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Abstract: In this paper, we develop theorems on finite and infinite summation formulas by utilizing
the q and (q, h) anti-difference operators, and also we extend these core theorems to q(α) and (q, h)α

difference operators. Several integer order theorems based on q and q(α) difference operator have
been published, which gave us the idea to derive the fractional order anti-difference equations for
q and q(α) difference operators. In order to develop the fractional order anti-difference equations
for q and q(α) difference operators, we construct a function known as the quantum geometric and
alpha-quantum geometric function, which behaves as the class of geometric series. We can use this
function to convert an infinite summation to a limited summation. Using this concept and by the
gamma function, we derive the fractional order anti-difference equations for q and q(α) difference
operators for polynomials, polynomial factorials, and logarithmic functions that provide solutions for
symmetric difference operator. We provide appropriate examples to support our results. In addition,
we extend these concepts to the (q, h) and (q, h)α difference operators, and we derive several integer
and fractional order theorems that give solutions for the mixed symmetric difference operator. Finally,
we plot the diagrams to analyze the (q, h) and (q, h)α difference operators for verification.

Keywords: q and (q, h) difference operators; quantum geometric function; alpha quantum geometric
function; gamma functions and fractional order sum

1. Introduction

The study of calculus without limits is nowadays known as quantum calculus. Jack-
son’s work [1] sheds light on the invention of q-calculus, often known as quantum calculus,
while in 1908, Euler and Jacobi had already developed this type of calculus. The field of
q-calculus emerged as a link between mathematics and physics. Numerous mathematical
fields, including combinatorics, orthogonal polynomials, number theory, fundamental
hyper-geometric functions, as well as other sciences, including mechanics, quantum theory,
and the theory of relativity, make extensive use of it.

Most of the basic facts of quantum calculus are covered in the book by Kac and
Cheung [2]. Quantum calculus is a branch within the mathematical topic of time scales
calculus. The q-differential equations are typically defined on a time scale set Tq, where q
is the scale index. Time scales offer a unifying framework for investigating the dynamic
equations. The majority of the fundamental theory in the calculus of time scales was
compiled in the text by Bohner and Peterson [3].

Though quantum calculus plays a major role in physics, engineers and mathematics
also show interest in fractional q-difference equations and q-calculus. The main focus of
developing q-difference equations is to characterize some unique physical processes and
other areas. Some of the topics that have been developed and investigated in conjunction
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with the creation of the q-calculus theory include the q-Gamma, q-Laplace transform, q-
Taylor expansion, q-Beta functions, q-integral transforms theory, q-Mittag Leffler functions,
and others. Refer to the articles [4–12] for additional information on fractional and q-
calculus equations with q-differentials. The study of fractional q-calculus is still in its early
stages when compared to the classical fractional calculus.

In recent years, there has been some research on the uniqueness and existence of
solutions to fractional q-calculus. In [13], the authors suggested a technique for solving
several linear fractional q-differential equations that involves corresponding integer order
equations. Abdeljawad et al. demonstrated the uniqueness of a nonlinear delay Caputo
fractional q-difference system initial value problem in [14] by employing a new extended
form of the discrete fractional q-Gronwall inequality, whereas the author provided the
applications in [15,16]. By utilizing the Banach’s contraction mapping concept and by using
the p-Laplacian operator, the authors of [17] showed that the Caputo q-fractional boundary
value problem has a unique solution. [18] The contraction mapping principle was used by
Ren et al. They also used traditional fixed point theorems to prove that numerous positive
solutions exist under certain conditions. In [19], Zhang et al. provided the uniqueness and
existence of solutions to the Caputo fractional q-differential equations, and also in [20] they
considered the possibility of a singular solution in the q-integral space. The authors in [21]
provided the applications of quantum calculus to impulsive difference equations on finite
intervals. The applications of the q-calculus to the problem of a falling body in a resisting
medium have been given in [22]. Later, the authors in [23] developed the q-symmetric
derivative, which is defined as (u(qk)− u(q−1k))/(qk− q−1k).

The q-differential operator is then extended to q-difference operator. The q-difference
operator was proposed by the authors [24] in 2014 and is defined as dqu(k) = u(kq)− u(k),
and the oscillation of q difference equation was discussed in [25]. In [26], the authors
suggested the dq(α) operator by defining dq(α)u(k) = u(kq) − αu(k). In 2022, the authors
in [27] developed the q-symmetric difference operator, that is Dqu(k) = u(kq)− u(kq−1),
which is the combination of forward and backward q-difference operator. Here, the authors
developed the theorems for integer order using the q-difference operator that generates
a solution for the q-symmetric difference operator. This motivates us to develop the frac-
tional order theorems for q-symmetric difference operator. In addition, we have extended
this q-symmetric difference operator to (q, h)-symmetric operator which is defined as
Dh

qu(k) = u(kq+ h)− u(kq−1 − h), and its alpha (q, h)-symmetric operator is defined as
D

qh
(α)
u(k) = u(kq+ h)− αu(kq−1 − h). Throughout this paper, we concentrate only on the

development of fractional order q and (q, h) anti-difference equations, and we have ex-
tended these core theorems to q(α) and (q, h)α fractional anti-difference equations. Those
findings will provide fractional order solution for the (q, h) and (q, h)α symmetric difference
operator. Here, the findings are based only on the delta operator. One can do the same for
the nabla operator.

This is how the paper is structured. The Introduction is the focus of Section 1. In
Section 2, we discuss the preliminaries of q and q(α) difference operator. In Sections 3–5, we
develop the integer and fractional order theorems for q, q(α), (q, h), and (q, h)α difference
operators. The conclusion is covered in Section 6.

2. Preliminaries

In this section, we discuss the basic definitions of q and q(α) difference operators and their
inverse operators. Here, for any a ∈ R, we define an infinite set Tq = {a, aq±1, aq±2, . . .}
such that if k ∈ Tq, then kq±1 ∈ Tq, where 0 6= k ∈ R, q ∈ R−{0, 1} and R = (−∞, ∞).

Definition 1 ([25]). Let u : Tq → R and 1 6= q > 0 ∈ R. The q and q(α) difference operator (q
and q(α)-symmetric difference operator), denoted as dq and dq(α) , on u(k) are, respectively, defined as

dqu(k) = u(kq) − u(k), k ∈ Tq (1)
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and
dq(α) u(k) = u(kq)− αu(k), 0 6=α∈ R, k ∈ Tq. (2)

Definition 2 ([25]). If there exists a function v : Tq → R such that dqu(k) = v(k), then its inverse
q and q(α) difference operator, denoted as Iq and Iq(α) are, respectively, defined as

v(k) = Iqu(k) + c, Iq = d−1
q (3)

and
v(k) =Iq(α)u(k) + c, Iq(α) = d−1

q(α) , (4)

where c is a constant.

Definition 3 ([27]). Let n ∈ N and k, q be any real number. Then, the q-polynomial falling factorial
function of k(n)q is defined as

k
(n)
q = k

( n−1
∏
r=1

(k− qr)
)

. (5)

Lemma 1 ([27]). The power rule for q and q(α) difference operator is as follows:

1. If n ∈ N and q 6= 1, then for k ∈ R,

dqk
(n)
q = (qn − 1)k

(n)
q and Iqk

(n)
q = k

(n)
q /(qn − 1) + c. (6)

2. If n ∈ N, qn 6=α and α∈ R, then for k ∈ R,

dq(α)k
(n)
q =(qn − α)k

(n)
q and Iq(α)k

(n)
q = k

(n)
q /(qn − α) + c. (7)

Lemma 2 ([27]). Let u, v : Tq → R and q 6= 1 ∈ R. The product rule of q and q(α) difference
operator is, respectively, defined by

Iq{u(k)v(k)} = u(k)Iqv(k)− Iq
{

Iqv(kq)dqu(k)
}

. (8)

and
Iq(α){u(k)v(k)} = u(k)Iq(α)v(k)− Iq(α)

{
Iq(α)v(kq)dqu(k)

}
, α∈ R. (9)

Result 1 ([27]). Let k, α∈ R and q ∈ R−{0, 1}. Then,

Iq(1) = log(k)/ log(q) and Iq(α)(1) = 1/(1− α). (10)

Result 2 ([27]). If 1 6= q > 0 and α< 1 ∈ R, then for k ∈ (0, ∞), we have

Iq(α) log(k) = (log(k)/(1− α))− (log(q)/(1− α)2) (11)

and
Iq(α) log(k/q

n) =
(
log(k/qn)/(1− α)

)
− (log(q)/(1− α)2), n ∈ R. (12)

3. Fundamental Theorems for q and q(α) Symmetric Difference Operator

In this section, we present some basic notions of polynomial factorial function and
gamma function. Then, we use the q and q(α) difference operator and its inverse operators
to derive fundamental theorems.

Definition 4 ([28]). Let k ∈ R and n ∈ N. Then, the falling factorial function is defined as

k(n) =
n

∏
r=1

(k− (r− 1)). (13)
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For 0 < ν∈ R and k ∈ R, the generalized gamma function is

k(ν) = Γ(k+ 1)/Γ(k− ν + 1), (14)

where k+ 1 and k− ν + 1 is non-equal to zero or a negative integer.

Lemma 3 ([29]). For the first n natural numbers, the xth power polynomial factorial is

n−1
∑
z=1

z(x) = (n+ 1)(x+1)/(x+ 1), n ∈ N. (15)

3.1. Fundamental Theorems for q Operator

Using the q symmetric difference operator, we develop a few theorems for integer
order (x-th order) and fractional order (ν-th order) sums.

Definition 5. Let s, k ∈ R, q ∈ R−{0, 1} such that s ∈ Tq and u : Tq → R be a function. Then,
the quantum geometric function (or q-geometric function) is defined as

∞

∑
r=k

u(s/qr) =

[
u(s/qk)

]2
u(s/qk)− u(s/qk+1)

, (16)

if
∞
∑
r=k

u(s/qr) is convergent.

Lemma 4. If s, t ∈ R, q ∈ R−{0, 1}, and
∞
∑

r=k+1
u(s/qr+j) is convergent, then

∞

∑
r=k+1

u(s/qr+1) =

[
u(s/qk+2)

]2
u(s/qk+2)− u(s/qk+3)

(17)

Proof. The proof completes by replacing k by k+ 1 and r by r+ 1 in Definition 5.

Lemma 5. If x ∈ N and assuming the conditions given in Lemma 4, then

∞

∑
r=k+1

(r+ x− 1)(x−1)

(x− 1)!
u(s/qr+x) =

(x− 1)!
[
((k+ x)(x−1)/(x− 1)!)u(s/qk+x+1)

]2
(k+ x)(x−1)u(s/qk+x+1)− (k+ x+ 1)(x−1)u(s/qk+x+2)

. (18)

Proof. Equation (17) can be represented as

∞

∑
r=k+1

((r+ 0)(0)/0!)u(s/qr+1) =

[
((k+ 1)(0)/0!)u(s/qk+2)

]2
((k+ 1)(0)/0!)u(s/qk+2)− ((k+ 2)(0)/0!)u(s/qk+3)

. (19)

From (19), one can easily find the next term as

∞

∑
r=k+1

((r+ 1)(1)/1!)u(s/qr+2) =

[
((k+ 2)(1)/1!)u(s/qk+3)

]2
((k+ 2)(1)/1!)u(s/qk+3)− ((k+ 3)(1)/1!)u(s/qk+4)

.

Similarly, we can find

∞

∑
r=k+1

(r+ x− 2)(x−2)

(x− 2)!
u(s/qr+x−1) =

(x− 2)!
[
((k+ x− 1)(x−2)/(x− 2)!)u(s/qk+x)

]2
(k+ x)(x−2)u(s/qk+x)− (k+ x)(1)u(s/qk+x+1)

. (20)

Hence, the proof completes by replacing x by x+ 1 in Equation (20).
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Theorem 1. Let u, v : Tq → R, k ∈ N, s ∈ R and q ∈ R−{0, 1}. Then, the anti-difference
principle of q difference operator is given by

Iqu(k)
∣∣∣
k=s
−

[
u(s/qk+2)

]2
u(s/qk+2)− u(s/qk+3)

=
k

∑
r=0

u(s/qr+1). (21)

Proof. Since Iqu(k) = v(k), we can deduce that to u(k) = dqv(k). Therefore,
u(k) = v(kq)− v(k) and

v(kq) = u(k) + v(k). (22)

When k is substituted for (k/q) in Equation (22), we obtain

v(k) = u(k/q) + v(k/q). (23)

Once again, by changing k to (k/q) in Equation (23), we obtain

v(k/q) = u(k/q2) + v(k/q2). (24)

Substituting Equation (24) in Equation (23), we obtain

v(k) = u(k/q) + u(k/q2) + v(k/q2). (25)

Proceeding like this up to n times, we obtain

v(k) =
n

∑
r=1

u(k/qr) + v(k/qn).

Applying lim
n→∞

in the previous equation and assuming v(0) = u(0) = 0, we obtain

v(k) = u(k/q) + u(k/q2) + u(k/q3) + . . . + u(k/qr+1) + u(k/qr+2) + . . . (26)

Replacing ′k′ by ′s′ and ′r′ by ′k′ in (26), we obtain

v(s) =
k

∑
r=0

u(s/qr+1) +
∞

∑
r=k+1

u(s/qr+1). (27)

From Equation (3), we arrive at

Iqu(k)
∣∣∣
k=s
−

∞

∑
r=k+1

u(s/qr+1) =
k

∑
r=0

u(s/qr+1).

Finally, the proof completes by substituting Equation (17) in the previous equation.

Theorem 2. Let u, v : Tq → R, x ∈ N, q ∈ R−{0, 1} and s, k ∈ R. Thus, for the q difference
operator, the higher order anti-difference principle is given by

Ixqu(k)
∣∣∣
k=s
−

(x− 1)!
[
((k+ x)(x−1)/(x− 1)!)u(s/qk+x+1)

]2
((k+ x)(x−1)u(s/qk+x+1)− (k+ x+ 1)(x−1)u(s/qk+x+2))

=
k

∑
r=0

((r+ x− 1)(x−1)/(x− 1)!)u(s/qr+x). (28)

Proof. Theorem 1 provides the proof for x = 1.
If we apply the Iq operator on both sides of Equation (26), we obtain

I2
qu(k) = Iqu(k/q) + Iqu(k/q2) + Iqu(k/q3) + Iqu(k/q4) + Iqu(k/q5) + . . .
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Replacing the right side of the aforementioned equation by (26), we obtain

I2
qu(k) =

∞
∑
r=2

u(k/qr) +
∞
∑
r=3

u(k/qr) +
∞
∑
r=4

u(k/qr) +
∞
∑
r=5

u(k/qr) +
∞
∑
r=6

u(k/qr) + . . .,

which implies

I2
qu(k) = u(k/q2) + 2u(k/q3) + 3u(k/q4) + . . . + (r+ 1)u(k/qr+2) + . . . (29)

Replacing ′k′ by ′s′ and ′r′ by ′k′ in Equation (29), we arrive at

I2
qu(k)

∣∣∣
k=s

= u(s/q2) + 2u(s/q3) + 3u(s/q4) + . . . + (k+ 1)u(s/qk+2) + . . .

Therefore,

I2
qu(k)

∣∣∣
k=s
−

∞

∑
r=k+1

(r+ 1)u(s/qr+2) =
k

∑
r=0

(r+ 1)u(s/qr+2).

Once again, by using the Iq operator on both sides of the expression (29), we obtain

I3
qu(k) = Iqu(k/q2) + 2Iqu(k/q3) + 3Iqu(k/q4) + 4Iqu(k/q5) + 5Iqu(k/q6) + . . .

Inserting Equation (26) in each term of the right side of the previous equation, we obtain

I3
qu(k) =

∞
∑
r=3

u(k/qr) + 2
∞
∑
r=4

u(k/qr) + 3
∞
∑
r=5

u(k/qr) + 4
∞
∑
r=6

u(k/qr) + . . .

The above equation will be written as

I3
qu(k)=u(k/q3)+(1+ 2)u(k/q4)+(1+ 2+ 3)u(k/q5)+(1+ 2+ 3+ 4)u(k/q6)+. . .

By Lemma 3 for m = 1, the above equation becomes

I3
qu(k) = (2(2)/2)u(k/q2) + (3(2)/2)u(k/q3) + . . . + ((r+ 2)(2)/2)u(k/qr+3) + . . . (30)

Replacing ′k′ by ′s′ and ′r′ by ′k′ in Equation (30), we obtain

I3
qu(s)−

∞

∑
r=k+1

((r+ 2)(2)/2)u(s/qr+3) =
k

∑
r=0

((r+ 2)(2)/2)u(s/qr+3).

Similarly, the fourth inverse will be

I4
qu(s)−

∞
∑

r=k+1
((r+ 3)(3)/3!)u(s/qr+4) =

k

∑
r=0

((r+ 3)(3)/3!)u(s/qr+4).

Following the similar manner, we obtain the general term as

Ixqu(s)−
∞

∑
r=k+1

((r+ x− 1)(x−1)/(x− 1)!)u(s/qr+x) =
k

∑
r=0

((r+ x− 1)(x−1)/(x− 1)!)u(s/qr+x).

Hence, by Lemma 5, we obtain (28).

Example 1. Taking u(k) = k(2)q and x = 3 in Equation (28), we obtain

I3
q k(2)q

∣∣∣
k=s
−

[
((k + 3)(2)/2!)(s/qk+4)

(2)
q
]2

((k + 3)(2)/2!)(s/qk+4)
(2)
q − ((k + 4)(2)/2!)(s/qk+5)

(2)
q

=
k

∑
r=0

((r + 2)(2)/2!)(s/qr+3)
(2)
q . (31)
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Using Equation (1), we arrive at Iqk(2)q = k(2)q (q2 − 1). Then, it is easy to find

Iqk(2)q = k(2)q /(q2 − 1).

Similarly, applying the Iq operator on the function k(2)q for x times, we obtain

Ixq k(2)q = k(2)q /(q2 − 1)x.

Taking s = 8, k = 3, and q = 4 in Equation (31), we arrive at

I3
q k(2)4

∣∣∣
k=8

=
(
(s)(s− 4)

)
/(42 − 1)3

∣∣∣
s=8

= ((8)(8− 4))/(16− 1)3. (32)

Next, the second term of Equation (31) becomes[
((6)(2)/2!)(8/47)((8− 4)/47)

]2[
((6)(2)/2!)(8/47)((8− 4)/47)

]
−
[
((7)(2)/2!)(8/48)((8− 4)/48)

] . (33)

The right side of Equation (31) becomes

7

∑
r=0

((r + 2)(2)/2!)(s/qr+3)
(2)
q = 32/(43)2 + 96/(44)2 + 192/(45)2 + 320/(46)2. (34)

Hence, by substituting Equations (32)–(34) in Equation (31), we obtain the result.

The following Definition 6 is the generalized version for Definition 5.

Definition 6. Let s ∈ R, k ∈ N, q ∈ R−{0, 1} and
∞
∑

r=k+1
(Γ(r + ν)/Γ(r + 1))u(s/qr+ν) be

convergent such that s ∈ Tq and u : Tq → R be a function. Then, for ν > 0, the generalized
quantum geometric function (or generalized q-geometric function) is defined as

∞

∑
r=k+1

(Γ(r+ ν)/Γ(r+ 1))u(s/qr+ν) =

[
A u(s/qk+ν+1)

]2
A u(s/qk+ν+1)−Bu(s/qk+ν+2)

, (35)

where A = Γ(k+ ν + 1)/Γ(k+ 2)Γ(ν) and B = Γ(k+ ν + 2)/Γ(k+ 3)Γ(ν).

The following Theorem 3 is the generalized version for Theorem 2.

Theorem 3 (Generalized q difference equation). Let u, v : Tq → R, s, ∈ R, k ∈ N and
q ∈ R−{0, 1}. Then, the ν-th order (or real order) anti-difference principle of q difference op-
erator is given by

Iν
qu(k)

∣∣∣
k=s
−

Γ(ν)
[
(Γ(k+ ν + 1)/Γ(k+ 2)Γ(ν))u(s/qk+ν+1)

]2
Γ(k+ ν + 1)/Γ(k+ 2)u(s/qk+ν+1)− Γ(k+ ν + 2)/Γ(k+ 3)u(s/qk+ν+2)

= (1/Γ(ν))
k

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))u(s/qr+ν). (36)

Proof. If Theorem 2 is extending to any real order (ν > 0), then we obtain

Iν
qu(k)

∣∣∣
k=s
−

(ν− 1)!
[
((k+ ν)(ν−1)/(ν− 1)!)u(s/qk+ν+1)

]2
(k+ ν)(ν−1)u(s/qk+ν+1)− (k+ ν + 1)(ν−1)u(s/qk+ν+2)

=
k

∑
r=0

((r+ ν− 1)(ν−1)/(ν− 1)!)u(s/qr+ν). (37)
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Since the polynomial factorial does not exists for non-integer values, by using Equation (14),
we take (k+ ν)(ν−1) = (Γ(k+ ν + 1)/Γ(k+ 2)), (k+ ν + 1)(ν−1) = Γ(k+ ν + 2)/Γ(k+ 3))
and (k+ ν− 1)(ν−1) = Γ(r+ ν)/Γ(r+ 1) in (37). Hence, the proof completes.

Example 2. Taking u(k) = k2 and ν = 2.7 in Equation (36), we obtain

I2.7
q k2

∣∣∣
k=s
−

Γ(ν)
[
(Γ(k + ν + 1)/Γ(k + 2)Γ(ν))(s/qk+3.7)2]2

Γ(k + ν + 1)/Γ(k + 2)(s/qk+3.7)2 − Γ(k + ν + 2)/Γ(k + 3)(s/qk+4.7)2

= (1/Γ(ν))
k

∑
r=0

(Γ(r + ν)/Γ(r + 1))u(s/qr+ν). (38)

Using Equation (1) and then applying the Iq operator on the function k2
q for x times, we obtain

Ixq k2
q = k2/(q2 − 1)x. (39)

For any real ν > 0, Equation (39) becomes

Iν
q k2 = k2/(q2 − 1)ν.

Taking s = 8.1, k = 6 and q = 3.2 in Equation (38), we arrive

(8.1)2/(3.22 − 1)2.7 −
Γ(2.7)

[
(Γ(9.7)/Γ(8)Γ(2.7))(8.1/(3.2)9.7)2]2

(Γ(9.7)/Γ(8))(8.1/(3.2)9.7)2 − (Γ(10.7)/Γ(9))(8.1/(3.2)10.7)2 . (40)

The right side of Equation (38) becomes
7
∑

r=0
((r + 2)(2)/2!)(8.1/(3.2)r+3)2

3.2 = (1/Γ(2.7))
[
Γ(2.7)

(
8.1/(3.2)2.7)2

+ Γ(3.7)/
(
8.1/(3.2)3.7)2

+(Γ(4.7)/2!)/
(
8.1/(3.2)4.7)2

+ (Γ(5.7)/3!)/
(
8.1/(3.2)5.7)2

+ (Γ(6.7)/4!)/
(
8.1/(3.2)6.7)2

+ (Γ(7.7)/5!)/
(
8.1/(3.2)7.7)2

+ (Γ(8.7)/6!)/
(
8.1/(3.2)8.7)2]. (41)

Hence, substituting Equations (40) and (41) in Equation (38), we obtain the result.

3.2. Fundamental Theorems for q(α) Operator

By utilizing the q(α) symmetric difference operator, we developed theorems for integer
order (or m-th order) and the fractional order (ν-th order). Here, the difference operator
q(α) changes to the q-difference operator if α = 1.

Definition 7. Let s, k ∈ R, α∈ R > 0, q ∈ R−{0} and if
∞
∑

r=k+1
αru(s/qr+j) be convergent such

that s ∈ Tq and u : Tq → R is a function. Then the alpha-quantum geometric function (or q(α)-
geometric function) is defined as

∞

∑
r=k+1

αru(s/qr+1) =

[
αk+1u(s/qk+2)

]2
αk+1u(s/qk+2)− αk+2u(s/qk+3)

. (42)

Lemma 6. Consider the conditions given in Definition 7. If x ∈ N, then

∞

∑
r=k+1

(r+ x− 1)(x−1)

(x− 1)!
αru(s/qr+x) =

(x− 1)!
[
((k+ x)(x−1)/(x− 1)!)αk+1u(s/qk+x+1)

]2
(k+ x)(x−1)αk+1u(s/qk+x+1)− (k+ x+ 1)(x−1)αk+2u(s/qk+x+2)

. (43)

Proof. Equation (42) can be written as

∞

∑
r=k+1

((r+ 0)(0)/0!)αru(s/qr+1) =
(0!)

[
((k+ 1)(0)/0!)αk+1u(s/qk+2)

]2
(k+ 1)(0)αk+1u(s/qk+2)− (k+ 2)(0)αk+2u(s/qk+3)

. (44)
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From (44), one can easily find the next term as

∞

∑
r=k+1

((r+ 1)(1)/1!)αru(s/qr+2) =
(1!)

[
((k+ 2)(1)/1!)αk+1u(s/qk+3)

]2
(k+ 2)(1)αk+1u(s/qk+3)− (k+ 3)(1)αk+2u(s/qk+4)

.

Similarly, we can find

∞

∑
r=k+1

(r+ x− 2)(x−2)

(x− 2)!
αru(s/qr+x−1) =

(x− 2)!
[
((k+ x− 1)(x−2)/(x− 2)!)αk+1u(s/qk+x)

]2
(k+ x)(x−2)αk+1u(s/qk+x−1)− (k+ x)(1)αk+2u(s/qk+x+1)

. (45)

Hence, the proof completes by replacing x by x+ 1 in Equation (45).

Theorem 4. Let u, v : Tq → R, s, α∈ R, k ∈ N and q ∈ R−{0, 1}. Then, the anti-difference
principle of q(α) difference operator is defined as

Iq(α)u(s)−
[
αk+1u(s/qk+2)

]2
αk+1u(s/qk+2)− αk+2u(s/qk+3)

=
k

∑
r=0

αru(s/qr+1). (46)

Proof. Since Iq(α)u(k) = v(k), we have u(k) = dq(α)v(k).
Now, following the similar steps from Equation (22) to Equation (27) and using (2),

we arrive at

Iq(α)u(s)−
∞

∑
r=k+1

αru(s/qr+1) =
k

∑
r=0

αru(s/qr+1).

Hence, the proof completes by inserting Equation (42) in the previous equation.

Theorem 5. Let u, v : Tq → R, s, α∈ R, x, k ∈ N and q ∈ R− {0, 1}. Then, the higher order
q(α) anti-difference principle is thus given by

Ixq(α)u(s)−
(x− 1)!

[
((k+ x)(x−1)/(x− 1)!)αk+1u(s/qk+x+1)

]2
(k+ x)(x−1)αk+1u(s/qk+x+1)− (k+ x+ 1)(x−1)αk+2u(s/qk+x+2)

=
k

∑
r=0

((r+ x− 1)(x−1)/(x− 1)!)αru(s/qr+x). (47)

Proof. The proof is similar to Theorem 2 using Lemma 6 and Equation (2).

Example 3. If u(k) = log(k), then Equation (47) becomes

Ixq(α) log(s)−
(x− 1)!

[
((k + x)(x−1)/(x− 1)!)αk+1log(s/qk+x+1)

]2
(k + x)(x−1)αk+1log(s/qk+x+1)− (k + x+ 1)(x−1)αk+2log(s/qk+x+2)

=
k

∑
r=0

((r + x− 1)(x−1)/(x− 1)!)αrlog(s/qr+x). (48)

From Equation (11), we obtain

Iq(α) log(k) = (log(k)/(1− α))− (log(q)/(1− α)2). (49)

Now, applying the Iq(α) operator on the function log(k) for x times in (49), we obtain

Ixq(α) log(k) = (log(k)/(1− α)x)− x(log(q)/(1− α)x+1). (50)

Taking x = 2, s = 7, k = 3, q = 5 and α = 0.05 in Equation (48), we arrive at

(log(7)/(0.05)2)− 2(log(5)/(0.05)3)−
[
(5)(0.05)4log(7/56)

]2
((5)(0.05)4log(7/56))− ((6)(0.05)5log(7/57))

. (51)
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The right side of Equation (48) becomes
3
∑

r=0
(r + 1)(1)(0.5)rlog(s/qr+2) = log(7/52) + 2(0.05)log(7/53)

+ 3(0.05)2log(7/54) + 4(0.05)3log(7/55). (52)

Hence, substituting Equations (51) and (52) in Equation (48), we obtain the result.

The following Definition 8 is the generalized version for Definition 7.

Definition 8. Let s ∈ R, k ∈ N, α∈ R > 0, q ∈ R−{0, 1} and if
∞
∑

r=k+1
(Γ(r+ ν)/Γ(r+ 1))

αru(s/qr+ν) is convergent such that s ∈ Tq and u : Tq → R be a function. Then, for ν > 0, the
generalized quantum geometric function (or generalized q-geometric function) is defined as

∞

∑
r=k+1

(Γ(r+ ν)/Γ(r+ 1))αru(s/qr+ν) =

[
A αk+1u(s/qk+ν+1)

]2
A αk+1u(s/qk+ν+1)−Bαk+2u(s/qk+ν+2)

, (53)

where A = Γ(k+ ν + 1)/Γ(k+ 2)Γ(ν) and B = Γ(k+ ν + 2)/Γ(k+ 3)Γ(ν).

The following Theorem 6 is the generalized version for Theorem 5.

Theorem 6. (Generalized q(α) difference equation) Let u, v : Tq → R, ν, s, α∈ R, k ∈ N and
q ∈ R− {0, 1}, Then, the ν-th order (real order) anti-difference principle of q(α) difference operator
is given by

Iν
q(α)u(s)−

(Γ(ν))
[
(Γ(k+ ν + 1)/Γ(k+ 2)Γ(ν))αk+1u(s/qk+ν+1)

]2
(Γ(k+ ν + 1)/Γ(k+ 2))αk+1u(s/qk+ν+1)− (Γ(k+ ν + 2)/Γ(k+ 3))αk+2u(s/qk+ν+2)

=
k

∑
r=0

(Γ(r+ ν)/Γ(r+ 1)Γ(ν))αru(s/qr+ν). (54)

Proof. The proof is similar to Theorem 3 using Equations (4) and (53).

Example 4. Taking u(k) = log(k) and ν = 1.5 in Equation (54), we obtain I1.5
q(α) logk

∣∣∣
k=s

−
(Γ(1.5))

[
(Γ(k + 2.5)/Γ(k + 2)Γ(1.5))αk+1log(s/qk+2.5)

]2
(Γ(k + 2.5)/Γ(k + 2)Γ(1.5))αk+1log(s/qk+2.5)− (Γ(k + 3.5)/Γ(k + 3))αk+2log(s/qk+3.5)

=
k

∑
r=0

(Γ(r + 1.5)/Γ(r + 1)Γ(1.5))αr log(s/qr+1.5). (55)

Extending Equation (50) to any real number, Equation (50) becomes

Iν
q(α) log(k) = (log(k)/(1− α)ν)− ν(log(q)/(1− α)ν+1). (56)

Taking s = 3.5, k = 2, q = 2.5, and α = 0.1 in Equation (56), we arrive at

I1.5
q(α) log(k)

∣∣∣
k=3.5

= (log(3.5)/(0.9)1.5)− (1.5)(log(2.5)/(0.9)2.5). (57)

Next, the second term of Equation (55) becomes

(Γ(1.5))
[
(Γ(4.5)/Γ(4)Γ(1.5))(0.1)3log(3.5/(2.5)4.5)

]2
(Γ(4.5)/Γ(4))(0.1)3log(3.5/(2.5)4.5)− (Γ(5.5)/Γ(5))(0.1)4log(3.5/(2.5)5.5)

. (58)

The right side of Equation (55) becomes
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2
∑

r=0
(Γ(r + 1.5)/Γ(r + 1)Γ(1.5))(0.1)rlog(3.5/(2.5)r+1.5) = (1/Γ(1))log(3.5/(2.5)1.5)

(1.5/Γ(2))(0.1)log(3.5/(2.5)2.5) + ((1.5)(2.5)/Γ(3))(0.1)2log(3.5/(2.5)3.5). (59)

Hence, substituting Equations (57)–(59) in Equation (55), we obtain the result.

The integer and fractional order anti-difference equations developed in this section
provides the solution for q and q(α) symmetric difference operators.

4. Mixed Symmetric Difference Operator

In this section, we derive some fundamental theorems using (q, h) difference operator
and its inverse operators. Here, we introduce the infinite set M

q
h = {k, kq+ h, kq2 + 2h, . . .}

satisfying the condition that for any k ∈M
q
h implies kq±1 ± h ∈M

q
h for any fixed number

0 6= k ∈ R. One can refer the h-difference operator in [30].

Definition 9. Let u :M q
h→ R be a function. Then, the (q, h) difference operator (mixed symmetric

difference operator), denoted by ∆
(q,h)

is defined as

∆
(q,h)

u(k) = u(kq+ h)− u(k), k ∈M
q
h . (60)

Definition 10. Let h, q, k ∈ R and n ∈ N. The (q, h) polynomial factorial function k
(n)
q,h is de-

fined as

k
(n)
q,h = k

n−1
∏
r=1

(k− (qr + rh)). (61)

Lemma 7. If u, v :M q
h→ R, q ∈ R−{0, 1} and 0 6= h ∈ R. Then, the product rule of (q, h)

difference operator is obtained as

−1
∆

(q,h)
{u(k)v(k)} = u(k)

−1
∆

(q,h)
v(k)−

−1
∆

(q,h)
{
−1
∆

(q,h)
v(kq+ h) ∆

(q,h)
u(k)}. (62)

Proof. Applying the operator ∆
(q,h)

on the function u(k)v(k) and then adding and subtracting

the term u(k)w(kq+ h), we obtain

−1
∆

(q,h)
{u(k)v(k)} = w(kq+ h) ∆

(q,h)
u(k) + u(k) ∆

(q,h)
w(k)

Thus, the proof completes by taking ∆
(q,h)

w(k) = v(k) and
−1
∆

(q,h)
v(k) = w(k).

Property 1. Some of the properties of (q, h) difference operator are given below:

(i) If q = 1, then (60) becomes h-difference operator.
(ii) If h = 0, then (60) becomes q-difference operator.
(iii) If q > 1 and h > 0, then we say (60) as (q, h)-difference operator.
(iv) The solution does not exist if we take q = 1 and h = 0 simultaneously.

4.1. Integer Order Theorems

Here, we develop several theorems for integer order (x-th order) using the (q, h)
difference operator.
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Theorem 7. Let u, v :M q
h→ R, k ∈ R, n ∈ N, q ∈ R−{0, 1} and h 6= 0 ∈ R. Then, the anti-

difference principle of (q, h) operator is given by

−1
∆

(q,h)
u(k)−

−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
=

n−1
∑
r=0

u
((

k− h
r

∑
s=0

qs
)/

qr+1
)

. (63)

Proof. Since
−1
∆

(q,h)
u(k) = v(k), we have

u(k) = ∆
(q,h)

v(k). (64)

From Definition 9, Equation (64) becomes

u(k) = v(kq+ h)− v(k).

The above equation can be represented as

v(qk+ h) = u(k) + v(k). (65)

Replacing k by k/q in Equation (65), we obtain v
(
q(k/q) + h

)
= u(k/q) + v(k/q) which

implies
v(k+ h) = u(k/q) + v(k/q). (66)

Replacing k by k− h in (66), we obtain v(k− h+ h) = u((k− h)/q) + v((k− h)/q) which
implies

v(k) = u((k− h)/q) + v((k− h)/q). (67)

Replacing k by (k− h)/q in Equation (67), we arrive at

v((k− h)/q) = u
(
[((k− h)/q)− h]/q

)
+ v
(
[((k− h)/q)− h]/q

)
,

which gives v((k− h)/q) = u
(
(k− h− qh)/q2

)
+ v
(
(k− h− qh)/q2

)
.

The aforementioned equation can be written as

v((k− h)/q) = u
(
(k− h

1

∑
r=0

qr)/q2
)
+ v
(
(k− h

1

∑
r=0

qr)/q2
)
. (68)

Now, substituting Equation (68) in Equation (67), we obtain

v(k) = u((k− h)/q) + u
(
(k− h

1

∑
r=0

qr)/q2
)
+ v
(
(k− h

1

∑
r=0

qr)/q2
)
. (69)

Again, replacing k by (k− h− qh)/q2 in Equation (67), we obtain

v
(
(k− h− qh)/q2

)
= u

(
[((k− h− qh)/q2)− h]/q

)
+ v
(
[((k− h− qh)/q2)− h]/q

)
,

which is the same as

v
(
(k− h

1

∑
r=0

qr)/q
)
= u

(
(k− h

2

∑
r=0

qr)/q3
)
+ v
(
(k− h

2

∑
r=0

qr)/q3
)
. (70)

Substituting Equation (70) in Equation (69), we obtain

v(k) = u((k− h)/q) + u
(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)
+ v
(
(k− h

2

∑
r=0

qr)/q3
)
. (71)
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Similarly, replacing k by (k− h
2

∑
r=0

qr)/q3 in Equation (67), we obtain

v
(
(k− h

2

∑
r=0

qr)/q3
)
= u

(
(k− h

3

∑
r=0

qr)/q4
)
+ v
(
(k− h

3

∑
r=0

qr)/q4
)
. (72)

Substituting Equation (72) in Equation (71), we obtain

v(k) = u((k− h)/q) + u
(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)

+u
(
(k− h

3

∑
r=0

qr)/q4
)
+ v
(
(k− h

3

∑
r=0

qr)/q4
)
. (73)

Similarly, again replacing k by (k− h(q3 + q2 + q+ 1))/q4 in Equation (67), and then sub-
stituting Equation (67) in Equation (73), we arrive at

v(k) = u((k− h)/q) + u
(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)

+u
(
(k− h

3

∑
r=0

qr)/q4
)
+ u
(
(k− h

4

∑
r=0

qr)/q5
)
+ v
(
(k− h

4

∑
r=0

qr)/q5
)
. (74)

Proceeding in a similar manner for n times, we obtain the general term as

v(k) = u((k− h)/q) + u
(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)
+ u
(
(k− h

3

∑
r=0

qr)/q4
)

+u
(
(k− h

4

∑
r=0

qr)/q5
)
+ . . . + u

(
(k− h

n−1
∑
r=0

qr)/qn
)
+ v
(
(k− h

n−1
∑
r=0

qr)/qn
)
. (75)

If
−1
∆

(q,h)
u(k) = v(k), then (75) becomes

−1
∆

(q,h)
u(k)−

−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr)/qn
)
= u((k− h)/q) + u

(
(k− h

1

∑
r=0

qr)/q2
)

+u
(
(k− h

2

∑
r=0

qr)/q3
)
+ u
(
(k− h

3

∑
r=0

qr)/q4
)
+ . . . + u

(
(k− h

n−1
∑
r=0

qr)/qn
)
,

which completes the proof.

Corollary 1. Let u, v :M q
h→ R, k ∈ R, n ∈ N, q ∈ R−{0, 1} and if h = 0, then Equation (63)

becomes
−1
∆

(q,0)
u(k)−

−1
∆

(q,0)
u
(
k/qn

)
=

n−1
∑
r=0

u
(
k/qr+1

)
. (76)

Corollary 2. Let u, v :M q
h→ R, k ∈ R, h ∈ R−{0}, n ∈ N and if q = 1, then Equation (63)

becomes
−1
∆

(1,h)
u(k)−

−1
∆

(1,h)
u(k− nh) =

n−1
∑
r=0

u(k− (r+ 1)h). (77)

Remark 1. The operators
−1
∆

(q,0)
and

−1
∆

(1,h)
are the first order q and h difference operators, respectively.

That is,
−1
∆

(q,0)
=
−1
∆
q

and
−1
∆

(1,h)
=
−1
∆
h

.
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Theorem 8. Let u, v :M q
h→ R, q ∈ R−{0, 1}, h 6= 0 ∈ R, x, n ∈ N and k ∈ R. Then, the

higher order (x-th order) of (q, h) difference equation is given by

−x
∆

(q,h)
u(k)−

x−1
∑
d=0

(n(d)/d!)
−(x−d)

∆
(q,h)

u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
=

n−1
∑

r=x−1
(r(x−1)/(x− 1)!)u

((
k− h

r

∑
s=0

qs
)/

qr+1
)

. (78)

Proof. Theorem 7 provides the proof for x = 1.

When we apply
−1
∆

(q,h)
to both sides of Equation (63), we obtain

−2
∆

(q,h)
u(k)−

−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
=
−1
∆

(q,h)

[n−1
∑
r=0

u
((

k− h
r

∑
s=0

qs
)/

qr+1
)]

. (79)

The right side of Equation (79) becomes

−1
∆

(q,h)

[n−1
∑
r=0

u
((

k− h
r

∑
s=0

qs
)/

qr+1
)]

=
−1
∆

(q,h)
u
((

k− h ∑
s=0

qs
)/

q
)
+
−1
∆

(q,h)
u
((

k− h
1

∑
s=0

qs
)/

q2
)

+
−1
∆

(q,h)
u
((

k− h
2

∑
s=0

qs
)/

q3
)
+ . . .+

−1
∆

(q,h)
u
((

k− h
n−1
∑
s=0

qs
)/

qn
)

,

which gives

−1
∆

(q,h)

[n−1
∑
r=0

u
((

k− h
r

∑
s=0

qs
)/

qr+1
)]

=
−1
∆

(q,h)
u
(
(k− h)/q

)
+
−1
∆

(q,h)
u
(
(k− h

1

∑
r=0

qr)/q2
)

+
−1
�

(q,h)
u
(
(k− h

2

∑
r=0

qr)/q3
)
+
−1
∆

(q,h)
u
(
(k− h

3

∑
r=0

qr)/q4
)
+ . . .+

−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr/qn
)
. (80)

Replacing k by (k− h)/q, (k− h
1

∑
r=0

qr)/q2, (k− h
2

∑
r=0

qr)/q2, . . . in Equation (75) and then

substituting Equation (75) on the right side of Equation (80), we obtain

−1
∆

(q,h)
u
(
(k− h)/q

)
= u

(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)

+u
(
(k− h

3

∑
r=0

qr)/q4
)
+ . . . + u

(
(k− h

n−1
∑
r=0

qr)/qn
)
+
−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr)/qn
)
.

−1
∆

(q,h)
u
(
(k− h

1

∑
r=0

qr)/q2
)
= u

(
(k− h

2

∑
r=0

qr)/q3
)
+ u
(
(k− h

3

∑
r=0

qr)/q4
)

+u
(
(k− h

4

∑
r=0

qr)/q5
)
+ . . . + u

(
(k− h

n−1
∑
r=0

qr)/qn
)
+
−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr)/qn
)
.

−1
∆

(q,h)
u
(
(k− h

2

∑
r=0

qr)/q3
)
= u

(
(k− h

3

∑
r=0

qr)/q4
)
+ u
(
(k− h

4

∑
r=0

qr)/q5
)

+u
(
(k− h

5

∑
r=0

qr)/q6
)
+ . . . + u

(
(k− h

n−1
∑
r=0

qr)/qn
)
+
−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr)/qn
)
.

Similarly, we can easily find the other terms such as
−1
∆

(q,h)
u
(
(k− h

3

∑
r=0

qr)/q4
)
,
−1
∆

(q,h)
u
(
(k− h

4

∑
r=0

qr)/q5
)
, . . . and so on. Substituting all the above

terms in the right side of Equation (80), we obtain

−1
∆

(q,h)

[n−1
∑
r=0

u
((

k− h
r

∑
s=0

qs
)/

qr+1
)]

= u
(
(k− h

1

∑
r=0

qr)/q2
)
+ 2u

(
(k− h

2

∑
r=0

qr)/q3
)

+3u
(
(k− h

3

∑
r=0

qr)/q4
)
+ 4u

(
(k− h

4

∑
r=0

qr)/q5
)
+ . . .

+(n− 1)u
(
(k− h

n−1
∑
r=0

qr)/qn
)
+ n

−1
∆

(q,h)
u
(
(k− h

n−1
∑
r=0

qr)/qn
)
.
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Now, inserting all the above equations in Equation (79), we obtain

−2
∆

(q,h)
u(k)−

−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

= u
((

k− h
1

∑
j=0

qj
)/

q2
)
+ 2u

((
k− h

2

∑
j=0

qj
)/

q3
)
+ . . . + (n− 1)u

((
k− h

n−1
∑
j=0

qj
)/

qn
)

,

which is the same as

−2
∆

(q,h)
u(k)−

−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

=
n−1
∑
r=1

ru
((

k− h
r

∑
s=0

qs
)/

qr+1
)

. (81)

Again, applying
−1
∆

(q,h)
on both sides of Equation (81) and then inserting Equation (75) in the

right side of Equation (81), we arrive at
−3
∆

(q,h)
u(k)−

−3
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

= ( ∑
p=1

p)u
((

k− h
2

∑
j=0

qj
)/

q3
)
+ (

2

∑
p=1

p)u
((

k− h
3

∑
j=0

qj
)/

q4
)

+(
3

∑
p=1

p)u
((

k− h
4

∑
j=0

qj
)/

q5
)
+ . . . + (

n−2
∑

p=1
p)u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

+(
n−1
∑

p=1
p)
−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

.

Putting x = 1 in corollary 3 and then substituting in the above equation, it yields

−3
∆

(q,h)
u(k)−

−3
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

−(n(2)/2!)
−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
=

n−1
∑
r=2

(
r(2)/2!

)
u
((

k− h
r

∑
s=0

qs
)/

qr+1
)

.

Similarly, the fourth inverse will be

−4
∆

(q,h)
u(k)−

−4
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−3
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

= ∑
p=2

(p(2)/2)u
((

k− h
3

∑
j=0

qj
)/

q4
)
+

3

∑
p=2

(p(2)/2)u
((

k− h
4

∑
j=0

qj
)/

q5
)

+
4

∑
p=2

(p(2)/2)u
((

k− h
5

∑
j=0

qj
)/

q6
)
+ . . . +

n−2
∑

p=2
(p(2)/2)u

((
k− h

n−1
∑
j=0

qj
)/

qn
)

+
n−1
∑

p=2
(p(2)/2)

−1
�

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

Putting m = 2 in Corollary 3 and then substituting in the above equation, we obtain

−4
∆

(q,h)
u(k)−

−4
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− n

−3
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

−(n(3)/3!)
−2
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− (n(3)/3!)

−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

=
n−1
∑
r=3

(r(3)/3!)u
((

k− h
r

∑
s=0

qs
)/

qr+1
)

.

Proceeding like this up to m times, we obtain the general form as
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−x
∆

(q,h)
u(k)−

−x
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)
− (n(1)/1!)

−(x−1)
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

−(n(2)/2!)
−(x−2)

∆
(q,h)

u
((

k− h
n−1
∑
j=0

qj
)
/qn

)
− . . .− (n(x−1)/(x− 1)!)

−1
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

=
n−1
∑

r=x−1
(r(x−1)/(x− 1)!)u

((
k− h

r

∑
s=0

qs
)/

qr+1
)

,

which completes the proof.

Corollary 3. Let u, v :M q
h→ R, k, n ∈ R, q ∈ R−{0}, x ∈ N and if h = 0, then Equation (78)

becomes

−x
∆

(q,0)
u(k)−

x−1
∑
r=0

(n(d)/d!)
−(x−d)

∆
(q,0)

u
(
k/qn

)
=

n−1
∑

r=x−1
(r(x−1)/(x− 1)!)u

(
k/qr+1

)
. (82)

Corollary 4. Let u, v :M q
h→ R, k, n ∈ R, h ∈ R−{0}, x ∈ N and if q = 1, then Equation (78)

becomes

−x
∆

(1,h)
u(k)−

x−1
∑
d=0

(n(d)/d!)
−(x−d)

∆
(1,h)

u(k− nh) =
n−1
∑

r=x−1
(r(x−1)/(x− 1)!)u(k− (r+ 1)h). (83)

Corollary 5. Let u, v :M q
h→ R, h 6= 0 ∈ R, q ∈ R−{0, 1}, n, x ∈ N and k ∈ R. Then, the m-th

order of (q, h) difference equation is given by

−x
∆

(q,h)
u(k)−

n−1
∑

d=n−x
n(r−n+x)/(r− n+ x)!

−(n−r)
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

=
n−x
∑
r=0

(x+ r− 1)(x−1)/(x− 1)!u
((

k− h
x+r−1
∑
s=0

qs
)/

qx+r
)

. (84)

Proof. The proof completes by replacing
x−1
∑

d=0

n(d)

d!

−(x−d)
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

by
n−1
∑

d=n−x

n(r−n+x)

(r− n+ x)!

−(n−r)
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

and
n−1
∑

r=x−1

r(x−1)

(x− 1)!
u
((

k− h
r

∑
s=0

qs
)/

qr+1
)

by
n−1
∑

r=x−1

r(x−1)

(x− 1)!
u
((

k− h
r

∑
s=0

qs
)/

qr+1
)

in Equation (78).

Theorem 9. Let u, v :M q
h→ R, x, k ∈ N and q, h ∈ R−{0}. Then, the x-th order anti-difference

principle of (q, h) operator for infinite series is given by

−x
∆

(q,h)
u(k) =

∞

∑
r=0

((x+ r− 1)(x−1)/(x− 1)!)u
((

k− h
x+r−1
∑
s=0

qs
)/

qx+r
)

. (85)

Proof. Taking lim
n→∞

in Equation (78) and assuming
−x
∆

(q,h)
u(0) = 0, we arrive at

Equation (85).
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Corollary 6. Let u, v :M q
h→ R, s ∈ R, k ∈ N, q, h ∈ R−{0, 1} be a real number, and if the

series
∞
∑

r=k+1
u
((

s− h
r

∑
j=0

qj
)/

qr+1
)

is convergent, then

−1
∆

(q,h)
u(s)−

∞

∑
r=k+1

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)
=

k

∑
r=0

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)

. (86)

Proof. Taking lim
n→∞

in Equation (75) and assuming v(0) = 0 = u(0), then

−1
∆

(q,h)
u(k) = u((k− h)/q) + u

(
(k− h

1

∑
r=0

qr)/q2
)
+ u
(
(k− h

2

∑
r=0

qr)/q3
)

+u
(
(k− h

3

∑
r=0

qr)/q4
)
+ u
(
(k− h

4

∑
r=0

qr)/q5
)
+ . . . . . .

+u
(
(k− h

r

∑
p=0

qp)/qr+1
)
+ u
(
(k− h

r+1

∑
p=0

qp)/qr+2
)
+ . . . (87)

Replacing ′k′ by ′s′ and ′r′ by ′k′ in (87), we obtain

−1
∆

(q,h)
u(s) = u

(
(s− h)/q

)
+ u
(
(s− h

1

∑
r=0

qr)/q2
)
+ u
(
(s− h

2

∑
r=0

qr)/q3
)

+ . . . + u
(
(s− h

k

∑
r=0

qr)/qk+1
)
+ u
(
(s− h

k+1

∑
r=0

qr)/qk+2
)
+ . . .,

which is the same as

−1
∆

(q,h)
u(s) =

k

∑
r=0

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)
+

∞

∑
r=k+1

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)

. (88)

Now, the proof completes by shifting the infinite series term of (88) to the left side.

Definition 11. Let s, k ∈ R, h ∈ R > 0, q ∈ R−{0, 1}, and if
∞
∑

r=k+1
u
((

s− h
r

∑
j=0

qj
)/

qr+1
)

is convergent such that s ∈ M
q
h and u :M q

h→ R be a function. Then the quantum geometric
function (or q-geometric function) on (q, h) operator is defined as

∞

∑
r=k+1

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)
=

[
u
((

s− h
k+1

∑
j=0

qj
)/

qk+2
)]2

u
((

s− h
k+1

∑
j=0

qj
)/

qk+2
)
− u
((

s− h
k+2

∑
j=0

qj
)/

qk+3
) . (89)

The following Theorem 10 is the finite series formula for the (q, h) difference operator
derived from infinite series.

Theorem 10. Assuming the conditions given in Corollary 6, then the first order anti-difference
principle of (q, h) difference operator is given by

−1
∆

(q,h)
u(s)−

[
u
((
s− h

k+1

∑
j=0

qj
)/

qk+2)]2
u
((
s− h

k+1

∑
j=0

qj
)/

qk+2
)
− u

((
s− h

k+2

∑
j=0

qj
)/

qk+3
)

=
k

∑
r=0

u
((

s− h
r

∑
j=0

qj
)/

qr+1
)

. (90)
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Proof. The proof completes by substituting Equation (89) in (86).

Theorem 11. Let u, v :M q
h→ R, s ∈ R, q, h ∈ R−{0} and x, k ∈ N. Then, the higher order of

(q, h) difference operator is given by
−x
∆

(q,h)
u(s)

−
(x− 1)!

[
((k+ x)(x−1)/(x− 1)!)u

((
s− h

k+1

∑
j=0

qj
)/

qk+x+1
)]2

(k+ x)(x−1)u
((
s− h

k+1

∑
j=0

qj
)/

qk+x+1
)
− (k+ x+ 1)(x−1)u

((
s− h

k+2

∑
j=0

qj
)/

qk+x+2
)

=
k

∑
r=0

((r+ x− 1)(x−1)/(x− 1)!)u
((

k− h
r

∑
j=0

qj
)/

qr+x
)

. (91)

Proof. From Equation (85), we have

−x
∆

(q,h)
u(k) =

(x− 1)(x−1)

(x− 1)!
u
((

k− h
x−1
∑
j=0

qj
)/

qx
)
+

x(x−1)

(x− 1)!
u
((

k− h
x

∑
j=0

qj
)/

qx+1
)

+ . . . +
(x− (r− 1))(x−1)

(x− 1)!
u
((

k− h
x−(r−1)

∑
j=0

qj
)/

qx+r
)

+
(x− r)(x−1)

(x− 1)!
u
((

k− h
x−r
∑
j=0

qj
)/

qx+r+1
)
+ . . .

Replacing ′k′ by ′s′ and ′r′ by ′k′, the above equation becomes

−x
∆

(q,h)
u(s) =

x+k−1
∑

y=x−1

y(x−1)

(x− 1)!
u
((
s− h

y

∑
j=0

qj
)/

qy+1
)
+

∞

∑
y=x+k

y(x−1)

(x− 1)!
u
((
k− h

y

∑
j=0

qj
)/

qy+1
)

.

Interchanging the terms
x+k−1

∑
y=x−1

(y(x−1)/(x− 1)!)u
(
s− h

y

∑
j=0

qj
)

by

k

∑
r=0

((x+ r− 1)(x−1)/(x− 1)!)u
(
s− h

x+r−1
∑
j=0

qj/qx+r
)

and

∞
∑

y=x+k
(y(x−1)(x− 1)!)u

((
k− h

y

∑
j=0

qj
)/

qy+1
)

by

∞
∑

r=k+1
((x+ r− 1)(x−1)/(x− 1)!)u

(
s− h

x+r−1
∑
j=0

qj/qx+r
)
, and then using Equation (89) for

x-th order, the above equation becomes

∞

∑
y=k+1

(y(x−1)/(x− 1)!)u
((

k− h
y

∑
j=0

qj
)/

qy+1
)
=

(x− 1)!
[
((k+ x)(x−1)/(x− 1)!)u

((
s− h

k+1

∑
j=0

qj
)
/qk+x+1

)]2
(k+ x)(x−1)u

((
s− h

k+1

∑
j=0

qj
)
/qk+x+1

)
− (k+ x+ 1)(m−1)u

((
s− h

k+2

∑
j=0

qj
)
/qk+3

) ,

which completes the proof.

4.2. Fractional order Theorems

In this section, we develop fractional order anti-difference principle from its integer
order given in Definition 11, by which we derive fundamental theorems of quantum
fractional calculus. For ν > 0, we obtain

k+1

∑
r=∞

(Γ(r+ ν)/Γ(r+ 1))u
((

k− h
r

∑
j=0

qj
)/

qr+ν
)
=

A u
((

s− h
k+1

∑
j=0

qj
)/

qk+ν+1
)]2

A u
((

s− h
k+1

∑
j=0

qj
)/

qk+ν+1
)
−Bu

((
s− h

k+2

∑
j=0

qj
)/

qk+ν+2
) , (92)
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where A = (Γ(k+ ν + 1)/Γ(ν)Γ(k+ 2)) and B = (Γ(k+ ν + 2)/Γ(ν)Γ(k+ 3)).

Theorem 12. Let u, v :M q
h→ R, h 6= 0 ∈ R, q ∈ R−{0, 1}, k, ν∈ R and n ∈ N. Then, the ν-th

order of (q, h) difference equation is given by

−ν
∆

(q,h)
u(k)−

n−1
∑

d=n−ν

(Γ(n+ 1)/Γ(2n− d−ν + 1)Γ(d− n+ν− 1))
−(n−d)

∆
(q,h)

u
((
k− h

n−1
∑
j=0

qj
)/

qn
)

= (1/Γ(ν))∑
r=0

n−ν
(Γ(ν+r)/Γ(r+ 1))u

((
k− h

ν+r−1
∑
s=0

qs
)/

qν+r
)

. (93)

Proof. When generalizing the integer order to real order (m > 0 ∈ R =ν) in Equation (84),
we obtain

−ν
∆

(q,h)
u(k)−

n−1
∑

d=n−ν

n(r−n+ν)

(r− n+ν)!

−(n−r)
∆

(q,h)
u
((

k− h
n−1
∑
j=0

qj
)
/qn

)

=
n−ν

∑
r=0

(ν+r− 1)(ν−1)

(ν− 1)!
u
((

k− h
ν+r−1
∑
s=0

qs
)
/qν+r

)
.

Now, the proof completes by (14), that is, n(r−n+m) = (Γ(n+ 1)/Γ(2n− d−ν + 1)) and
(m+ r− 1)(m−1) = (Γ(ν+r)/Γ(r+ 1)) in Equation (84).

Theorem 13. Let u, v :M q
h→ R, h ∈ R−{0}, q ∈ R−{0, 1}, k ∈ N and s, ν∈ R. Then, the

ν-th order (fractional or real order) of (q, h) difference equation is given by

−ν
∆

(q,h)
u(s)−

Γ(ν)
[
(Γ(k+ ν + 1)/Γ(ν)Γ(k+ 2))u

((
s− h

k+1

∑
j=0

qj
)/

qk+ν+1
)]2

Γ(k+ ν + 1)

Γ(k+ 2)
u
((

s− h
k+1

∑
j=0

qj
)/

qk+ν1
)
− Γ(k+ ν + 2)

Γ(k+ 3)
u
((

s− h
k+2

∑
j=0

qj
)/

qk+ν+2
)

= (1/Γ(ν))
k

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))u
((

k− h
r

∑
j=0

qj
)/

qr+ν
)

. (94)

Proof. From Equation (14), we obtain (k+ν)(ν−1) = (Γ(k+ν + 1)/Γ(k+ 2)) and (k+ ν +
1)(ν−1) = (Γ(k+ ν + 2)/Γ(k+ 3)). Thus, by generalizing the integer order (m-th order) of
Equations (89) and (91) to any real order (ν-th order), the proof is complete.

Result 3. For finding the fractional difference equation in (q, h) difference operator for infinite

series, we should know about the behavior of
s

∑
j=0

qj series.

(1) If s is odd and q ∈ R, then

s

∑
j=0

qj =
(
1+ q2 + q4 + . . . + qs

)
(1+ q) =

s/2

∑
j=0

q2j(1+ q). (95)

(2) If s is even and q ∈ R, then

s

∑
j=0

qj =
(
1+ q2 + q4 + . . . + qs

)
(1+ q) =

(s−2)/2

∑
j=0

q2j(1+ q) + qs. (96)
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Theorem 14. Let u, v :M q
h→ R, ν∈ R, k ∈ R, h ∈ R−{0} and q ∈ R−{0, 1} such that

(ν+r− 1)/2 ∈ N and (ν+r− 3)/2 ∈ N . Then the ν-th order of (q, h) difference operator for
infinite series is given by

−ν
∆

(q,h)
u(k) = (1/Γ(ν))

∞

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))u
((

k− h
(ν+r−1)/2

∑
s=0

q2r(1+ q)
)/

qν+r
)

. (97)

and

−ν
∆

(q,h)
u(k) = (1/Γ(ν))

∞

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))u
((

k− h
(ν+r−3)/2

∑
s=0

q2r(1+ q) + qν+r−1)/qν+r
)

. (98)

Proof. The proof completes by generalizing Theorem 9 and Result 3 to any real order
(ν∈ R) and by (14).

5. Mixed Alpha Symmetric Difference Operator

In this section, we develop fundamental theorems using (q, h)α difference operator
and its inverse operators. If we take α = 1, then the (q, h)α difference equation will become
(q, h) difference equation.

5.1. Integer Order Theorems

Here, we develop certain theorems for integer order (m-th order) using the (q, h)α

difference operator.

Definition 12. Let u, v :M q
h→ R be a function and α∈ R. Then, (q, h)α difference operator

(mixed alpha symmetric operator) is defined as

∆
(q,h)α

u(k) = u(kq+ h)−αu(k), k ∈ R. (99)

Remark 2. If α = 1, then Equation (99) becomes (q, h)-difference operator.

Lemma 8. If u, v :M q
h→ R, q ∈ R−{0, 1}, 0 6= h ∈ R and α∈ R. Then, the product rule of

(q, h)α difference operator is obtained as

−1
∆

(q,h)α

{u(k)v(k)} = u(k)
−1
∆

(q,h)α

v(k)−
−1
∆

(q,h)α

{
−1
∆

(q,h)
v(kq+ h) ∆

(q,h)
u(k)}. (100)

Proof. The proof is similar to Lemma 7 by using the ∆
(q,h)α

operator.

Property 2. Some of the properties of (q, h)α difference operator is given below:

(i) If q = 1, then (99) becomes h(α)-difference operator.
(ii) If h = 0, then (99) becomes q(α)-difference operator.
(iii) If q > 1, h > 0 and α∈ R, then we say (99) as (q, h)α-difference operator.
(iv) The solution does not exist if we take q = 1, h = 0 and α = 1 simultaneously.

Theorem 15. Let u, v :M q
h→ R, k, α∈ R, n ∈ N, h ∈ R−{0} and q ∈ R−{0, 1}. Then, the

anti-difference principle of (q, h)α difference operator is given by

−1
∆

(q,h)α

u(k)−
−1
∆

(q,h)α

αnu
((

k− h
n−1
∑
j=0

qj
)/

qn
)
=

n−1
∑
r=0

ru
((

k− h
r

∑
s=0

qs
)/

qr+1
)

. (101)

Proof. Following similar steps from (64) to (74) in Theorem 7 using Equation (99), we
obtain the general form as
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v(k) = u((k− h)/q)+αu
(
(k− h

1

∑
r=0

qr)/q2
)
+α2u

(
(k− h

2

∑
r=0

qr)/q3
)
+α3u

(
(k− h

3

∑
r=0

qr)/q4
)

+ α4u
(
(k− h

4

∑
r=0

qr)/q5
)
+ . . .+αn−1u

(
(k− h

n−1
∑
r=0

qr)/qn
)
+αnv

(
(k− h

n−1
∑
r=0

qr)/qn
)

. (102)

If
−1
∆

(q,h)α

u(k) = v(k), then (102) becomes

−1
∆

(q,h)α

u(k)− αn
−1
∆

(q,h)α

u
(
(k− h

n−1
∑
r=0

qr)/qn
)
= u((k− h)/q)+αu

(
(k− h

1

∑
r=0

qr)/q2
)

+α2u
(
(k− h

2

∑
r=0

qr)/q3
)
+α3u

(
(k− h

3

∑
r=0

qr)/q4
)
+α4u

(
(k− h

4

∑
r=0

qr)/q5
)

+ . . .+αn−1u
(
(k− h

n−1
∑
r=0

qr)/qn
)
,

which completes the proof.

Corollary 7. Let u, v :M q
h→ R, k, α∈ R, n ∈ N, q ∈ R−{0}, and if h = 0, then Equation (101)

becomes
−1
∆

(q,0)α

u(k)−
−1
∆

(q,0)α

αnu(k/qn) =
n−1
∑
r=0

αru(k/qr+1). (103)

Corollary 8. Let u, v :M q
h→ R, k, α∈ R, n ∈ N, h ∈ R−{0}, and if q = 1, then Equation (101)

becomes
−1
∆

(1,h)α

u(k)−
−1
∆

(1,h)α

αnu(k− nh) =
n−1
∑
r=0

αru(k− (r+ 1)h). (104)

Remark 3. The operators
−1
∆

(q,0)α

and
−1
∆

(1,h)α

are the first order q(α) and h(α) difference operators,

respectively. That is,
−1
∆

(q,0)α

=
−1
∆

q(α)
and

−1
∆

(1,h)α

=
−1
∆

h(α)
.

Theorem 16. Let u, v :M q
h→ R, k, α∈ R, h ∈ R−{0}, q ∈ R−{0, 1}, and n, x ∈ N. Then, the

higher order of (q, h)α difference operator is given by

−x
∆

(q,h)α

u(k)−
x−1
∑
d=0

n(d)

d!
αn−d

−(x−d)
∆

(q,h)α

u
((

k− h
n−1
∑
j=0

qj
)
/qn

)
=

n−1
∑

r=x−1

r(x−1)

(x− 1)!
αr−(x−1)u

((
k− h

r

∑
s=0

qs
)
/qr+x

)
. (105)

Proof. The proof is similar to Theorem 8 by applying the
−1
∆

(q,h)α

operator repeatedly on both

sides of Equation (101).

Corollary 9. Let u, v :M q
h→ R, k, α∈ R, q ∈ R−{0}, x, n ∈ N, and if h = 0, then Equation

(105) becomes

−x
∆

(q,0)α

u(k)−
x−1
∑
r=0

(n(d)/d!)αn−d −(x−d)∆
(q,0)α

u(k/qn) =
n−1
∑

r=x−1
(r(x−1)/(x− 1)!)αr−(x−1)u(k/qr+1). (106)

Corollary 10. Let u, v :M q
h→ R, k, α∈ R, h ∈ R−{0}, x, n ∈ N and if q = 1, then

Equation (105) becomes

−x
∆

(1,h)α

u(k)−
x−1
∑
d=0

(n(d)/d!)αn−d
−(x−d)

∆
(1,h)α

u(k− nh) =
n−1
∑

r=x−1
(r(x−1)/(x− 1)!)αr−(x−1)u(k− (r+ 1)h). (107)
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Corollary 11. Let u, v :M q
h→ R, h 6= 0 ∈ R, q ∈ R−{0, 1}, α, k ∈ R, and n, x ∈ N. Then, the

x-th order of (q, h)α difference equation is given by

−x
∆

(q,h)α

u(k)−
n−1
∑

d=n−x
(n(r−n+x)αn−d/(r− n+ x)!)

−(n−r)
∆

(q,h)α

u
((
k− h

n−1
∑
j=0

qj
)/

qn
)

=
n−x
∑
r=0

((x+ r− 1)(x−1)/(x− 1)!)αr−(x−1)u
((

k− h
x+r−1

∑
s=0

qs
)/

qx+r
)

. (108)

Proof. The proof completes by replacing
x−1
∑

d=0
(n(d)/d!)αn−d

−(x−d)
∆

(q,h)α

u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

by

n−1
∑

d=n−x
(n(r−n+x)/(r− n+ x)!)αn−d

−(n−r)
∆

(q,h)α

u
((

k− h
n−1
∑
j=0

qj
)/

qn
)

and

n−1
∑

r=x−1
(r(x−1)/(x− 1)!)αr−(x−1)u

((
k− h

r

∑
s=0

qs
)/

qr+1
)

by

n−x
∑
r=0

((x+ r− 1)(x−1)/(x− 1)!)αr−(x−1)u
((

k− h
x+r−1

∑
s=0

qs
)/

qx+r
)

in Equation (105).

Corollary 12. Let u, v :M q
h→ R, q ∈ R−{0, 1}, h ∈ R−{0}, k ∈ N, and s, α∈ R. If

∞
∑

r=k+1
αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)

is convergent, then

−1
∆

(q,h)α

u(s)−
∞

∑
r=k+1

αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)
=

k

∑
r=0

αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)

. (109)

Proof. Taking lim
n→∞

in Equation (102) and assuming v(0) = 0 = u(0), then

−1
∆

(q,h)α

u(k) = u((k− h)/q)+αu
(
(k− h

1

∑
r=0

qr)/q2
)
+ α2u

(
(k− h

2

∑
r=0

qr)/q3
)

+ α3u
(
(k− h

3

∑
r=0

qr)/q4
)
+α4u

(
(k− h

4

∑
r=0

qr)/q5
)
+ . . .+αru

(
(k− h

r

∑
p=0

qp)/qr+1
)

+ αr+1u
(
(k− h

r+1

∑
p=0

qp)/qr+2
)
+ . . . (110)

Replacing ‘k’ by ‘s’ and ‘r’ by ‘k’ in (110), we obtain

−1
∆

(q,h)α

u(s) = u
(
(s− h)/q

)
+αu

(
(s− h

1

∑
r=0

qr)/q2
)
+α2u

(
(s− h

2

∑
r=0

qr)/q3
)

+ . . . + αku
(
(s− h

k

∑
r=0

qr)/qk+1
)
+αk+1u

(
(s− h

k+1

∑
r=0

qr)/qk+2
)
+ . . .,

which completes the proof.

Definition 13. Let s ∈ R, k ∈ N, α, h ∈ R > 0, q ∈ R−{0, 1}, and if
∞
∑

r=k+1
αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)

is convergent such that s ∈M
q
h and u :M q

h→ R be a function.

Then, the alpha-quantum geometric function (or q-alpha geometric function) on (q, h)α operator is
defined as

∞

∑
r=k+1

αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)
=

[
αk+1u

((
s− h

k+1

∑
j=0

qj
)/

qk+2
)]2

αk+1u
((

s− h
k+1

∑
j=0

qj
)/

qk+2
)
− αk+2u

((
s− h

k+2

∑
j=0

qj
)/

qk+3
) . (111)
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Theorem 17. Consider the conditions given in Corollary 12 and Definition 13. Then,

−1
∆

(q,h)α

u(s)−

[
αk+1u

((
s− h

k+1

∑
j=0

qj
)/

qk+2
)]2

αk+1u
((
s− h

k+1

∑
j=0

qj
)/

qk+2
)
− αk+2u

((
s− h

k+2

∑
j=0

qj
)/

qk+3
)

=
k

∑
r=0

αru
((

s− h
r

∑
j=0

qj
)/

qr+1
)

. (112)

Proof. The proof completes by substituting Equation (111) in (109).

Theorem 18. Let u, v :M q
h→ R, q ∈ R−{0, 1}, h ∈ R−{0}, x ∈ N, and k, α∈ R. Then, the

higher order anti-difference principle for the infinite series is given by

−x
∆

(q,h)α

u(k) =
∞

∑
r=x−1

((r+ x− 1)(x−1)/(x− 1)!)αr−(x−1)u
((

k− h
y

∑
j=0

qj
)/

qr+x
)

. (113)

Proof. Taking lim
n→∞

in Equation (105) and assuming
−x
∆

(q,h)α

u(0) = 0, we arrive at

Equation (113).

Theorem 19. Let u, v :M q
h→ R, α, s ∈ R, q ∈ R−{0, 1}, h ∈ R−{0}, and k, x ∈ N. Then, the

higher order of (q, h)α difference operator is given by

−x
∆

(q,h)α

u(s)−

[
A αk+1u

((
s− h

k+1

∑
j=0

qj
)/
qk+x+1

)]2
A αk+1u

((
s− h

k+1

∑
j=0

qj
)/
qk+x+1

)
−Bαk+2u

((
s− h

k+2

∑
j=0

qj
)/
qk+x+2

)

=
k

∑
r=0

((r+ x− 1)(x−1)αr/(x− 1)!)u
((

s− h
r

∑
j=0

qj
)/

qr+x
)

, (114)

where A = (k+ x)(x−1)/(x− 1)! and B = (k+ x+ 1)(x−1)/(x− 1)!.

Proof. Applying the proof of Theorem 11 in Equation (113), we obtain Equation (114).

5.2. Generalized Theorems for (q, h)α Difference Operators

In this section, we develop fractional order anti-difference theorems from its integer
order given in Definition 13, from which we derive fundamental theorems of alpha quantum
fractional calculus. For ν > 0, we obtain

∞

∑
r=k+1

(Γ(r+ ν)/Γ(r+ 1))αk+1u
((

k− h
r

∑
j=0

qj
)/

qr+ν
)

=

A αk+1u
((

s− h
k+1

∑
j=0

qj
)/

qk+ν+1
)]2

A αk+1u
((

s− h
k+1

∑
j=0

qj
)/

qk+ν+1
)
−Bαk+2u

((
s− h

k+2

∑
j=0

qj
)/

qk+ν+2
) , (115)

where A = (Γ(k+ ν + 1)/Γ(ν)Γ(k+ 2)) and B = (Γ(k+ ν + 2)/Γ(ν)Γ(k+ 3)).

Theorem 20. Let u, v :M q
h→ R, h 6= 0 ∈ R, q ∈ R−{0, 1}, k, ν, α∈ R, and n ∈ N. Then, the

ν-th order of (q, h) difference equation is given by

−ν
∆

(q,h)α

u(k)−
n−1
∑

d=n−ν

Γ(n+ 1)αn−d

Γ(2n− d−ν + 1)Γ(d− n+ν− 1)

−(n−d)
∆

(q,h)α

u
((
k− h

n−1
∑
j=0

qj
)/

qn
)
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= (1/Γ(ν))
n−ν

∑
r=0

(Γ(ν+r)/Γ(r+ 1))αr−(ν−1)u
((

k− h
ν+r−1
∑
s=0

qs
)/

qν+r
)

. (116)

Proof. The proof follows from Corollary 11, Theorem 12 and by Equation (14) using the
(q, h)α difference operator.

Theorem 21. Let u, v :M q
h→ R, q ∈ R−{0, 1}, h ∈ R−{0}, α, s ∈ R, k ∈ N, and ν∈ R. Then,

the ν-th order of (q, h)α difference operator is given by

−ν
∆

(q,h)α

u(s)−

[
A αk+1u

((
s− h

k+1

∑
j=0

qj
)/
qk+ν+1)]2

A αk+1u
((
s− h

k+1

∑
j=0

qj
)/
qk+ν+1

)
−Bαk+2u

((
s− h

k+2

∑
j=0

qj
)/
qk+ν+2

)

=
k

∑
r=0

(Γ(r+ ν)/Γ(ν)Γ(r+ 1))αru
((

s− h
r

∑
j=0

qj
)/

qr+ν
)

, (117)

where A = Γ(k+ ν + 1)/Γ(ν)Γ(k+ 2) and B = Γ(k+ ν + 2)/Γ(ν)Γ(k+ 3).

Proof. The proof follows from Theorem 19, Theorem 13, and by Equation (14).

Theorem 22. Let u, v :M q
h→ R, α, ν, k ∈ R and q, h ∈ R−{0} such that (ν+r− 1)/2 and

(ν+r− 3)/2 are natural numbers. Then, the ν-th of (q, h)α difference operator for infinite series is
given by

−ν
∆

(q,h)
u(k) = (1/Γ(ν))

∞

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))αr−ν+1u
((

k− h
(ν+r−1)/2

∑
s=0

q2r(1+ q)
)/

qν+r
)

. (118)

and

−ν
∆

(q,h)
u(k) = (1/Γ(ν))

∞

∑
r=0

(Γ(r+ ν)/Γ(r+ 1))αr−ν+1u
((

k− h
(ν+r−3)/2

∑
s=0

q2r(1+ q) + qν+r−1)/qν+r
)

. (119)

Proof. The proof completes by generalizing Theorem 18 and Result 3 to any real order
(ν∈ R) and by (14).

The integer and fractional order (q, h) and (q, h)α anti-difference equation acts as the
solution for mixed symmetric difference operator and mixed alpha symmetric difference
operator. One can do the same for the nabla operator.

6. Results and Discussion

The value analysis of the difference operators (q, h) and (q, h)α will be looked at in
this section.

Example 5. Fixing the values s = 8.3 and k = 50, then Figure 1 shows that for any ν > 0 ∈ R,
the values of the (q, h) difference equation is dropping over time, indicating that it will converge.
Figure 2 demonstrates that if the ν and α value increases, then the values of the (q, h)α difference
operator progressively increase and then eventually decrease, which says that it will converge.

Example 5 gives the general solution for Theorems 13 and 21 for any real q and h
values. As a result, we can easily predict the value stability for (q, h) and (q, h)α operators.
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Figure 1. Solution for Theorem 13 with ν values 0.2, 1.3, 2.7, and 3.9, where q and h vary from −4 to 4.

Figure 2. Solution for Theorem 21 with ν values 0.2, 1.3, 2.7, and 3.9, where q varies from 10 to 100, h
varies from 5 to 10, and α varies from 1× 10−2 to 0.1.

7. Conclusions

In this research work, we have developed several integer and fractional order anti-
difference equations for both q and (q, h) operators and its alpha difference operators.
In addition, we have derived fundamental theorems using qα and (q, h)α operators and
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their inverses for both integer and fractional order. Finally, our results are verified with
numerical examples and discussed with graphs. This study will result in applications for
transforming the infinite series difference equation to the finite series equation. The future
work of this paper is finding the polynomials and polynomial factorial functions for the
(q, h) and (q, h)α difference operator and its inverse operators. In addition, we will extend
this paper to Fibonacci quantum fractional calculus.
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