϕm, ∆ϕ and wt. It is enough to use three deviations: ∆n for the first point and ∆r
and ∆n for the second one. The deviations along the orbit are always more preferable to
use, as they can be determined in a more accurate fashion, also it is more preferable to use
the deviations which correspond to the more distant point from the maneuver.

By changing the elements of the orbit at the second point by the magnitude of the
calculated deviations [21], we obtain an orbit taking into account the influence of the
long-term operation of the propulsion system.



Symmetry 2022, 14, 2564 9 of 13

3. Results

The examples with the known realized velocity impulses from Table 2 were taken in
order to obtain the results which allowed us to assess the accuracy of the found solution.

Table 2. Example 1: Real maneuver parameters.

Parameter Value

Time of the initial conditions setting t0 = 2022.04.11 16:37:08.950 (GMT+3)

Time of the maneuver 2022.04.12 08:18:25.000

Maneuver magnitude ∆Vt = −0.112 m/s

The angle between the maneuver
and the observation ∆ϕ = 178.381◦

Optical measurements were performed with errors, which, for a considered mission,
did not exceed five arcseconds. It could be seen that due to these errors, the deviations
measured at different time points differed, although the measurement times were very
close to each other.

All observations were conducted within an interval of less than two minutes, therefore,
ten observations were replaced by one average measurement.

We obtained the mean values ∆r = −5927 (km) and ∆n = 13,761 (km).
For comparison purpose, we calculated using Equations (1)–(4) the deviations caused by

the real velocity impulse ∆Vt = −0.112 m/s applied at ∆ϕ = 178.381◦ to be ∆r = −6144 (km)
and ∆n = 14,176 (km).

It can be seen that the averaged deviations calculated from Table 3 prove to be quite
close to the theoretical ones.

Table 3. Example 1: Series of very close measurements of the position of an object.

Date Time ∆r ∆n

12 April 2022 20:08:18.543 −6.05975 13.73975

12 April 2022 20:08:29.543 −5.59847 13.83167

12 April 2022 20:08:40.543 −5.67197 13.78066

12 April 2022 20:08:51.543 −5.81142 13.64288

12 April 2022 20:09:02.543 −5.93997 13.86445

12 April 2022 20:09:13.543 −6.30605 13.82325

12 April 2022 20:09:24.543 −5.61857 13.73580

12 April 2022 20:09:35.543 −6.14954 13.73975

12 April 2022 20:09:46.543 −6.10882 13.66814

12 April 2022 20:09:57.543 −6.01462 13.79292

The solution using the averages of ∆r and ∆n was ∆ϕ =−178.858 and ∆Vt = −0.108 m/s.
The derived maneuver magnitude and application angle are very close to the real maneuver
parameters in Table 2.

Table 4 provides parameters of the second example. In this case the maneuver was not
exactly an impulsive one. Instead, it took approximately 8 min. However, the maneuver
could be treated as an impulsive one due to the fact that the maneuver performance
duration was much shorter in comparison with the orbit period.



Symmetry 2022, 14, 2564 10 of 13

Table 4. Example 2: Real maneuver parameters.

Parameter Value

Performance date 22 June 2021

Time of the maneuver start 23:17:30

Duration of the burn 465.5 s

Velocity impulse magnitude 0.246 m/s

Time of the impulsive maneuver (the middle of the burn duration) 23:21:22.75

Maneuver application angle (from the moment of the initial conditions setting) 170.75◦

Acceleration 0.000529 m/s2

The run contained ten observations, the duration of the run was 40 s, the average time
of the run was 23 June 2021 20:57:52.89, the average angle was 496◦ (136◦) and the mean
values of the deviations were ∆r = 0.521 km and ∆n = −65.623 km.

The theoretical values of the deviations for the angle between the moment of applica-
tion of the real velocity impulse and the moment of the optic observations ϕ = 325.031◦ and
∆Vt = 0.246 m/s were ∆r = 1218 km and ∆n = −65,130 km.

The found solution was the velocity impulse application angle of 160.49◦ (ϕ =−345.84◦

from the observed point) and the velocity impulse magnitude ∆Vt = 0.249 m/s.
The maneuver magnitude was determined with high accuracy in both examples,

even for the second one with the continuous, although relatively short, maneuver. This
meant that the semimajor axis of the orbit after the maneuver was now known practically
with the same accuracy as the accuracy with which the semimajor axis of the initial orbit
was determined. The error in the measurement of the semimajor axis was approximately
∆a = 100 m and the error in the measurement of the eccentricity was ∆e = 0.000002.

It can be noted that the deviations determined by the observations and the deviations
determined analytically differ from each other especially in the second example. It is
mainly related to the deviations along the radius. This is the main problem in the use of this
method connected with the present errors of the observations. The given approach cannot
be used when the orbit observations are situated closely to the moment of the maneuver
performance. In this case the deviations caused by the velocity impulse were less than the
observation errors themselves.

In the second example, the angle between the moment of the velocity impulse ap-
plication and the average moment of the observations was substantial enough and com-
prised 325◦. The considerable deviation along the orbit (the theoretical deviation was
∆n = −65,130 km and the value measured with the observations was ∆n = −65,623 km)
was accumulated for this period of time. The 0.5 km error was not crucial compared to
the deviation itself of 66.5 km. However, the error along the radius vector of magnitude
0.7 km was substantial (the theoretical deviation was ∆r = 1218 km and the deviation
calculated with the measurements was ∆r = 0.521 km), which was commensurable with the
determined value. This error caused the error in the determination of the velocity impulse
application moment. Furthermore, if we just took the average value of all 10 observations
from the orbit observation run, we obtained the value ∆r = 0.214 km. However, the con-
siderable negative deviation along the orbit indicated that the positive velocity impulse
was performed. Hence, all deviations along the radius were positive. This allowed the
removal of four observations with negative deviations. Figure 1 illustrates this discus-
sion, as a positive transversal impulse led to the radius vector being larger than the initial
radius vector at any point on the orbit. As a result, the mean deviation increased from
∆r = 0.214 km to ∆r = 0.521 km. While using the deviation along the orbit for the correction
of the deviation along the radius vector, one should bear in mind that the arousing (after
the positive transversal velocity impulse) shift along the orbit was positive at the start and
then reached its maximum at ∆n ≈ 0.4776 r0

V0
∆Vt with ϕ = 41◦24′35′′ (Figure 2) [22], then

the shift started to decrease and after ϕ = 73◦05′32′′ the retardation from the unperturbed
motion started. The retardation per one revolution was ∆n = −6π r0

V0
∆Vt. This possibility
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of the alteration of the sign of the deviation along the orbit needed to be accounted for.
The number of deviations along the radius with different signs, as well as the magnitude
and the sign of the deviation along the orbit itself were considered for the removal of the
erroneous deviations along the radius.

Avoiding the use of the radial deviations was the simplest way to remove errors in the
radial direction. In this case, two deviations along the orbit ∆n were used. The solution for
this option for Example 1 is provided below.

The real velocity impulse parameters derived from Table 2 were ∆Vt = −0.112 m/s
and ϕ = 235.92◦.

The found solution was ∆Vt = −0.112 m/s and ϕ = 235.69◦.
The magnitudes of the velocity impulse coincided and the angles of application of the

velocity impulse almost coincided as well. The angles ϕ of the velocity application differ
from those provided in Table 1 (ϕ = 178.38◦) because they are measured from the second
compact group of observations additionally used in this example.

The new solution confirms the one observation series solution. The accuracy of the
solution increased due to the fact that the used deviation along the orbit increased and the
error in determining this value remained within the same limits. However, the solution was
obtained approximately six hours later. However, even in this case, we obtained the new
orbit significantly earlier in comparison to the use of the usual technique of determining
the orbit with observations after the maneuver and with a higher accuracy.

4. Conclusions

In the geostationary orbit, a quite frequent situation occurs when several spacecraft
which maintain their orbits via maneuvers operate at almost the same point. It is essential
to quickly and accurately predict the motion of each spacecraft and its neighbors in order to
firmly protect each spacecraft from collisions. A similar problem arises when the spacecraft
is transferred to the operating point.

This paper describes the method that allows the assessment of the maneuvers per-
formed in the plane of a geostationary orbit using no more than two compact measurements
of the right ascension and declination angles. The provided examples demonstrate high
accuracy of this method. The traditional technique usually uses four spaced revolutions in
order to determine the orbit after the maneuver with tolerable accuracy. Thus, the method
from this work helps to reduce the time of the spacecraft’s orbit determination after the
maneuver by at least two times, while the new orbit is determined with almost the same
high accuracy with which it is determined before the maneuver.

Unlike traditional methods in which the orbit after the maneuver is first determined
and then the maneuver parameters are estimated, in this work, the maneuver parameters
are estimated directly from the measurements, and then using this information, the pa-
rameters of the formed orbit are determined. This increases the speed of determining the
parameters of the formed orbit and the accuracy of determining its parameters.

Maneuver evaluation provides a double effect. One can identify the possibility of a
collision with this object along with the determination of the purpose of the maneuver
(maintenance of the orbit, transfer to a new operating point or transfer to a disposal orbit).
The evaluation of the maneuvers of your own spacecraft makes it possible to determine the
health of the propulsion system and whether the implemented maneuver matches to the
planned one.

It is also possible to determine the velocity impulse caused by an imbalance in the
operation of the orientation motors. As a result of this imbalance, along with the given
rotation of the spacecraft, there is an undesirable movement of its center of mass. The
evaluation of the emerging velocity impulse allows predicting the undesirable movement
of the center of mass.
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