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Abstract: In this article, we study a system of Hilfer (k, i)-fractional differential equations, subject to
nonlocal boundary conditions involving Hilfer (k, {)-derivatives and (k, ¢)-integrals. The results for
the mentioned system are established by using Monch’s fixed point theorem, then the Ulam-Hyers
technique is used to verify the stability of the solution for the proposed system. In general, symmetry
and fractional differential equations are related to each other. When a generalized Hilfer fractional
derivative is modified, asymmetric results are obtained. This study concludes with an applied
example illustrating the existence results obtained by Monch’s theorem.
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1. Introduction

Fractional derivatives are generalizations of classical derivatives. The concept of frac-
tional differentiation has coincided with ordinary differentiation until late in our present
era. However, recently, researchers have begun to focus their attention on fractional dif-
ferentiation, which is considered a generalization of ordinary differentiation. Fractional
analysis is the branch of mathematical analysis that deals with the several different possi-
bilities of defining real number powers or complex powers of the differentiation operator
and of integration. Fractional order differential equations are generalized and noninteger
differential equations that are achieved in time and space with a power-law memory kernel
of nonlocal relationships [1].

In [2], the authors studied the drug concentration in a blood model via Psi-Caputo
fractional derivative, where the fractional model showed more accurate results in estimat-
ing the drug concentration in the blood. In [3], based on real data, the authors showed
the superiority of a fractional model of blood ethanol concentration over a classical model.
Moreover, in [4], a fractional modeling of the logistic population growth again showed
superiority over an ordinary one. It should be noted that most of the works on fractional
differentiation in the literature deal with Riemann-Liouville and Caputo fractional deriva-
tives; see [5-10]. It is impossible to list all of the research papers that have addressed the
issue of fractional stability of differential equation solutions in various known ways. On the
other hand, many studies have focused on the stability of solutions using the Ulam-Hyers
technique [11-16]. The study of the Hyers type of stability contributes significantly to more
practical problems and applications such as population dynamics and fluid movement.
While others have reported results using other types of stability, Ulam’s group designed
and implemented a type of stability for ordinary, fractional differential, and difference
equations; see [17-19]. In [20], the (k, ¢)-fractional derivative of Hilfer was linked to the
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familiar Riemann-Liouville (k, ¢)-fractional derivative and the Caputo (k, )-fractional
derivative so the authors concluded that each of them was a special case of that derivative,
and they provided some properties on that derivative. In addition, they investigated the
existence of solutions to the following

KD W(6) = (e, W(e))s € (a,T), 0<E<k 0<v <1,
K= W(a) =W, e R & =E+v(k—E),

where ©H Dif () is the Hilfer (k, )-fractional derivative of order & and type v, XZF=&¥ )
is the Riemann-Liouville (k, ¢)-fractional integral of order k — Cj.

The authors considered the Cauchy problem for the Hilfer ¢-fractional differential
equations and investigated the existence and uniqueness of solutions in the weighted space
of functions for the following FDE [21].

HDEPWi(c) = (g, W(g)),c € @1 = (a,a+], 0<E< 0<v <1,
IVSYW(a) =W, € R E=E+v(k—E),

where 1 Daaf v (-) is the Hilfer (y)-derivative of order Z and type v, Z'~%¥ ) is the Riemann-—
Liouville (i)-fractional integral of order 1 — ¢, and § : @; X R — R is an appropriate function.

The aforementioned works inspired us to employ Monch’s fixed point theorem for
investigating the following system:

EADRPAW(6) = Bi(g, W(5),S(5)), ¢ € (a,T], k> 0,1 < ¢ <2, ¢1 € [0,1],
MHD2929S(c) = Ba(g, W(6),S(¢)), ¢ € (a,T], k> 0,1 < 8, <2, ¢ € [0,1],
W(a) =0, W(T) = @ "HDPrmdW(E;) + x1 3% W (01),

S(a) =0, S(T) = @,MHDP22VS(Ey) + xo 329 S (02),

)

where K D%.#1¥ denotes the Hilfer (k, ¢)-fractional derivative of order 81, 9, 1 < 04,0, < 2
and parameter ¢;,i = 1,2,0 < ¢; < 1,B; : [a,T] x R?> — R is a continuous function,
kHpeiti § = 1,2, denotes the (k, p)-Hilfer type fractional derivative of order p;, 1 < p; < 2
and parameter q;, 1 < q; < 2, p < 8;, ¥3#¥ is the the Riemann-Liouville (y)-fractional
integral of orderv > 0, @w1,x € R,and 0 < &;,0; < 1,i =1,2.

The idea and originality of this study are summed up by using the Hilfer (k, )-
fractional derivative, which has received little attention in the literature. In addition, the
existence of solutions to the system of fractional and nonlinear equations is investigated
via Monch’s fixed point theorem, which has not been paid much attention to, as the
Leray—Schauder alternative. Finally, the stability of the solution to the system of nonlinear
equations given in Equation (1) is verified.

The manuscript is organized as follows: In the second section, we present the most
important mathematical tools in the form of definitions and theories. In the third part, the
main findings are presented. In the fourth part, the stability of the solutions to the system
of equations studied is examined. In the fifth part, a numerical example is presented,
documenting the theoretical results obtained in the third part. Finally, we present the
most important observations and special cases and summarize the main results in the
conclusion section.

2. Preliminaries

Definition 1 ([22]). Consider b € L1([a, T],R) and k, 0 € R*. Then, the Riemann—Liouville
k-fractional derivative of order & of function b is presented by

0060 = g (6~ 0 b, @
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where T} is the k-Gamma function for z € C with R(z) > 0and k € R, k > 0, which is given
in [23] by

Definition 2 ([24]). Let h € LY([a,T],R) and k,® € R*. Then, the Riemann—Liouville k-
fractional derivative of order & of function b is given by

RL d " 19 3
where {L’Z:| is the ceilingfunction OfLZ

Definition 3 ([25]). Let h € £([a, T], R) and a monotone increasing function ¢ : [a, T] — R
with Y’ (g) # 0 forall ¢ € [a, T|. Then, the Riemann-Liouville -fractional integral of function b
is given by

1

30(6) = £z [ ¥ W) - p()" o(u)dn @

Definition 4. Let n —1 < ¢ < n,¢ € C"([a, T], R) is a monotone increasing function with
¥'(¢) # 0, € [a,T],and b € C([a, T],R).

(a)  The Riemann—Liouville -fractional derivative of function b of order © is presented in [25] as

. d\" n-s
RL'DIWP — ( 1 ) ~N 19111} . 5
(b)  The Caputo y-fractional derivative of function b of order ¥ is presented in [26] as
coome) - (1 4 b ;
he) =3ur " Gy ac ) O ©6)

(b)  The Hilfer y-fractional derivative of function b € C([a, T], R) of order & € (n —1,n] and
type ¢ € [0,1] is presented in [27] as

. —9); 1 d\".a—¢)n-v);
HDOay () = 390 w( ) FA=0) =0y 7

(Q) a+ IP/(Q) dg a+ (Q) ( )
Definition 5 ([28]). Let ¢ : [a, 7] — R be a monotone increasing function with ¢'(g) # 0 for
all ¢ € [a, T|. Then, the Riemann—Liouville (k,p)-fractional integral of order ® > 0(8 € R) of a
function b € LY([a, T],R) is given by

0(E) = gy [ () — plu) )k >0 ®)

Definition 6 ([20]). Let 8,k € RT = (0,+),¢ € [0,1],¢ € C"([0,1],R) be a monotone
increasing function with ¢'(g) # 0,¢ € [a, T] and b € C"([a, T, R). Then, the Hilfer (k,)-
fractional derivative of function b of order ¢ and type ¢ is defined as

KH s (o _ ka@mk—0)p (K d " (1) nk-8)p _|®
Doot(e) = P (s ) T g, = (2] o
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Remark 1. The Hilfer (k,)-fractional derivative can be presented using the (k,)-Riemann—
Liouville fractional derivative as

n
kH 30, ¢3 _ kn®x—0 ko d N\ ks (nk—g)p
D h(g) \ja—&- (l,b’(g) dg Ju—«— h(g)/

~Pr—1; .
— P (FREDIOPY ) (o), (10)

where ¢ = O + @p(nk — 0), p(nk —8) = ¢ — O and (1 — @) (nk — ) = nk — ¢, ¢ € [0,1].
Note thatn — 1 < % <mn,wheren —1< % <n.

We now recall some useful lemmas.

Lemma 1 ([20]). Let h € C"*([a, T],R) and * F*=x¥( € C"([a, T],R) with x,k € Rt =
(0,+00) and n = [§]. Then,

O iy v @) = @) Tk d ke
pretnie) =bie) - ¥ O | (gae) 6]

Lemma 2 ([20]). Let ¢y = 0 + @(k — 8) with 0,k € RT = (0, +0), ¢ € [0,1]. Then,
EREDI PV (g) = KHDMh(c). b € C"([a,T], R).

Lemma 3 ([20]). Let {,k € RT = (0, +o0) and E € R such that % > —1. Then,
(1)

+

m

 L(E+h
= m&b(%‘) —y(a))

[
»‘
i~

T ((c) — p(a))

(2)

&3]

DIV (p() — 9T = ST (9l — 9(@)

[
»‘
[~

Definition 7 ([29]). Let W be a bounded set on a Banach space &, then the Kuratowski measure of
noncompactness of W is defined as:

kW) :=inf{r >0: W =W, and diam (W;) <r for 1 <i < m}.

Lemma 4 ([29]). Let & be a Banach space with U and py two bounded proper subsets of £, then
the following properties hold true

(D IfW C S, then k(W) < k(S);

(2) k(W) = k(W) = k(comoW);

(3) W is relatively compact k(W) = 0;

(4) k(6W) = |8]k(W), 6 €;

(5)k(WUS) = max{k(W),k(S)};

G KW+S)=kW)+k(S) W+S={x|x=W+SWeW,S cS};
(7) k(W4 S) =k(W),Vy € &.
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Lemma 5 ([29]). Given an equicontinuous and bounded set G C C([a, T, &), then the function
— k(G()) is continuous on [a, T, ke (G) = Ir[1a7>5] k(G()), and
€la,

([ xtere) < ([ w00 ). 616) = (x(9): x € 63 1)

Definition 8 ([29]). Given the function ¥ : [a,T] x £ — &,V satisfies the Carathéodory’s
conditions, if the following conditions apply:

¥ (g, z) is measurable in ¢ for z € &;

¥ (g, z) is continuous in z € & for € [a, T

Theorem 1 ([30]). (Monch’s fixed point theorem) Let Q2 be a closed, bounded and convex subset of
&, such that 0 € Q; let also M be a continuous map of Q) into itself.

If G = conoM(G) or G = M(G) U {0}, then k(G) = 0, such that ¥V G C O, and M has a
fixed point.

In the next section, we present an auxiliary result dealing with the linear variant of
problem (1).

3. Main Result

In this section, through the following lemma, we find a solution to the proposed
system of fractional equations given in (1), then set the necessary conditions to verify the
existence of solutions to the system of equations mentioned. Accordingly, we verify the
applicability of Monch’s fixed point theorem to the system.

Lemma6. Let g € C(a,7)U LY (a,T) and

C M) - ($(21) — () T (p(ar) — Ppla) T
M= T () @li(9r) T () xali(@r) T () 70 13)
and
—(a = Hy) —¢(a P2 -1 —P(a fig2 -1
A= WD —p@) ¥ (@)~ 9(@) T (@)~ $(@) Lo aw

Ii(¢x) Ii(¢x)

Then, W, S are a solution for the following BVP

I (¢x)

KHDOOAW(c) = g1(), ¢ € (a,T], k>0,1< 8 <2, 91 € [0,1],
kKHDO02¥S(c) = ga(c), ¢ € (a,T), k> 0,1 <8, <2, o €[0,1],

15
W(a) =0, W(T) = (le'HDplfql?‘/’W(El) + )(1"3”1”/’1/\/(@1), (15
S(a) =0, S(T) = @HDP202¥S(5y) + x2k 5129 S(07),
if and only if
() — (@) F~
W(c) = 3% gy (5) + @30y (21) + I gy (01) — K3 (T) |, (16)
A1 (¢x)
and
() — p(a) !
S(g) = 3%2%g,(c) + ~ [folkjﬁz*pz"wm(ﬁz) + x2ka2 0% g, () — kjﬂz"wgz(T)} , (17)
Ao Ty (¢r)
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where ¢, = 9 + ¢;(2k — 9;),i=1,2.
Proof. Applying the operator ¥3%¥,i = 1,2 and using Lemma 1 and 2 yield
kb1 (kﬂpfl’k;lﬁw) (c) ke (k/Rﬁprk;l!’W) (c)
i3
(¥(g) —y(a) * ! K k d >k~2k P }
=W(g) — J w
(g) Fk(¢k) 1/”( ) ( ) w=a
Pk
(¥(6) = 9(a) * 2 [-2k—pup
- 3 W ’
Ti(¢pr — k) [ (¢ )LU:a
consequently
% _q % _o
W) = bty (o) 4 o PO V@) ET e —p@)
(g) g1 (g) 0 k((Pk) 1 Fk(4)k ) ( )
where

k d
o= |(Grgae )| e =[]

(Q) w=a w=a
and
k~yOo;9p (k,HDﬁz,wnP 3) (c) =kt (k/Rﬁprle;wg) (c)
e Q@) F( K d g
=5() Ti(¢x) KW( )d ) Jat S(Q)LQ
($(¢) = (@) ¥ 2 2k gy
T L= s
implies
oy (p(0) —p@) ' (o) — pla)F 2
S(g) J 92( ) + dO Fk(¢k) + dZ Fk(¢k — k) ’ (19)
where

k d 2k— 2k
p k2= iy } oy = [k ,
o= () ¥is] L a= s

by the condition W(a) = 0,S(a) = 0, we find thatc; = 0,d; = 0 as % —2 < 0by Remark 1.
By using Lemma 3, we obtain

KDt (p () — p(a) 1 = MZ’;:"j")mw(g) ~p(a)) 20)
and
9 (p(c) — gla)) ¥ = M) (o) - p(@) 5, 1)

Tie(¢r — 1

from (20) and (21) and the boundary conditions W(T) = @ W(&1) + x:*ZM¥W(o),
S(T) = @8(82) + x2*7"¥S(0) and we obtain

1 o e .
=7 (6@1k3191 Py (E1) + x9NV gy (01) — kjﬂl"”gl(T))-
1
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and

1 I e .
dy = x~ (wzkjﬂz P20 g5 (Ep) 4 x2* 312 T92% g5 (0p) — kjﬁz’wgz(T)),
2

by substituting the values of the constants ¢y, do, 41, and ¢; where necessary, we obtain
the solution (16) and (17). By a trivial computation, the converse of the lemma can be
easily verified. [

Denote the Banach space by the set £ = {(W(c),S(c))|(W,S) € C([a, T}, Re) x
C([a, T], R.)}, endowed with the norm defined as

W, S)llg = [Wlleo + [|S][eo,
for simpler computations, we set

oy (HED = (@) T

_(yp(T) —tp(a))%l (¢(T) —lp(a))%k*
" ' Ii(01 — p1 + k)

I (01 + k) | A1 [Tk (81 + k)

($(E) = p(@) " | @(E) = p(a)*
(1 + p1 + k) (81 + k) '

+xil

and
=D =PaF | (D =g (0(Es) — pla))
2 I (02 + k) |Ag|Tie(% + k) Ti(92 — o2 +K)

($(E2) — (@) " | ($(E) - ¢<a>>ﬂk2] ,

+|X2| Fk(ﬂ2+y2+k) Fk(192+k)

in the following, we present the hypotheses that support verifying the possibility of the
existence of the solution for system (1).

(A1) Let By, By : [a, T] x (Re)? — R, satisfy Carathéodory conditions.
(A2) 3 V3, VB, € La,T] x (Re)+ and 3 98,98, : (Re)+ — (Re)+ such that V ¢ €
[a, T|,YOW,S € &) we have

1B1(c, W, S)leo < Vi, (6)$98, ([[Wlleo + (IS o),
[1B2(6, W, S)leo < Vi, ()58, ([[Wlleo + [[S]leo),

here 9 B,, 9p,are nondecreasing continuous functions.
(A3) Let G C € x €, assumed to be bounded, and

Y(Bi,(5,9)) <V, (6)V(9),
V(B (6,9)) < Vp,(6)V(9)-

Theorem 2. Assume that the assumptions (Ay), (Az), and (Ajz) hold. If
max{yl’glAl,yg2A2} <1, (22)

where Y = sup Vg (¢), Vi =1,2, then the system of fractional differential equations given
i a<c<T i
by (1) has at least one solution on [a, T].

Proof. Define the operator M : - Eas:
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(MW, S)(e)
M= <M2<w,s><g>>' @)

where

(9() — y(@) * !
MW, S)(¢) = L GAlflf(;k) [w1k301*P1;¢81(51,W(El),S(El))

+X1kj]l1+l9];llﬂ81(gl, W(Ql)r‘S(Ql)) — k301;¢81 (T, W(T),S(T))} (24)
+K30Y By (6, W(6), S(¢)),

and

((g) — P(a)) F !
Ma(W,5)(e) =t L ot n WiE), 5()

2531 By (02, Wo2), S (02) = K3 W By(T, W(T), §(T))]  (25)
+53 By (6, W(c), S(6)), ¢ € [a,T],
define the operator equation
W, 8) =MW,S), (26)

observe that both systems given in (1) and (26) are equivalent, that is, by showing the
existence of the solution to the defined operator in Equation (26), we show the existence of
a solution to system (1).

Next, we define the closed, bounded, convex set in & given by Gs = {(W,S) € £
[|{(W,S)|lg <6, 6 >0} with

5> Vi, 0195, (6) + Vi, 0295, (6),

to facilitate the proof of Theorem (2). We present the proof in four steps.
Step 1: We show that MGs C G;. Let T € [a, T| and V(W, S) € Gs; we have

O (1) L P OB
MO, S)l oo <TEEL S @ 9P 18 (2, W(E), S(ED)

0 IOy (01, W(e1), S(01)) oo — KT By (T, W(T), S(T)) o @7
+ K399 1B (¢, W(5), S(6))]oos

and

—p(a)) EL
1M (W, 8) o < (IP(gz\zFlf((;B [@2% 055 (33, W(22), 8/(22)l

+x2" 321929 Ba (02, W(02), S (02)) oo — kjﬂz””l|Bz(T,W(T)/3(T))IIoo} (28)
+ K39 Ba (6, W(6), S(6) I, ¢ € [a,T];

using (Ay), V¢ € [a, T], we have

1B1(6), W(6), S(6)llee <V, (6)55, ([IW(6)]]eo + [IS(6) o)
<Vg,95,(6),
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that is

—p(a)) 1
MO, )l < (l”(g)mff;g [0 09 s 1By (21, W(E, SED)) e

+x1FI T Y G [[Br(en, W(er), S(e1) e — 3% Vg 6, ||B1(T, W(T),S(T))| Ioo}
+ K3 Vg 98, 11Br (6, W(6), 8(6))|eos (29)

Similarly,

(9() — pla)) ¥
IMa(W, 8o < HE—Y [@3% 020 Y5 535, | Ba(82, W(E2), S(22)) o

= Aoli(gr)
—|—X2kj’12+192;¢y2%2f)82 | |BZ(Q2r W(QZ)) | |°°
53 Y, 598, || Bo(TW(T), S(T)) o (30)

+ kj§2;¢y2§2“682 | |Bz(g, W(Q)/ S(g)) ‘ ‘°°

(29) and (30) yield

MOV, S)|lg =M1W, S)]le + [IM2(W, S) ]|
<YVgp,0195,(6) + Vi,08095,(5) (31)
<é

7

that is, MGy C Gs.
Step 2: We show that the operator M is continuous. Indeed, define the sequence

{Vy = Wy, Sn)} € Gs; weshow that V, -V =(W,S) as n — oo,
because of hypothesis A;, it is clear that
Bi(-s Wa(-),8u(-)) = Bi(-, W(-),8()) as n— oo,
recalling (A,), we deduce that
K008 || By (5, Wi(5), S (5)) — B (s, W(s), S(5))lle < Vi, 55, (9999, (32)

additionally, using the function’s Lebesgue dominated convergence theorem and the
fact that

X — Vg 95, (6)F395, (33)

is Lebesgue integrable on [a, T|, we get

—p(a)) E1
||M1<w,s>||wg{“”(€> V)T Ty a1 g 5, B (5, Wi (), () — Ba (5, W(s), S(3))] e

AiTi(¢x)
+x1 IO YE g, [[Bi(s, Wa(s), Su(s)) — Bi(s, W(s), S(s)) |0
K30 YE 9B, [|1Br(s, Wals), Su(s)) — Bi(s,W(s),S (s))IIw] (34)

+kjt91;t/1yl’§1f)lglHBl(s, Wi (s),Su(s)) — Bl(s,W(s),S(s))Hoo,} —0 as n — oo,
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that is,
| M1 (W, Sn)(g) = Ma(W, 8)()llec = 0 as n— 00 ¥ ¢ € [a,T],
then
[|[M1(Wh, Sp) = M1(W, S)||ec = 0 as n — oo, (35)
which shows the continuity of M.
Similarly,
[|Ma(Wp, Sn) — Ma(W,S)||ee — 0 as n — oo. (36)
(35) and (36) yield
[ MW, Sn) = M(W,S)[lg — 0 as n — o, (37)
and by getting (37), we conclude that the operator M is continuous.
Step 3: We show that M is equicontinuous.
Letg1,62 € [a,T] and Y(W, S) € Gs; then
[|M1(W)(62) = Mi(W)(61)lleo
<[ Y OWle) — 9D T = (e — 9(o) B WE)ds
+ [T )~y B W(e)ds
Pk Pk
(ple2) ~ (@)t = (plen) ~#@) ¥ sz e (s
+ Ao @ 1B1(E1, W(E), S(E0))|
+0 IOV By (01, W), S(1))] + k301;¢|31(T1W(T)rS(T))\} (38)
* 1 2 / %71_ _ %71
< Vb,95,0) % g | [ 9 OWe) —9) ¥ = (e —pl) ¥ s
i : ¥($)(Plea) — p(s)) * ds
Pk Pk
(le2) (@) F 1 = (Wle) =¥@)E 1 o pwip m W) S(E
+ - =P By (B, W(E1), S(E
Ao (@153 P By (21, W(EL), S(E0))|
I By (01, W(ar), S(a1))| +kjﬂ"”lgl(TrW(T)rS(T))\} —0as ¢2 = ¢y, (39)
in a similar manner, we have
[[M2(W, 8)(g2) — M2(W, S)(61)] e
<l [ Y Owle) — 9N F = (e — 9(6) F B WE)ds
606 — () F T Bals, WIE))s
Pk Pk
(Wle2) (@) F " = Wle) = ¥@)E 1 ot pwip m Wi S(E
+ - 2=02% | By (Bp, W(Es), S(E
YT @253 | By (2, W(E2), S (2))|
12 T2 By (02, W(02), S(02)) — k302;¢|32(T1W(T)15(T))\} (40)
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+ [ () lca) — p(s) s

62

Pk Pk
($(e2) = 9(@) * '~ ((61) =¥ @) 1 o g (=, W) S(E
+ YT |2 [Ba(E2, W(E2), S(E2))|
2 310 | B (02, Wie2), S(02))| = 9% |Bo(T, W(T), S(T)) | 0 as @2 = 1. (41)

It is notable that (38) and (40) are both free of (W, S) € Gs and because of what is
obtained from (38) and (40), we obtain the equicontinuity of operator M.

Step 4: Finally, we let ® = &1 N Py; P, Py C Gs5. Furthermore, $; and P, are
assumed to be bounded and equicontinuous.

We show that

P C cono(Mq(P1) U{o}) and &, C cono(M;(Pq)U{o}),
thus, the functions

Iy (g) = k(Py
() = k(P2(g)),

are continuous on [4, T]. By Kuratowski’s Lemma (4) and (.A3), we write
IT1(g) =k(P1(g))

< k(cono(My(®1) U {o}))
< k(M@q(g)) (42)

AT ()
+x1 3T || By (01, W(01), S(01))]| — kjﬂl””\\Bl(T,W(T)/S(T))H} (43)

+h90 1By (6, W(5), S(0)I],: W, S) € @}

—p(a)) 1
Sk{ (¥(c) = ¢(a)) {wlkj§1*91;¢|‘Bl(El,W(El)/S(El)))"

_papt
o { DR (o sing, 0,0

Fx1 KO B, (s, @y (s)) — K3 By (s, By (S))] 49

+RIN B, (5, @1 (5)),: (W, S) € @}

o _
gk{ (lIJ(G}\;F';{"((;B ! (@31 Y5 Ak(s, @1 (5))

TRV Agk(s, By (s)) — I VL ALK(s, @1(5))}

k~®y; * .
IR YE k(s @1(5)),: (W, S) € @}

< Vi, M I |,
thatis,

(M ffeo < Vg, AT [eo,
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MOV, 8)(c) —W(¢)] S{ (P(c) —¢(a))

but it was assumed max{yglAl,yzngz} < 1, which yields ||TTj || = 0,50 IT1 (g) =0, V¢ €
[a, T).

Similarly, we get IT,(¢) =0, Vg € [a, T].

Consequently k(®(¢)) < k(P1(g)) = 0and k(P(¢)) < k(P1(¢)) = 0, implying that
®(¢) is relatively compact in & x &, and based on the Arzila—Ascoli theorem, we obtain
that @ is relatively compact in G;.

By all the results obtained from the four steps, Monch’s fixed point theorem applies.
Hence, M has a fixed point (W, S) on G,. O

4. Stability Results for the Problem
Define the operators 21, 2, € C([a, T], R.) x C([a, T], Re) — C([a, T], Re), such that

{kﬂpﬁlfff’wPW(g) —Bi(e, W(6),8(g)) = Z21(W,8)(¢), ¢e€(aT], C1e(12]
KHDRYS (6) — Ba(c, W(6), S(6)) = 22(W, S)(c),

with
[1Z, W, S)|| <11, |22, W,S)|| < »Vr, > 0. (45)

Definition 9. The coupled system (1) is said to be stable in the Ulam—Hyers sense, if 3 X1, &, > 0
and there is a unique solution (W, S) € C([a, T], R.) x C([a, T], Re) of problem (1) with

W, 8) =WV, 8)|| < Xim + X
Y O, 8) € C([a, T], Re) % C([a, T], Re).

Theorem 3. Suppose that Theorem 2’s assumptions hold. Then, the boundary value problem (1) is
Ulam—Hyers stable.

Proof. Let (W, S) € C([a, T], R.) x C([a, T], R.) be the solutions of problems (16) and (17).
Let (W, S) be any solution satisfying (45).

{kﬂpwm;ww(g) = Bi(g, W(5),S(g)) + Z21(W, S)(s),
k/HDl92r(P2?¢S(g) = Bz(g,W(g),S(g)) + ZZ(W/ S)(g)’

V¢elaT].
Therefore,
_ %1
W(g) =M1W, 8)(¢) + { (lp(giilflf((;Z)) [‘Olkjﬂl_pl;‘p(Bl(EhW(El)rs(al)))w

0 T (By (01, W(ar), S(01))eo = K3 (By (T W(T), S(T)) )|
+RIH (By (6, W(6), S(6)))es |
and it follows that

P _
3

1

k~01—p1; —_ - —
- IRV (By (B, W(E1), S(E1)))es
Anon (B1(81,W(E1),S(E1))

IO By (g1, Wlen), (1)) oo — 30 (B1 (T, W(T), S(T)))
+R30% (B (¢, W(), 3(€)))°°}’
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—p

. { (#(D) —p@)? | (D) =)t [w ($(E) = p(@) "

T (1 + k) | ATk (01 + k) I (%1 — p1 + k)

($(21) — 9(@) T (p(E) — ) T
+ol Fk(1191+y1+k) * F2<191+k) ”Tl

< Aim,
and again

[/
(M2 (W, 8)(5) — S(5)| <{ R {Qijwz_pz;lp(Bz(Ez,W(Ez)zs(az)))oo

Aol ()
e (5 0 W(en), S o)) kjﬂzﬂl’(Bz(T,W(T)IS(T)))OO]
+R3%29 (By (¢, W(g),S(Q)))W}’

s{ ($(T) ~ p(a)) ? L () - p(a)) €1

($(Z2) — p(a) "
|CO | Fk(ﬁz—pQ—Fk)

Ii (02 + k) | A | T (82 + k)

1o (B = pl) % (lP(EZ)—lP(ﬂ))k] }Tz

T (02 4 p2 + k) T (%2 + k)

S A2T2/

(W, S) — (W, 8)| < Mty + Mo,

thus, operator M, which is given by (24) and (25), can be extracted from the fixed point
property as follows:

IW(g) =W (¢)] =[W(g) = Mi(Wx, Sx)(g) + M1 (W=, 8%)(g) = W = (¢)|
<IMi(W, 8)(g) = My(Wx, 8x)(g)| 4 [M1 (W, Sx)(g) = W (g)| (46)
(M + Mby) + (A82 + A1) [[(W, S) — (W, S|
F A+ D,

1S(g) = S*(g)| =Sg) — Ma(Wx,S%)(g) + Ma(Wx,S%)(g) — S * (¢)]
SIMa(W, S)(g) = Ma(Wx, Sx) ()] + [Ma (W, Sx)(g) — S = (¢)| (47)
<((AgB + Mobh) + (D2 + Ar8,))[|(WV, S) — (W, S|
+ Aot + ATy,

from the above Equations (46) and (47), it follows that

(A1 + M) + (A +D82)B
1= (A1 4+ D2) (81 + 02) + (A + A2) (D1 + 82))
<Vt + Wty

[IW,8) = (W, S#)]| <

with

(Al + Az)

n= 1— (A1 + 82) (81 + 92) + (D1 + 2) (1 + 6))
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(A1 + A7)

2= 1— (A + 82) (81 4 02) + (D1 + B2) (G + 8))

this demonstrates that the problem (1) is Ulam-Hyers stable. [J

5. Example

An applied example is used to support the result presented in this work as follows
Let Wo = {Wi;,Wy,---W,,---}, it clear that W, is a Banach space with
[[W|leo = sup,,~1 [Wh|. Consider the following boundary value problem:

Example 1.

EHDBPIW (¢) = Bi(g, W(6), S(6)), ¢ € (a,T], k> 0,1 < 8 <2, 91 € [0,1],
MDY S(6) = Ba(g, W(6),S(¢)), ¢ € (a,T], k>0,1< 8, <2, ¢ €[0,1],
W(a) =0, W(T) = @ "HDo oW (&) + x1 k319 W(01),

S(a) =0, S(T) = @ FMDR292YW(Ey) + xok32¥ W (0,),

(48)

where k = %, % =8/5 %9 =7/5 ¢1=2/5¢,=3/5a=1/5,T=5/3, 21 =4/7,
5y =3/5,01=5/8,00=6/5 x1=3/51,x0 =4/51, 0, =2/51,01 = 1/51, ¢ = 35/15,

_ W ()| 1 1
Bi(¢, W(¢), S(g)) = {(g+9)(1+ W) T 270+ 120 81}'
_ [sin(2r[W(g))| 1 S0
Ba(c, W(c),S(g)) = { me 10vc T4 1001+ W(e )|)}
and Vg € [a, T) with {Wy}n>1,{Su}tn>1 € W, the hypothesis Ay of Theorem 2 is verified.
Moreouver,
W(g)| 1 1
1516 Wle), S(&)l e < H{ g+9 A+ WD " 70+ 182 +81Hw’
1
< g (IWIl+ 1)
= V5, (6)95, (I[Wlle)
and similarly,
sin(27t|W(¢))] 1 1S(g)]
1Ba(e, W), S()] = < H{ e 2t e+ o e
< (ISl +1)

= V5,(6)95, (IS ]]es),

this implies condition A, of Theorem 2 is verified.
Next,

Y(Bi,(5,9)) < Vg, (6)V(9),
Y(Ba, (¢,9)) < Vi, (5)V(9),

where in our case, we have Vg, (¢) = gﬁ, Vs, (¢) = %, and the next two inequalities guarantee

that the condition (Ajy) of Theorem 2 is valid.
Finally, we calculate
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yBl(Q) =10
@1 —p@n? @ —pa)* [ wE) - pa)
A= I (01 + k) |Aq| T (81 + k) @ I (81 — p1 + k) (49)

8+ |

($(E) — (@) F  @E) = @) F | aecrnaeen

hal T (01 4 p1 + k) * I (% +k)
and
V() = 25,
L6} Pk th—p
(p(T) —y(a)* | (p(T) —y(a) " (¥(E2) —y(a)
S (S R Wiyl Ly Aoy 0

(P(E2) — () F2  (p(E) — (@) P | _
Fk(ﬂz Tt k) + kaz i k) ~ 0.69703560

+xz|

then, max{A Vg, (¢), A Vs, (¢)} = max{0.356723562,0.13940712} = 0.13940712 < 1. This
shows that all requirements of Theorem 2 are satisfied, (W, S) € C([a, T|,So) x C([a, T],So).

6. Conclusions

We studied a system of Hilfer (k, i)-fractional differential equations, with nonlocal
boundary conditions and (k, i)-Hilfer derivatives and integrals. We used Monch'’s fixed
point theorem, Carathéaodory’s conditions, and Kuratowski’s measure of noncompactness
to introduce the results in this work. In addition, the stability of solutions to the system (1)
was verified via the Ulam—Hyers stability technique. Adding to this, the following conclu-
sions are drawn from this study:

1 According to [27], if k = 1, the Hilfer (k, ¢)-fractional operator becomes a Hilfer
p-fractional operator.

2 According to [31], if ¢(¢) = ¢ and k = 1, the Hilfer (k, ¢)-fractional operator becomes
a Hilfer fractional operator.

3 For ¢(g) = ¢and ¢; = 0,i = 1,2, the Hilfer (k, ¢)-fractional system becomes a
Riemann-Liouville (k, ¢)-fractional system.

4  For¢(c) = gand ¢; = 1,i = 1,2, the Hilfer (k, i)-fractional system becomes a Caputo
(k, p)-fractional system. Furthermore, the solution form in the types of systems men-
tioned above can be used to study the positive solution and its asymmetry in greater
depth. We conclude that our results are novel and can be viewed as an expansion
of the qualitative analysis of fractional differential equations. For those interested in
this subject, this system can be studied using different fractional derivatives such as
Katugampula or -Caputo and these results can be used in practical applications in
various subjects such as the predator—prey model.
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