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Abstract: Most network representation learning approaches only consider the pairwise relationships
between the nodes in ordinary networks but do not consider the tuple relationships, namely the hy-
peredges, among the nodes in the hypernetworks. Therefore, to solve the above issue, a hypernetwork
representation learning approach based on hyperedge modeling, abbreviated as HRHM, is proposed,
which fully considers the hyperedges to obtain ideal node representation vectors that are applied to
downstream machine learning tasks such as node classification, link prediction, community detection,
and so on. Experimental results on the hypernetwork datasets show that with regard to the node
classification task, the mean node classification accuracy of HRHM approach goes beyond other
best baseline approach by about 1% on the MovieLens and wordnet, and with regard to the link
prediction task, except for HPHG approach, the mean AUC value of HRHM approach surpasses that
of other baseline approaches by about 17%, 18%, and 6%, respectively, on the GPS, drug, and wordnet.
The mean AUC value of HRHM approach is very close to that of other best baseline approach on
the MovieLens.

Keywords: representation learning; pairwise relation; tuple relationships; hyperedge modeling

1. Introduction

With the rapid development of artificial intelligence, hypernetwork representation
learning has gradually become a research hotspot in the field of machine learning. Hyper-
network representation learning maps the nodes in the hypernetwork to a low-dimensional
vector representation space. The learned node representation vectors can be applied to
node classification [1], link prediction [2], community detection [3], and so on.

According to the types of the hypernetwork, the hypernetwork representation learning
can be divided into homogeneous hypernetwork representation learning and heteroge-
neous hypernetwork representation learning. Homogeneous hypernetwork representation
learning aims to map the nodes of a single type in the homogeneous hypernetwork to a
low-dimensional vector representation space. For example, Zhou [4] proposed the hyper-
graph embedding approach on the basis of the spectral hypergraph clustering [5], but the
high computational complexity of this approach limits the wide application. HGNN [6]
extended the convolution operation to hypergraph embedding, but the datasets used in
this approach are not really hypernetwork datasets. In a word, although the above ho-
mogeneous hypernetwork representation learning approaches have good representation
learning abilities, they do not consider the heterogeneity of the hypernetwork. Therefore,
the researchers propose heterogeneous hypernetwork representation learning approaches,
which aim to learn distinguishing representation vectors for different types of nodes in the
heterogeneous hypernetwork. For example, HHNE [7] is designed as a fully connected
graph convolution layer to project different types of nodes into a common low-dimensional
vector representation space, but the computational complexity of this approach is too high
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to be suitable for large-scale heterogeneous networks. DHNE [8] realizes the local and
global proximity of nonlinear tuple similar functions in the embedding space, but because
the multi-layer perceptron is used in the DHNE approach, the approach is limited to het-
erogeneous hyperedges with fixed size, and the relationships among multi-type instances
with unfixed size cannot be considered.

To sum up, although the above hypernetwork representation learning methods can
obtain nice node representation vectors, there are various issues, especially high compu-
tational complexity and the limitation of the hyperedges with a fixed size. Therefore, to
solve the above issues, a hypernetwork representation learning approach based on hyper-
edge modeling to effectively capture complex tuple relationships (i.e., hyperedges) among
the nodes is proposed, which is suitable for the hypernetwork with the hyperedges with
unfixed size and improves the computational efficiency.

The following two aspects are the features of this paper:

• A hypernetwork representation learning approach based on hyperedge modeling
is proposed to map the nodes in the hypernetwork to a low-dimensional vector
representation space, where the main components of the learned node representation
vectors are the hypernetwork structure and the hyperedges;

• The advantage of HRHM approach is that the hyperedges with unfixed size are
encoded in the learned node representation vectors. The disadvantage of HRHM
approach is that the partial information of the hypernetwork structure is lost because
the hypernetwork abstracted as the hypergraph is transformed into the ordinary
network abstracted as two-section graph.

2. Related Works

Nowadays, researchers have proposed some hypernetwork representation learning
approaches to obtain node representation vectors that are rich in hypernetwork struc-
ture information. The existing hypernetwork representation learning approaches can be
divided into homogeneous hypernetwork representation learning approaches and hetero-
geneous hypernetwork representation learning approaches. With regard to homogeneous
hypernetwork representation learning approaches, Zhou [4] proposed the hypergraph
embedding approach on the basis of the spectral hypergraph clustering. HyperGCN [9]
approximates each hyperedge of a hypergraph by a set of pairwise edges connecting the
nodes in the hyperedge and treats the hypergraph learning as graph learning. HGNN [6]
extends the convolution operation to hypergraph embedding, which is convolved by the
hypergraph Laplacian function in the spectral domain and further approximated by trun-
cated Chebyshev polynomials. LHCN [10] maps the hypergraph to a weighted attributed
line graph and learns graph convolutions on this line graph. With regard to heteroge-
neous hypernetwork representation learning approaches, HHNE [7] is designed as a fully
connected graph convolutional layer to project different types of nodes into a common
low-dimensional space and uses a tuple similarity function to protect the network structure,
and a rank-based loss function is used to improve the similarity scores of hyperedges
in the embedding space. DHNE [8] is a new deep model to realize the local and global
proximity of the nonlinear tuple similarity function in the embedding space. HPHG [11]
is a deep model called Hyper-gram to capture pairwise and tuple relationships in the
node sequences. Hyper-SAGNN [12] utilizes a self-attention mechanism [13] to aggregate
hypergraph information.

3. Problem Definition of HRHM Approach

The hypernetwork H = (V, E) abstracted as the hypergraph consists of the node set
V = {vi}

|V|
i=1 and the hyperedge set E = {ei = {v1, v2, · · · , vτ}}|E|i=1 (τ ≥ 2). The HRHM

approach aims to learn a low-dimensional representation vector rn ∈ Rk for each node n in
the hypernetwork, where k is much smaller than |V|.

In order to understand the process of hypernetwork representation learning well, take
the drug hypernetwork as an example, where the triplet < user, drug, adverse reaction > is
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the hyperedge. Since each drug has several specific adverse reactions, there is a semantic
relevance between the drug and the adverse reaction. How to assess the above semantic
relevance is the real-life problem, which is solved by hypernetwork representation learning,
which obtains a node representation vector to calculate the similarity between the drug and
the adverse reaction to assess the semantic relevance.

4. Preliminaries
4.1. Two-Section Graph Transformed from Hypergraph

According to the literature [14], the two-section graph structure is closer to the hyper-
graph structure than the line graph and the incidence graph. Therefore, the two-section
graph transformed from the hypergraph is used in this paper to carry out the research of
hypernetwork representation learning. The hypergraph and its corresponding two-section
graph are shown in Figure 1.
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Figure 1. Hypergraph and two-section graph. (a) Hypergraph; (b) two-section graph.

The two-section graph S = (V′, E′) transformed from the hypergraph H = (V, E) is
an ordinary graph to meet the following conditions:

• The node set V′ of two-section graph S is identical with the node set V of the hypergraph H;
• Any two different nodes are associated with one edge if and only if these two nodes

belong to at least one hyperedge simultaneously.

4.2. TransE Model

TransE [15] is a knowledge representation model with the translation mechanism,
which thinks that if the head entity h and the tail entity t are with the relationship r, the
triplet (h, r, t) holds. Moreover, the head entity vector h plus the relationship vector r is
almost identical with the tail entity vector t, namely h + r ≈ t, when the triplet (h, r, t)
holds; otherwise, h + r ̸= t. The TransE framework is shown in Figure 2.
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5. HRHM Approach

This section introduces hypernetwork representation learning based on hyperedge
modeling in more detail. Firstly, the cognitive topology model is introduced in Section 5.1.
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Secondly, the cognitive hyperedge model is introduced in Section 5.2. Finally, the joint
optimization of the above two models is introduced in more detail in Section 5.3.

5.1. Cognitive Topology Model

In order to improve the computational efficiency, a cognitive topology model with
the negative sampling [16] is introduced to capture the hypernetwork structure. Under
the condition of the node sequences C, we try to maximize the following target function
of the cognitive topology model to obtain the representation vectors rich in the hypernet-
work structure.

D1 = ∏
n∈C

∏
u∈{{n}∪NEG1(n)}

p(u|context(n)) (1)

where NEG1(n) is the subset of negative samples of the center node n, regarded as the
positive sample. context(n) is the contextual nodes of the center node n. p(u|context(n)) is
defined as follows.

p(u|context(n)) =
{

σ(XT
n θu), Ln(u) = 1

1 − σ(XT
n θu), Ln(u) = 0

(2)

where σ(XT
n θu) = 1/(1 + e−XT

n θu) is a sigmoid function. Xn is the sum vector of all nodes
representation vectors corresponding to context(n). θn is the parameter vector. For ∀ u ∈ V,
the node label Ln(u) is defined as follows.

Ln(u) =

{
1, u ∈ {n}
0, u ∈ NEG1(n)

(3)

By means of Equation (3), Equation (2) can also be written as an integral expression.

p(u|context(n)) = [σ(XT
n θu)]

Ln(u) · [1 − σ(XT
n θu)]

1−Ln(u)
(4)

By substituting Equation (4) into Equation (1), Equation (1) can be rewritten as follows:

D1 = ∏
n∈C

∏
u∈{{n}∪NEG1(n)}

{
[σ(XT

n θu)]
Ln(u) · [1 − σ(XT

n θu)]
1−Ln(u)}

(5)

Formally, maximizing the target function D1 makes the learned node representation
vectors rich in hypernetwork structure.

5.2. Cognitive Hyperedge Model

Because the qualities of the node representation vectors from the above cognitive
topology model do not consider that the hyperedges are not high, a novel cognitive
hyperedge model with the negative sampling is proposed to consider the hyperedges to
learn node representation vectors of high quality, where the hyperedges are deemed as the
interaction relationships among the nodes and regarded as the translation operations in the
representation vector space in the TransE model.

Under the condition of the hyperedge constraint, we try to maximize the following
target function of the cognitive hyperedge model to obtain the representation vectors rich
in the hyperedges.

D2 = ∏
n∈C

∏
r∈Rn

∏
h∈Hr

∏
ξ∈{{n}∪NEG2(n)}

p(ξ|h + r) = ∏
n∈C

∏
r∈Rn

∏
h∈Hr

∏
ξ∈{{n}∪NEG2(n)}

{
σ( e

T
h+rθξ)

δn(ξ) · [1 − σ( e

T
h+rθξ)]

1−δn(ξ)
}

(6)

where Rn is the set of the hyperedges, namely relationships associated with the center node
n; Hr is the set of the nodes with the relation r with the center node n; NEG2(n) is the subset
of negative samples of the center node n; θξ is the parameter vector; and the parameter
vector eh+r is the sum vector of the parameter vectors eh and er, namely eh+r = eh + er.
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For ∀ ξ ∈ V, the node label δn(ξ) in the Equation (6) is defined as follows:

δn(ξ) =

{
1, ξ ∈ {n}
0, ξ ∈ NEG2(n)

(7)

Formally, maximizing the target function D2 makes the learned node representation
vectors rich in hyperedges.

5.3. Joint Optimization

In this subsection, the hypernetwork representation learning approach based on
hyperedge modeling, abbreviated as HRHM, is proposed. The HRHM approach can jointly
optimize the cognitive topology model and cognitive hyperedge model. Figure 3 shows
the HRHM framework.
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Figure 3. HRHM framework, where vi is the center node, and other nodes vi−s, vi−s+1, vi+s−1, vi+s,
etc. are contextual nodes of the center node vi, namely context(vi), where the vectors corresponding
to vi−s, vi−s+1, vi, vi+s−1 and vi+s are denoted as the first red dot from the left, the second red dot
from the left, the red dot in the middle, the second red dot from the right, the first red dot from the
right. r is the interaction relation namely the hyperedge; h is a node with the relationship r with the
center node vi; and Rvi is the hyperedge set associated with the center node vi, where the vectors
corresponding to r and h are denoted as the first red dot from the right and the second red dot from
the left. The left-hand rectangle denoted as all red is the projection layer representation derived from
r and h; The right-hand rectangle denoted as all red is the projection layer representation derived
from vi−s, vi−s+1, vi+s−1 and vi+s.

From Figure 3, the network topology representation and hyperedge representation
from the cognitive topology model and cognitive hyperedge model, respectively, share the
same representation.

For ease of calculation, take the logarithm of D1 and D2 to maximize the following
joint optimization target function to make the hyperedges fully incorporated into the node
representation vectors.

L = ∑
n∈C


∑

u∈{{n}∪NEG1(n)}

{
Ln(u) · log[σ(XT

n θu)] + [1 − Ln(u)] · log[1 − σ(XT
n θu)]

}
+

β · ∑
r∈Rn

∑
h∈Hr

∑
ξ∈{{n}∪NEG2(n)}

{
δn(ξ) · log[σ(eT

h+rθξ)] + [1 − δn(ξ)] · log[1 − σ(eT
h+rθξ)]

}


= ∑
n∈C


∑

u∈{{n}∪NEG1(n)}

{
Ln(u) · log[σ(XT

n θu)] + [1 − Ln(u)] · log[1 − σ(XT
n θu)]

}
+

∑
r∈Rn

∑
h∈Hr

∑
ξ∈{{n}∪NEG2(n)}

β ·
{

δn(ξ) · log[σ(eT
h+rθξ)] + [1 − δn(ξ)] · log[1 − σ(eT

h+rθξ)]
}


(8)

where the harmonic factor β is used to equilibrate the contribution rate between the
cognitive topology model and cognitive hyperedge model.
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For ease of derivation, L(n, u, r, h, ξ) is denoted as follows:

L(n, u, r, h, ξ) =
{

Ln(u) · log[σ(XT
n θu)] + [1 − Ln(u)] · log[1 − σ(XT

n θu)]
}
+

β ·
{

δn(ξ) · log[σ(eT
h+rθξ)] + [1 − δn(ξ)] · log[1 − σ(eT

h+rθξ)]
} (9)

The stochastic gradient ascent approach is used to optimize the target function L. The
acquisition of four kinds of gradients of L is the key to this paper.

Firstly, the gradient on the parameter vector θu is calculated as follows:

∂L(n,u,r,h,ξ)
∂θu

= Ln(u) · [1 − σ(XT
n θu)] · Xn − [1 − Ln(u)] · σ(XT

n θu) · Xn

=
{

Ln(u) · [1 − σ(XT
n θu)]− [1 − Ln(u)] · σ(XT

n θu)
}
· Xn

= [Ln(u)− σ(XT
n θu)] · Xn

(10)

Therefore, the parameter vector θu is updated as follows:

θu = θu + α · [Ln(u)− σ(XT
n θu)] · Xn (11)

where α is the learning rate.
Secondly, the gradient on the sum vector Xn is calculated as follows via the symmetry

property between θu and Xn:

∂L(n, u, r, h, ξ)

∂Xn
= [Ln(u)− σ(XT

n θu)] · θu (12)

Therefore, the representation vector vv′ is updated as follows, where v′ ∈ context(n):

vv′ = vv′ + α · ∑
u∈{{n}∪NEG1(n)}

∂L(n,u,r,h,ξ)
∂Xn

= vv′ + α · ∑
u∈{{n}∪NEG1(n)}

[Ln(u)− σ(XT
n θu)] · θu

(13)

Thirdly, the gradient on the parameter vector θξ is calculated as follows:

∂L(n,u,r,h,ξ)
∂θξ

= β ·
{

∂
∂θξ

{
δn(ξ) · log[σ(eT

h+rθξ)] + [1 − δn(ξ)] · log[1 − σ(eT
h+rθξ)]

}}
= β ·

{
δn(ξ) · [1 − σ(eT

h+rθξ)] · eh+r − [1 − δn(ξ)] · σ(eT
h+rθξ) · eh+r

}
= β ·

{{
δn(ξ) · [1 − σ(eT

h+rθξ)]− [1 − δn(ξ)] · σ(eT
h+rθξ)

}
· eh+r

}
= β · [δn(ξ)− σ(eT

h+rθξ)] · eh+r

(14)

Therefore, the parameter vector θξ is updated as follows:

θξ = θξ + α · β · [δn(ξ)− σ(eT
h+rθξ)] · eh+r (15)

Finally, the gradient on the parameter vector eh+r is calculated as follows via the
symmetry property between θξ and eh+r:

∂L(n, u, r, h, ξ)

∂eh+r
= β · [δn(ξ)− σ(eT

h+rθξ)] · θξ (16)

Specially, eh+r = eh + er, and the gradient ∂L(n,u,r,h,ξ)
∂eh+r

is used to update the parameter
vectors eh and er, respectively, as follows:

eh = eh + α · β · ∑
ξ∈{{n}∪NEG2(n)}

[δn(ξ)− σ(eT
h+rθξ)] · θξ (17)
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er = er + α · β · ∑
ξ∈{{n}∪NEG2(n)}

[δn(ξ)− σ(eT
h+rθξ)] · θξ (18)

The stochastic gradient ascent approach is used for optimization. More details are
shown in Algorithm 1.

Algorithm 1: HRHM

1 Input:
2 hypernetwork H = (V, E)
3 vector dimension size d
4 Output:
5 node representation matrix Y ∈ R|V|×d

6 for node n in V do
7 initializing the representation vector vn ∈ R1×d

8 initializing the parameter vector θn ∈ R1×d

9 for hyperedge r in Rn do
10 for node h in Hr do
11 initializing the parameter vector eh+r ∈ R1×d

12 end for
13 end for
14 end for
15 node sequences C = randomwalk()
16 for (n, context(n)) in C do
17 updating the parameter vector according to the Equation (11)
18 updating the representation vector according to the Equation (13)
19 updating the parameter vector according to the Equation (15)
20 for hyperedge r in Rn do
21 for node h in Hr do
22 updating the parameter vector according to the Equation (17)
23 updating the parameter vector according to the Equation (18)
24 end for
25 end for
26 end for
27 for i = 0; i < |V|; i ++ do
28 Yi = vn
29 end for
30 return Y

6. Experiments and Result Analysis
6.1. Datasets

Four hypernetwork datasets are used to evaluate HRHM approach. Detailed dataset
statistics are shown in Table 1.

Table 1. Dataset statistics.

Dataset Node Type #(V) #(E)

GPS user location activity 146 70 5 1436
MovieLens user movie tag 457 1688 1530 5965

drug user drug reaction 4 132 221 1195
wordnet head relation tail 1754 7 1549 2174

Four datasets are shown as follows:

• GPS [17] describes a situation where a user takes part in an activity in a location. The
triplet < user, location, activity> is utilized to construct the hypernetwork;

• MovieLens [18] describes personal tag activities from MovieLens. The triplet < user,
movie, tag> is utilized to construct the hypernetwork, where each movie has at least
one genre;
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• Drug (http://www.fda.gov/Drugs/, accessed on 27 January 2020) describes a situa-
tion where the user who takes some drugs has certain reactions that lead to adverse
events. The triplet < user, drug, reaction> is utilized to construct the hypernetwork;

• Wordnet [15] is made up of a set of triplets <head, relation, tail> extracted from
Wordnet3.0. The triplet < head, relation, tail> is utilized to construct the hypernetwork.

6.2. Baseline Approaches

DeepWalk: DeepWalk [19] is a popular approach for learning node representation
vectors to encode social relationships.

Node2vec: Node2vec [20] maps the nodes in the network to a low-dimensional
representation space to preserve network neighborhoods of the nodes.

LINE: LINE [21] embeds huge networks into low-dimensional vector spaces to pre-
serve both local and global network structures.

GraRep: GraRep [22] integrates global graph structural information into the process
of representation learning.

HOPE: HOPE [23] is a learning approach that preserves higher-order proximities of
large scale graphs and captures the asymmetric transitivity.

SDNE: SDNE [24] is a semi-supervised learning approach with multiple layers of
non-linear functions to capture the highly non-linear network structure.

HPGH: HPHG [11] proposes a deep model called Hyper-gram to capture pairwise
and tuple relationships in the node sequences.

HRHM: HRHM regards the interaction relationships among the nodes as the transla-
tion operation in the representation space and incorporates the relationships among the
nodes into node representation vectors.

6.3. Node Classification

Because the labels are only on the MovieLens and wordnet, our approach is assessed
via node classification [1] on the two datasets. The node classification accuracies are
calculated by means of SVM [25].

The observations from Tables 2 and 3 are shown as follows:

• With regard to the two datasets, the mean node classification accuracy of HRHM
approach surpasses that of other baseline approaches, and in terms of the node clas-
sification accuracies with different training ratios, HRHM approach surpasses other
baseline approaches. Furthermore, the node classification accuracies of HRHM ap-
proach is directly proportional to the training ratios, which shows that a large amount
of training data is helpful for node classification. It is worth noting that the node classi-
fication accuracies of HRHM approach are not high. The reason is that the categorical
attributes on the two datasets are less prominent;

• The mean node classification accuracy of DeepWalk ranks only second to that of
HRHM approach because DeepWalk captures the hypernetwork structure to a certain
extent in the node sequences generated by random walks.

Table 2. Node classification results on MovieLens (%).

Approaches
Training Ratios

10% 20% 30% 40% 50% 60% 70% 80% 90% Mean Rank

DeepWalk 48.01 50.35 51.41 52.60 52.59 53.47 53.57 54.23 54.09 52.26 2
node2vec 46.93 49.28 50.77 51.51 52.62 52.58 53.04 53.44 52.71 51.43 4

LINE 43.93 45.46 46.52 47.29 47.70 48.16 48.02 49.09 48.34 47.17 6
GraRep 47.75 50.11 51.16 52.01 52.10 53.15 53.34 53.43 53.24 51.81 3
HOPE 46.33 48.57 49.95 50.69 51.06 51.04 51.29 52.53 51.79 50.36 5
SDNE 41.74 41.79 42.34 42.73 43.36 43.27 43.89 43.43 42.81 42.82 7

HRHM 48.73 51.26 52.71 53.62 54.38 54.57 55.03 55.82 56.30 53.60 1

http://www.fda.gov/Drugs/
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Table 3. Node classification results on wordnet (%).

Approaches
Training Ratios

10% 20% 30% 40% 50% 60% 70% 80% 90% Mean Rank

DeepWalk 29.91 33.44 34.53 35.05 35.70 36.80 37.93 36.71 39.00 35.45 2
node2vec 29.27 32.23 33.71 34.52 36.17 36.05 37.53 37.66 37.30 34.94 4

LINE 22.77 24.11 25.11 24.94 25.23 25.59 25.87 26.60 25.44 25.07 6
GraRep 32.59 34.74 34.63 35.21 35.38 36.05 35.10 36.63 37.79 35.35 3
HOPE 30.53 33.61 35.02 35.97 34.90 35.11 36.21 36.20 34.84 34.71 5
SDNE 21.96 21.57 22.05 22.37 23.26 22.59 23.63 23.60 25.31 22.93 7

HRHM 31.30 33.79 35.59 36.18 36.95 37.94 38.14 38.63 40.07 36.51 1

In short, it is found that the node representation vectors from the HRHM approach
are better than other baseline approaches, which shows that HRHM approach is effective.

6.4. Link Prediction

The link prediction is assessed by the AUC [26]. The observations from Tables 4–7 are
shown as follows.

Table 4. Link prediction results on GPS.

Approaches
Training Ratios

60% 65% 70% 75% 80% 85% 90% Mean Rank
DeepWalk 0.4308 0.4278 0.4205 0.4583 0.4418 0.4914 0.4831 0.4505 4
node2vec 0.3660 0.3614 0.3808 0.3939 0.3834 0.3958 0.3649 0.3780 7

LINE 0.4575 0.4829 0.4761 0.4562 0.4429 0.4663 0.4574 0.4628 3
GraRep 0.3873 0.3805 0.3882 0.3765 0.3820 0.3857 0.3874 0.3839 6
HOPE 0.3805 0.3676 0.3416 0.2971 0.2794 0.2518 0.2334 0.3073 8
SDNE 0.3262 0.4371 0.4319 0.3157 0.4379 0.3527 0.4540 0.3936 5
HPHG 0.9026 0.9158 0.9142 0.9269 0.9347 0.9326 0.9315 0.9226 1
HRHM 0.6845 0.6428 0.6483 0.6403 0.6216 0.6005 0.5856 0.6319 2

Table 5. Link prediction results on MovieLens.

Approaches
Training Ratios

60% 65% 70% 75% 80% 85% 90% Mean Rank
DeepWalk 0.7845 0.8129 0.8301 0.8440 0.8729 0.8800 0.9025 0.8467 2
node2vec 0.7078 0.7390 0.7418 0.7696 0.7939 0.8036 0.8296 0.7693 6

LINE 0.8282 0.8242 0.8253 0.8320 0.8365 0.8172 0.8231 0.8266 4
GraRep 0.7290 0.7833 0.7907 0.8121 0.8277 0.8481 0.8544 0.8065 5
HOPE 0.6895 0.7333 0.7203 0.7522 0.7787 0.7986 0.8049 0.7539 7
SDNE 0.4004 0.3511 0.3494 0.3406 0.3433 0.3598 0.4171 0.3660 8
HPHG 0.9356 0.9367 0.9388 0.9276 0.9138 0.9245 0.9301 0.9296 1
HRHM 0.8495 0.8497 0.8351 0.8325 0.8387 0.8281 0.8320 0.8379 3

Table 6. Link prediction results on drug.

Approaches
Training Ratios

60% 65% 70% 75% 80% 85% 90% Mean Rank
DeepWalk 0.4852 0.4954 0.4934 0.4580 0.4901 0.4638 0.4713 0.4796 5
node2vec 0.4500 0.4525 0.4490 0.4525 0.4329 0.4712 0.4345 0.4489 7

LINE 0.4750 0.4672 0.4636 0.4625 0.4741 0.4523 0.4768 0.4674 6
GraRep 0.5025 0.5089 0.4867 0.5051 0.5557 0.5835 0.5362 0.5255 3
HOPE 0.5055 0.5269 0.4933 0.4690 0.4941 0.4668 0.4271 0.4832 4
SDNE 0.2948 0.4310 0.4454 0.5050 0.5196 0.3536 0.3836 0.4190 8
HPHG 0.9451 0.9458 0.9467 0.9552 0.9583 0.9548 0.9489 0.9507 1
HRHM 0.7153 0.7071 0.7134 0.7134 0.6868 0.7108 0.7240 0.7101 2
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Table 7. Link prediction results on wordnet.

Approaches
Training Ratios

60% 65% 70% 75% 80% 85% 90% Mean Rank

DeepWalk 0.7780 0.8181 0.8305 0.8341 0.8708 0.8765 0.8880 0.8423 3
node2vec 0.7807 0.8242 0.8309 0.8285 0.8519 0.8503 0.8595 0.8323 4

LINE 0.8063 0.8184 0.8056 0.8091 0.8000 0.7938 0.7926 0.8037 5
GraRep 0.7685 0.7742 0.7888 0.7806 0.7958 0.7972 0.7756 0.7830 6
HOPE 0.6902 0.7314 0.7417 0.7403 0.7649 0.7763 0.7700 0.7450 7
SDNE 0.3712 0.5348 0.4784 0.4824 0.4254 0.6159 0.4850 0.4847 8
HPHG 0.9217 0.9378 0.9386 0.9488 0.9556 0.9495 0.9501 0.9432 1

HRHM 0.9030 0.9115 0.9050 0.9016 0.9098 0.9027 0.8912 0.9035 2

• The HRHM approach performs worse than HPHG approach. To be specific, the
mean AUC value of HPHG approach goes beyond that of HRHM approach by about
29%, 9%, 24%, and 4%, respectively, for the GPS, MovieLens, drug, and wordnet.
The reason is that HRHM approach transforms the hypergraph into a two-section
graph, which leads to partial loss of the hypernetwork structure information, but the
HPHG approach does not decompose the hyperedges, which leads to almost complete
preservation of hypernetwork structure information;

• Except for HPHG approach, the mean AUC value of HRHM approach surpasses that
of other baseline approaches on the GPS, drug, and wordnet. The mean AUC value of
HRHM approach is very close to that of the other best baseline approach DeepWalk
on the MovieLens. To sum up, HRHM approach surpasses most baseline approaches,
which shows that the HRHM approach is effective;

• The HRHM approach performs consistently at different training ratios compared to
other baseline approaches, which shows its feasibility and robustness;

• The HRHM approach almost surpasses other baseline approaches that do not consider
the hyperedges, which verifies the assumption that the hyperedges are useful for
link prediction.

In short, the above observations show that the HRHM approach can learn node
representation vectors of high quality.

6.5. Parameter Sensitivity

The contribution rate between the cognitive topology model and the cognitive hyper-
edge model is equilibrated by the harmonic factor β. We set the raining ratio to 50% and
calculate node classification accuracies with different β within the ranges from 0.1 to 0.9 on
MovieLens and wordnet. Figure 4 shows the comparisons of node classification accuracies.
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From Figure 4, it is found that the variation ranges of node classification accuracies
on the two datasets are both within 2%, which indicates that the HRHM approach is not
sensitive to the parameter β and shows the robustness of the HRHM approach.

In short, the best node classification results on both MovieLens and wordnet datasets
are achieved at β = 0.5.

7. Conclusions

This hypernetwork representation learning approach based on hyperedge modeling
consists of the cognitive topology model and the cognitive hyperedge model, which incor-
porate the hypernetwork topology structure and the hyperedges into node representation
vectors, respectively, where the learning process of node representation vectors is regarded
as a joint optimization problem, which is resolved via the stochastic gradient ascend ap-
proach. The advantage of the HRHM approach is that the hyperedges with unfixed size
are encoded in the learned node representation vectors. The experimental results show
that the performance of the HRHM approach is almost all better than that of other baseline
approaches, more or less, except for the HPHG approach. In future research, we will not
transform the hypergraph into the ordinary graph but regard the hyperedges as a whole to
carry out the research of the hypernetwork representation learning.
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