
Citation: Chen, C.; Wang, Z.; Gong,

Z.; Cai, P.; Zhang, C.; Li, Y.

Autonomous Navigation and

Obstacle Avoidance for Small VTOL

UAV in Unknown Environments.

Symmetry 2022, 14, 2608. https://

doi.org/10.3390/sym14122608

Academic Editors: Sergei

D. Odintsov and Jan Awrejcewicz

Received: 16 September 2022

Accepted: 17 November 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Autonomous Navigation and Obstacle Avoidance for Small
VTOL UAV in Unknown Environments
Cheng Chen 1, Zian Wang 2,* , Zheng Gong 3, Pengcheng Cai 3, Chengxi Zhang 4 and Yi Li 5,*

1 School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110000, China
2 China Academy of Launch Vehicle Technology, Beijing 100076, China
3 Department of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China
4 Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education,

School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
5 School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
* Correspondence: wangzian@nuaa.edu.cn (Z.W.); ly@email.tjut.edu.cn (Y.L.)

Abstract: This paper takes autonomous exploration in unknown environments on a small co-axial
twin-rotor unmanned aerial vehicle (UAV) platform as the task. The study of the fully autonomous
positioning in unknown environments and navigation system without global navigation satellite
system (GNSS) and other auxiliary positioning means is carried out. Algorithms that are based on the
machine vision/proximity detection/inertial measurement unit, namely the combined navigation
algorithm and indoor simultaneous location and mapping (SLAM) algorithm, are not only designed
theoretically but also realized and verified in real surroundings. Additionally, obstacle detection, the
decision-making of avoidance motion and motion planning methods such as Octree are also proposed,
which are characterized by randomness and symmetry. The demonstration of the positioning and
navigation system in the unknown environment and the verification of the indoor obstacle-avoidance
flight were both completed through building an autonomous navigation and obstacle avoidance
simulation system.

Keywords: autonomous navigation; obstacle avoidance; target detection; VI-SLAM

1. Introduction

With the development of UAV technology, UAVs are playing an increasingly essential
role in some routine tasks or even under special circumstances in both civil and military
applications [1–3]. For example, some UAVs can be used for military reconnaissance,
autonomous identification and attack, and they can be also used to explore an unknown
region and map it.

The survival capability of drones is a major problem, especially in some complex or
even unknown environment; as a result, autonomous navigation is introduced. While
external information should be introduced into the navigation system for better effects of
flight control, the path planning and obstacle avoidance during autonomous navigation in
unknown environments becomes a crucial issue for unmanned surface vehicles (USVs) [4].

A detection and avoidance system was presented for the autonomous navigation of
UAVs in urban air mobility (UAM) applications by Enrique Aldao et al. [5]. The principle
and navigation method of astronomical spectral velocity measurement, as well as the tech-
nical realization of the solar atomic frequency discriminator for autonomous navigation
(SAFDAN) based on atomic frequency discrimination velocity measurement were com-
prehensively introduced by Wei Zhang et al. [6]. A self-trained controller for autonomous
navigation in static and dynamic (with moving walls and nets) challenging environments
(including trees, nets, windows, and pipe) using deep reinforcement learning, simultane-
ously trained using multiple rewards was introduced by Ramezani Dooraki Amir [7]. A

Symmetry 2022, 14, 2608. https://doi.org/10.3390/sym14122608 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122608
https://doi.org/10.3390/sym14122608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3906-2180
https://orcid.org/0000-0002-3130-6497
https://doi.org/10.3390/sym14122608
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122608?type=check_update&version=1

Symmetry 2022, 14, 2608 2 of 45

visual predictive control (VPC) scheme adapted to the autonomous navigation problem
among static obstacles was proposed by Durand Petiteville A. [8]. Nowadays the majority
of quadrotor drones are manually operated and use global positioning system (GPS) sig-
nals for navigation, thus greatly limiting the flight range of drones and consuming a lot of
manpower and material resources. To solve the problem, Liu Liwen et al. [9] proposed a
method of realizing autonomous flight and conflict avoidance of quadrotor UAVs by using
a multi-sensor system and deep learning methods in extreme flight conditions through track
prediction. Moreover, in the research of Sina Sajjadi [10], a vision-based target-tracking
problem was formulated in the form of a cascaded adaptive nonlinear model predictive
control (MPC) strategy. A typical ASV/USV unit with standard radio remote control system
to the fully autonomous mode was modernized by Specht C et al. [11]. A method of the
obstacle avoidance planning of unmanned surface vehicles based on an improved artificial
potential field was proposed by S Xie et al. [12]. Navigation problems of unmanned aerial
vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment were
investigated in the work of Xiaohua Wang et al. [13]. An unmanned underwater vehicle
(UUV) simulator, an extension of the open-source robotics simulator Gazebo to underwater
scenarios, was described in the work of Musa Morena Marcusso Manhães et al. [14].

This paper completes the development of an autonomous positioning algorithm and
mapping and trajectory planning algorithm. Algorithms that are based on the machine
vision/proximity detection/inertial measurement unit, namely the combined navigation
algorithm and indoor SLAM algorithm, were designed and realized. Additionally, obstacle
detection, the decision-making of avoidance motion and motion planning methods are
also proposed. An autonomous navigation and obstacle avoidance simulation system
is proposed. A target recognition algorithm was developed and finally the proposed
autonomous navigation and obstacle avoidance simulation system was demonstrated
and verified through physical experiments. The proposed algorithm and system play
an important role in many practical systems and applications, such as sweeping robots,
driverless cars, virtual reality technology (VR) and intelligent robots. According to the
experiment results, the maximum error along x direction is less than 0.5 m, less than 0.6 m
along y direction, and 0.4 m along z direction. The yaw angle error is less than 5◦, and
absolute error is less than 0.3 m. The calculated closed-loop error is about 0.3/70 = 0.4%.

The proposed autonomous navigation and obstacle avoidance system, mainly con-
sisting of three components, namely autonomous positioning, environment mapping and
trajectory planning and target detection and recognition, was used to realize autonomous
environmental exploration without GPS. Its workflow and output are shown in Figure 1.

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 47

Figure 1. The structural diagram of the autonomous system.

Section 2 introduces the autonomous positioning algorithm and its simulation re-
sults. The detailed design and the mechanism of map-building and trajectory-planning
algorithm are provided in Section 3. The detailed design of the target detection and recog-
nition algorithm are in Section 4. In Section 5, the validation of the proposed algorithm is
verified by a flight test and the test environment; the results of the flight test are also in-
troduced in this part.

1.1. Autonomous Positioning
Visual–inertial simultaneous localization and mapping (VI-SLAM) [15–17] was used

to solve the autonomous positioning problem of UAVs without GPS. The system estab-
lished a global coordinate system by regarding the take-off position as the origin and es-
timated the relative pose of the UAV by the fusion of the measurement information of the
visional and inertial navigation system.

1.2. Map Building and Trajectory Planning
Mapping and path planning were used to solve the motion planning problems of

UAVs [18]. By building a raster map and running a path search algorithm, the UAV could
be guided to specific targets and avoid known obstacles at the same time.

1.3. Target Detection and Recognition
The target detection and recognition system was used to search, detect and classify

the targets in the field of vision, and provide reference information for the subsequent
behavior decisions [19].

2. Autonomous Positioning
2.1. The Introduction of the Autonomous Positioning Module

The VI-SLAM algorithm adopts binocular and inertial measurement units (IMU). Ac-
cording to the operation process, the system is divided into four parallel parts: signal pre-
processing thread, pose initialization thread, VisualInertial Odometry (VIO) thread, and
loopback optimization thread [20,21]. The operation flow of the system is shown in Figure
2:

Figure 1. The structural diagram of the autonomous system.

Symmetry 2022, 14, 2608 3 of 45

Section 2 introduces the autonomous positioning algorithm and its simulation results.
The detailed design and the mechanism of map-building and trajectory-planning algorithm
are provided in Section 3. The detailed design of the target detection and recognition
algorithm are in Section 4. In Section 5, the validation of the proposed algorithm is verified
by a flight test and the test environment; the results of the flight test are also introduced in
this part.

1.1. Autonomous Positioning

Visual–inertial simultaneous localization and mapping (VI-SLAM) [15–17] was used to
solve the autonomous positioning problem of UAVs without GPS. The system established
a global coordinate system by regarding the take-off position as the origin and estimated
the relative pose of the UAV by the fusion of the measurement information of the visional
and inertial navigation system.

1.2. Map Building and Trajectory Planning

Mapping and path planning were used to solve the motion planning problems of
UAVs [18]. By building a raster map and running a path search algorithm, the UAV could
be guided to specific targets and avoid known obstacles at the same time.

1.3. Target Detection and Recognition

The target detection and recognition system was used to search, detect and classify the
targets in the field of vision, and provide reference information for the subsequent behavior
decisions [19].

2. Autonomous Positioning
2.1. The Introduction of the Autonomous Positioning Module

The VI-SLAM algorithm adopts binocular and inertial measurement units (IMU).
According to the operation process, the system is divided into four parallel parts: signal
preprocessing thread, pose initialization thread, VisualInertial Odometry (VIO) thread,
and loopback optimization thread [20,21]. The operation flow of the system is shown in
Figure 2:

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 47

Figure 2. The flow diagram of VI-SLAM.

2.2. The Preprocessing of Signals
This section describes the VIO preprocessing procedures. For visual measurement,

we tracked features between successive frames and detected new features in the latest
frame. For IMU measurement, pre-integration was adopted between two consecutive
frames. Due to the high measurement noise of the low-cost IMU, the offsets of the inertial
components were obtained by external calibration during the pre-integration process.

2.2.1. Visual Front-End
The basic task of visual front-end is to extract feature points, which mainly includes

two parts: feature tracking and key frame selection.
(1) Bidirectional Kanade–Lucas–Tomasi (KLT) tracking

For the binocular system, the left and right visual images, kR and kL were ob-
tained in each time sequence. Firstly, Harris corner detection was used on the two images,
and even distribution of feature was ensured by setting the minimum interval of pixels
between two adjacent features. Then a KLT sparse optical flow algorithm and polar line
search algorithm were used for feature matching, an RANSAC algorithm of basic matrix
model was also used to remove outer points, and the matched binocular feature point
pairs were obtained. We then applied the same to 1kR + and 1kL + .

Next, bidirectional KLT tracking was adopted for the feature points in kR and 1kR + ;
that is, a KLT matching and RANSAC screening was carried out from kR to 1kR + , and
then the remaining matching points were used for a matching and screening from 1kR +
to kR to ensure feature stability to the maximum extent.

(2) The selection strategy of the key frames
At the visual front-end, the key frame selection was performed simultaneously, and

there were two selection criteria. The first one was the mean parallax from the previous
keyframe. If the mean parallax of the feature points tracked between the current frame
and the latest key frame exceeded a certain threshold, the frame would be considered as
a new keyframe. Another one was tracking quality. If the number of tracked features was
under a certain threshold, we treated this frame as a new key frame, which avoided the
complete loss of tracking features.

Figure 2. The flow diagram of VI-SLAM.

Symmetry 2022, 14, 2608 4 of 45

2.2. The Preprocessing of Signals

This section describes the VIO preprocessing procedures. For visual measurement, we
tracked features between successive frames and detected new features in the latest frame.
For IMU measurement, pre-integration was adopted between two consecutive frames. Due
to the high measurement noise of the low-cost IMU, the offsets of the inertial components
were obtained by external calibration during the pre-integration process.

2.2.1. Visual Front-End

The basic task of visual front-end is to extract feature points, which mainly includes
two parts: feature tracking and key frame selection.

(1) Bidirectional Kanade–Lucas–Tomasi (KLT) tracking

For the binocular system, the left and right visual images, Rk and Lk were obtained in
each time sequence. Firstly, Harris corner detection was used on the two images, and even
distribution of feature was ensured by setting the minimum interval of pixels between two
adjacent features. Then a KLT sparse optical flow algorithm and polar line search algorithm
were used for feature matching, an RANSAC algorithm of basic matrix model was also
used to remove outer points, and the matched binocular feature point pairs were obtained.
We then applied the same to Rk+1 and Lk+1.

Next, bidirectional KLT tracking was adopted for the feature points in Rk and Rk+1;
that is, a KLT matching and RANSAC screening was carried out from Rk to Rk+1, and then
the remaining matching points were used for a matching and screening from Rk+1 to Rk to
ensure feature stability to the maximum extent.

(2) The selection strategy of the key frames

At the visual front-end, the key frame selection was performed simultaneously, and
there were two selection criteria. The first one was the mean parallax from the previous
keyframe. If the mean parallax of the feature points tracked between the current frame and
the latest key frame exceeded a certain threshold, the frame would be considered as a new
keyframe. Another one was tracking quality. If the number of tracked features was under a
certain threshold, we treated this frame as a new key frame, which avoided the complete
loss of tracking features.

2.2.2. IMU Pre-Integration

The rotation error of the Euler angle was parameterized by IMU pre-integration.
Here, the pre-integration mode proposed by Vins-Mono was used, the covariance transfer
function was derived through the IMU error state dynamics under continuous time and
the bias correction was introduced to correct the error.

The measurement results of original gyroscope and accelerometer of IMU, ω̂ and â are
shown as follows:

ât = at + bat + Rt
wgw + na

ω̂t = ωt + bωt + nω
(1)

IMU measurement values were measured in the body coordinate system, which
is the resultant force that balances the gravity and platform dynamics, and it can be
affected by accelerometer offset ba, gyroscope offset bω and additional noise. Under the
assumption that the additional noise in the measured value of accelerometer and gyroscope
is Gaussian noise, na ∼ N(0, σ2

a), nω ∼ N(0, σ2
ω). Accelerometer offset and gyroscope

offset were modeled as random walks and their derivatives are nba ∼ N(0, σ2
ba
) and

nbω
∼ N(0, σ2

bω
), respectively.

.
bat = nba.
bωt = nbω

(2)

Symmetry 2022, 14, 2608 5 of 45

Given two moments corresponding to the body coordinate system bk and bk+1, the
position, velocity, and direction states can be transmitted by inertial measurement values in
the world coordinate system between time intervals [tk, tk+1]:

pω
bk+1

= pω
bk
+ vω

bk
∆tk

+
s

t∈[tk ,tk+1]
(Rω

t (ât − bat − na)− gω)dt2

vω
bk+1

= vω
bk
+
∫

t∈[tk ,tk+1]
(Rω

t (ât − bat − na)− gω)dt

qω
bk+1

= qω
bk
⊗
∫

t∈[tk ,tk+1]
1
2 Ω(ω̂t − bωt − nω)q

bk
t dt

(3)

where

Ω(ω) =

[
−bωc× ω

−ωT 0

]
· bωc× =

 0 −ωz ωy
ωx 0 −ωx
−ωy ωz 0

 (4)

∆tk is the span of the interval [tk, tk+1].
Clearly, the state transmission of IMU requires the rotation, position and velocity of

the coordinate system bk. When these initial states change, we need to retransmit the IMU
measurement values. Especially in optimization-based algorithms, IMU measurement
values need to be retransmitted between them every time the pose is adjusted, and this
transfer strategy is computationally demanding. In order to avoid retransmission, a pre-
integration algorithm was introduced.

After changing the reference coordinate system from the world coordinate system to
the local coordinate system bk, pre-integration can be only applied to the relevant part of
the linear acceleration â and angular velocity ω̂ as follows:

Rbk
w pw

bk+1
= Rbk

w

(
pw

bk
+ vw

bk
∆tk − 1

2 gw∆t2
k

)
+ α

bk
bk+1

Rbk
w vw

bk+1
= Rbk

w

(
vw

bk
− gw∆tk

)
+ β

bk
bk+1

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

n

(5)

α
bk
bk+1

=
s

t∈[tk ,tk+1]
Rbk

t

(
^
at − bat − na

)
dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
Rbk

t

(
^
at − bat − na

)
dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]
1
2 Ω(ω̂t − bwt − nw)γ

bk
t dt

(6)

Among them, the pre-integration term (6) can be obtained by the IMU measurement
value, which regards bk as the reference frame. α

bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

are only related to the IMU
offset in bk and bk+1, and have nothing to do with other states. When the offset estimation
changed, if the change was small, we adjusted α

bk
bk+1

, β
bk
bk+1

and γ
bk
bk+1

according to their
first-order approximation to the offset; otherwise, was retransmitted. This strategy saves
a lot of computational resources for optimization-based algorithms because the repeated
transmission of IMU measurement values is avoided.

Under discrete-time conditions, different numerical integration methods can be used,
such as Euler integration, midpoint integration, RK4 integration, etc. The Euler integral is
chosen in this section.

At the beginning, α
bk
bk

and β
bk
bk

were 0, and γ
bk
bk

was a unit quaternion. The average
values of α, β and γ in (6) were gradually transmitted as follows. The additional noise

Symmetry 2022, 14, 2608 6 of 45

na, nω were unknown and they were treated as 0 in the actual program. The estimated
value of pre-integration is obtained as follows:

α̂
bk
i+1 = α̂

bk
i + β̂

bk
i δt + 1

2 R
(

γ̂
bk
i

)
(âi − bai)δt2

β̂
bk
i+1 = β̂

bk
i + R

(
γ̂

bk
i

)
(âi − bai)δt

γ̂
bk
i+1 = γ̂

bk
i ⊗

[
1

1
2 (ω̂i − bwi)δt

] (7)

where i is the discrete moment corresponding to the IMU measurement value during time
interval [tk, tk+1], and δt is the time interval between IMU measurement value i and i + 1.

We then turned our focus to the covariance transmission problem. Since the four-
dimensional rotational quaternion γ

bk
i was over-parameterized, we defined its error as the

perturbation around its mean value:

γ
bk
t ≈ γ̂

bk
t ⊗

[
1

1
2 δθ

bk
t

]
(8)

where δθ
bk
t is the three-dimensional small perturbation.

Thus, the linearized equation of the error term under continuous time can be derived
as follows: 

δα
bk
t

δβ
bk
t

δθ
bk
t

δbat

δbωt

 =


0 I 0 0 0
0 0 −Rbk

t bât − batc× −Rbk
t 0

0 0 −bω̂t − bωtc× 0 −I
0 0 0 0 0
0 0 0 0 0




δα

bk
t

δβ
bk
t

δθ
bk
t

δbat

δbωt



+


0 0 0 0
−Rbk

t 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I




na
nω

nba

nbω


= Ftδzbk

t + Gtnt

(9)

Pbk
bk+1

can be calculated by the recursion and updating of the first-order discrete-time

covariance of initial covariance Pbk
bk
= 0:

Pbk
t+δt = (I + Ftδt)Pbk

t (I + Ftδt)T + (Gtδt)Q(Gtδt)T

t ∈ [k, k + 1]
(10)

where Q is the diagonal covariance matrix (σ2
a , σ2

ω, σ2
ba

, σ2
bω
) of the noise.

Meanwhile, the first-order Jacobian matrix Jbk+1
of δzbk

bk+1
can also be calculated by the

recursion of the initial Jacobian matrix Jbk+1
= I.

Jt+δt = (I + Ftδt)Jt, t ∈ [k, k + 1] (11)

Using Equation (11), covariance matrix Pbk
bk+1

and Jacobian matrix Jbk+1
were obtained.

The first-order approximation of α
bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

relevant to the offset can be expressed
as follows:

Symmetry 2022, 14, 2608 7 of 45

α
bk
bk+1
≈ α̂

bk
bk+1

+ Jα
ba

δbak + Jα
bw

δbwk

β
bk
bk+1
≈ β̂

bk
bk+1

+ Jβ
ba

δbak + Jβ
bw

δbwk

γ
bk
bk+1
≈ γ̂

bk
bk+1
⊗
[

1
1
2 Jγ

bw
δbwk

] (12)

where Jα
ba

is the subblock matrix of Jbk+1
, and its position corresponds to

δα
bk
bk+1

δbak
, which also

makes sense for Jα
bω

, Jβ
ba

, Jβ
bω

, Jγ
bω

.
When the offset estimation changed slightly, we used Equation (12) to approximately

correct the results of pre-integration without retransmission.
Hence, the corresponding covariance Pbk

bk+1
of the IMU measurement model could

be obtained: 

α̂
bk
bk+1

β̂
bk
bk+1

γ̂
bk
bk+1

0

0


=



Rbk
w

(
pw

bk+1
− pw

bk
+ 1

2 gw∆t2
k − vw

bk
∆tk

)
Rbk

w

(
vw

bk+1
+ gw∆tk − vw

bk

)
qw−1

bk
⊗ qw

bk+1

babk+1
− babk

bwbk+1
− bwbk


(13)

2.3. Pose Initialization

The pose initialization part is responsible for establishing the coordinate system and
maintaining the feature points and the description of UAV in the coordinate system at
the early stage of the operation process of system [22,23]. Compared with the monocular,
tightly-coupled VIO system, the binocular system can directly recover the depth of feature
points to complete initialization under stationary conditions.

2.3.1. The Depth Estimation of Feature Points

Since the binocular camera system was used, the depth of feature points could be
calculated directly from the disparity and the relative pose of the camera. The analysis
started with ideal conditions: under the assumption that the left and right cameras were in
the same plane (the optical axis was parallel) and the camera parameters (focal length f)
were identical. Then the depth value could be obtained, as shown in Figure 3:

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 47

where
ab
Jα is the subblock matrix of

1kb
J

+
, and its position corresponds to 1

k

k

k

b
b

ab
δα
δ

+ , which

also makes sense for
ab b b bJ J J J

ω ω ω

β β γα、 、 、 .
When the offset estimation changed slightly, we used Equation (12) to approximately

correct the results of pre-integration without retransmission.
Hence, the corresponding covariance

1

k

kb
b

+
P of the IMU measurement model could be

obtained:

()
1

1
1

1
1

1

1

1

2

1ˆ
ˆ

1 Δ Δ
2

ˆ
Δ

k
k k k k

k
k

k
k k

k

k
k k

k k

k k

b w w w w
b w b b k b k
bk

b b w w w
b w b k b
b

w wb
b b

ab ab

wb wb

t t

t

α

γ

+

+
+

−
+

+

+

+

+

  − + −       
   + −
   =    ⊗  
   −
    −  

R p p g v

R v g v

q q
0 b b
0

b b

β
 (13)

2.3. Pose Initialization
The pose initialization part is responsible for establishing the coordinate system and

maintaining the feature points and the description of UAV in the coordinate system at the
early stage of the operation process of system [22,23]. Compared with the monocular,
tightly-coupled VIO system, the binocular system can directly recover the depth of feature
points to complete initialization under stationary conditions.

2.3.1. The depth Estimation of Feature Points
Since the binocular camera system was used, the depth of feature points could be

calculated directly from the disparity and the relative pose of the camera. The analysis
started with ideal conditions: under the assumption that the left and right cameras were
in the same plane (the optical axis was parallel) and the camera parameters (focal length
f) were identical. Then the depth value could be obtained, as shown in Figure 3:

Figure 3. Diagram of the imaging model.

As can be seen from Figure 3 above, an image plane was established with X, Z axes
and the distance between point P and the axis of camera R is ‘x-b’; the intersection point

Figure 3. Diagram of the imaging model.

As can be seen from Figure 3 above, an image plane was established with X, Z axes
and the distance between point P and the axis of camera R is ‘x − b’; the intersection point

Symmetry 2022, 14, 2608 8 of 45

of the link between camera L and P in X axis is recorded as ‘xl’ (‘l’ means ‘left’) and the
same for ‘xr’; ‘b’ is the length of baseline.

According to the triangle similarity:

z
f = x

x1 = x−b
yr

z
f =

y
y1 =

y
yr

(14)

where b is the baseline length, and the optical axes of the two cameras are both located in
the XOZ plane.

Then the position of point P can be estimated:x
y
z

 =

 xl · z/ f
yl · z/ f

f · b/(xl − xr)

 =

b + xr · z/ f
yr · z/ f
f · b/d

 (15)

For non-ideal camera imaging model, the perturbation included optical axis deviation
and image distortion. In this case, it was necessary to correct the image and transform it
into the ideal situation, as shown in Figure 4.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 47

of the link between camera L and P in X axis is recorded as ‘xl’ (‘l’ means ‘left’) and the
same for ‘xr’; ‘b’ is the length of baseline.

According to the triangle similarity:

z x x-b
f x1 yr
z y y
f y1 yr

= =

= =
 (14)

where b is the baseline length, and the optical axes of the two cameras are both located in
the XOZ plane.

Then the position of point P can be estimated:

/ /
/ /

/ () /

x xl z f b xr z f
y yl z f yr z f
z f b xl xr f b d

⋅ + ⋅     
     = ⋅ = ⋅     
     ⋅ − ⋅     

 (15)

For non-ideal camera imaging model, the perturbation included optical axis devia-
tion and image distortion. In this case, it was necessary to correct the image and transform
it into the ideal situation, as shown in Figure 4.

Figure 4. Image correction.

After obtaining the space coordinates of feature points, they needed to be converted
into inverse depth to connect them with the SLAM system. Compared with the direct
depth expression, the inverse depth error is more consistent with the Gaussian distribu-
tion and has better numerical stability. The conversion formula of inverse depth λ is as
follows:

2 2 2

1/

1/

d

x y z

λ =

= + +
 (16)

2.3.2. Pose Initialization

Figure 4. Image correction.

After obtaining the space coordinates of feature points, they needed to be converted
into inverse depth to connect them with the SLAM system. Compared with the direct depth
expression, the inverse depth error is more consistent with the Gaussian distribution and
has better numerical stability. The conversion formula of inverse depth λ is as follows:

λ = 1/d
= 1/

√
x2 + y2 + z2 (16)

2.3.2. Pose Initialization

When establishing the SLAM coordinate system, the northeast sky coordinate system
was established by taking the origin of the camera coordinate system in the first frame as

Symmetry 2022, 14, 2608 9 of 45

the origin under state of rest. Then the ith landmark feature point mi in the first frame can
be expressed by the inverse depth in the world coordinate system as follows:αi

βi
λi

 =

 atan(y/z)
atan(−x/z)

1/
√

x2 + y2 + z2

 (17)

In the tracking process of the second frame, the pose of the second frame was obtained
by matching the landmark point in the new frame and the counterpart in the first frame
and running pose calculation, and the available landmark points were updated for the
subsequent pose calculation.

2.4. VIO Algorithm

As the core part of the pose updating of the VI-SLAM algorithm, the VIO algorithm
requires accuracy and running speed at the same time. Therefore, the sliding window
method based on a nonlinear optimization strategy was selected. The basic idea of the
sliding window method is firstly introduced in this section, and then the calculation
methods of IMU and visual measurement residual that needed to be updated in the
formula are introduced separately.

2.4.1. Sliding Window Method

After the initialization of the estimator, the binocular VIO based on sliding windows
was employed for high-precision and robust state estimation. The diagram of the sliding
window method is shown in Figure 5:

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 47

When establishing the SLAM coordinate system, the northeast sky coordinate system
was established by taking the origin of the camera coordinate system in the first frame as
the origin under state of rest. Then the ith landmark feature point im in the first frame
can be expressed by the inverse depth in the world coordinate system as follows:

2 2 2

atan(/)
atan(/)

1/

i

i

i

y z
x z

x y z

α
β
λ

      = −       + +  

 (17)

In the tracking process of the second frame, the pose of the second frame was ob-
tained by matching the landmark point in the new frame and the counterpart in the first
frame and running pose calculation, and the available landmark points were updated for
the subsequent pose calculation.

2.4. VIO Algorithm
As the core part of the pose updating of the VI-SLAM algorithm, the VIO algorithm

requires accuracy and running speed at the same time. Therefore, the sliding window
method based on a nonlinear optimization strategy was selected. The basic idea of the
sliding window method is firstly introduced in this section, and then the calculation meth-
ods of IMU and visual measurement residual that needed to be updated in the formula
are introduced separately.

2.4.1. Sliding Window Method
After the initialization of the estimator, the binocular VIO based on sliding windows

was employed for high-precision and robust state estimation. The diagram of the sliding
window method is shown in Figure 5:

Figure 5. Sliding window method.

The full-state vector in the sliding window is defined as:

0 1 0 1x , x , x , x , , ,

x p , v ,q ,b ,b , [0,]

x p ,q
k k k

b
n c m

w w w
k b b b a g

b b b
c c c

k n

λ λ λ =  
 = ∈ 
 =  

 

 (18)

where x k is the IMU state when the kth image is captured. It contains the position, ve-
locity and orientation of IMU in the world coordinate system, as well as the accelerometer
offset and gyroscope offset in the IMU body coordinate system. n is the total number of
keyframes, m is the total number of features in the sliding window, and lλ is the inverse
depth when watching the l th feature the first time.

Visual inertia BA was used here. We minimized the sum of the prior and the Ma-
halanobis norm [24] of all the measurement residuals to obtain the maximum posterior
estimation:

Figure 5. Sliding window method.

The full-state vector in the sliding window is defined as:

X =
[
x0, x1, · · · xn, xb

c , λ0, λ1, · · · λm

]
xk =

[
pw

bk
, vw

bk
, qw

bk
, ba, bg

]
, k ∈ [0, n]

xb
c =

[
pb

c , qb
c

] (18)

where xk is the IMU state when the kth image is captured. It contains the position, velocity
and orientation of IMU in the world coordinate system, as well as the accelerometer offset
and gyroscope offset in the IMU body coordinate system. n is the total number of keyframes,
m is the total number of features in the sliding window, and λl is the inverse depth when
watching the lth feature the first time.

Visual inertia BA was used here. We minimized the sum of the prior and the Mahalanobis
norm [24] of all the measurement residuals to obtain the maximum posterior estimation:

minX

‖rp −HpX‖2 + ∑
k∈B
‖rB
(

ẑbk
bk+1

,X
)
‖

2

P
bk
bk+1

+ ∑
(l,j)∈C

ρ

(
‖rC
(

ẑ
cj
l ,X

)
‖

2

P
cj
l

) (19)

Symmetry 2022, 14, 2608 10 of 45

where the Huber norm [25] ρ(s) is defined as follows:

ρ(s) =

{
1 s ≥ 1
2
√

s− 1 s < 1
(20)

rB
(

ẑbk
bk+1

,X
)

, rC
(

ẑ
cj
l ,X

)
are the residuals of IMU and visual measurement, respec-

tively, which are defined in detail in Equations (21) and (22). B is the set of all IMU
measurements and C is a set of features observed at least two times in the current sliding
window. The ceres nonlinear optimization library was used to solve the algorithm.

2.4.2. The Calculation of IMU Measurement Residual

Taking the IMU measurement between two consecutive frames bk and bk+1 in the
sliding window, according to the IMU measurement model defined in (13), the residual of
pre-integration IMU measurement can be defined as:

rB
(

ẑbk
bk+1

,X
)

=


δα

bk
bk+1

δβ
bk
bk+1

δθ
bk
bk+1

δba
δbg



=



Rbk
w

(
pw

bk+1
− pw

bk
+ 1

2 gw∆t2
k − vw

bk
∆tk

)
− α̂

bk
bk+1

Rbk
w

(
vw

bk+1
+ gw∆tk − vw

bk

)
− β̂

bk
bk+1

2
[

qw−1

bk
⊗ qw

bk+1
⊗
(

γ̂
bk
bk+1

)−1
]

xyz
babk+1

− babk
bwbk+1

− bwbk



(21)

where [·]xyz is to extract the vector part of quaternion q for error state expression. δθ
bk
bk+1

is a three-dimensional error state expression of a quaternion.
[
α̂bk

bk+1
, β̂bk

bk+1
, γ̂bk

bk+1

]T
is an

IMU measurement term that is obtained through the pre-integration of the measurement
values of accelerometer and gyroscope measurements containing only noise during the
time interval of two consecutive image frames. Accelerometer and gyroscope offset are
also included in the remaining terms of the online correction.

2.4.3. Visual Measurement Residual

In contrast to the traditional pinhole camera models in which the reprojection error is
defined on the generalized image plane, the measurement residuals of a camera are defined
on the unit sphere. The optics of almost all types of cameras, including wide-angle, fisheye
or omnidirectional cameras, can be modeled as unit rays connected to the surface of a unit
sphere. Assuming that the lth feature is first observed in the ith image, the residual of the
feature observation in the jth image is defined:

rC

(
^
z

cj

l ,X
)
=
[

b1 b2
]T
·
(
P̂ cj

l −
P cj

l

‖P
cj
l ‖

)

P̂ cj
l = π−1

c

 û
cj
l

v̂
cj
l


P

cj
l = Rc

b

(
R

bj
w

(
Rw

bi

(
Rb

c
1
λl

π−1
c

([
uci

l

vci
l

])
+ pb

c

)
+ pw

bi
− pw

bj

)
− pb

c

) (22)

Symmetry 2022, 14, 2608 11 of 45

where
[
uci

l vci
l
]T is the lth feature which is observed in the ith image the first time.[

û
cj
l v̂

cj
l

]T
is the observation of the same feature in the jth image. π−1

c is a back pro-
jection function that converts pixel positions into unit vectors by using internal parameters
of camera. Since the degree of freedom of the visual residuals is 2, we project the residual
vector onto the tangent plane. As shown below, b1, b2 are two randomly chosen orthogonal

bases in the tangent plane P̂
cj
l , and a group of b1, b2 can be easily found. In Equation (22),

with fixed length, P
cj
l is the standard covariance in tangent space, as shown in Figure 6.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 47

() []1 2

1

1

, ˆˆ

ˆˆ

1

ˆ

j j

j

j

j

j

i
j j

i i ji

cj
Tc c l

l l c
l

c
c l
l c c

l

c
c bc w b b w w bl
l b w b c c c b b cc

l l

u

v

u
v

P

π

π
λ

−

−

 
 = ⋅ −
 
 

  
 =  
    

  
= +



   
   + − −       

  

r z b b

R R R R p p p p




 


 , (22)

where i i
Tc c

l lu v   is the lth feature which is observed in the ith image the first time.

ˆ ˆj j
Tc c

l lu v 
 

 is the observation of the same feature in the jth image. 1
cπ − is a back projection

function that converts pixel positions into unit vectors by using internal parameters of
camera. Since the degree of freedom of the visual residuals is 2, we project the residual
vector onto the tangent plane. As shown below, 1 2,b b are two randomly chosen orthog-
onal bases in the tangent plane ˆ jc

lP , and a group of 1 2,b b can be easily found. In Equa-
tion (22), with fixed length, jc

lP is the standard covariance in tangent space, as shown in
Figure 6.

Figure 6. Tangent plane of residual projection.

2.5. Loopback Optimization
Due to measurement and calibration errors, VIO algorithm drifts may cause reduc-

tion in positioning accuracy at any time. The loopback optimization method can form ad-
ditional restraints and suppress the drift problems by estimating the pose changes be-
tween some non-adjacent frames. In the loopback optimization part, the DBoW method
was first used for loopback detection, then a bidirectional KLT algorithm was used to de-
termine the matching point pairs. The PNP method was used to solve the pose change
between two frames, and finally the loopback edge was written into the pose map for
overall optimization.

2.5.1. DBoW Loopback Detection
The algorithm, by reference to VINS-MONO, used DBoW2 image similarity evalua-

tion method for loopback detection. The DBoW2 model is the most advanced word bag
model, which abstracts images into keyword descriptions for matching. In addition, the
pre-stored feature points of the key frame and their descriptors were also used for feature-
matching to improve loopback recall. DBoW2 returns loopback detection candidate
frames after a temporal and spatial consistency check, as shown in Figure 7.

Figure 6. Tangent plane of residual projection.

2.5. Loopback Optimization

Due to measurement and calibration errors, VIO algorithm drifts may cause reduction
in positioning accuracy at any time. The loopback optimization method can form additional
restraints and suppress the drift problems by estimating the pose changes between some
non-adjacent frames. In the loopback optimization part, the DBoW method was first used
for loopback detection, then a bidirectional KLT algorithm was used to determine the match-
ing point pairs. The PNP method was used to solve the pose change between two frames,
and finally the loopback edge was written into the pose map for overall optimization.

2.5.1. DBoW Loopback Detection

The algorithm, by reference to VINS-MONO, used DBoW2 image similarity evaluation
method for loopback detection. The DBoW2 model is the most advanced word bag model,
which abstracts images into keyword descriptions for matching. In addition, the pre-stored
feature points of the key frame and their descriptors were also used for feature-matching
to improve loopback recall. DBoW2 returns loopback detection candidate frames after a
temporal and spatial consistency check, as shown in Figure 7.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 47

Figure 7. Loopback detection and exterior point elimination (the same method in VINS-MONO).

2.5.2. Bidirectional KLT Tracking and PNP Relocation
Like in Section 2.2.1 (1), bidirectional KLT tracking was used to obtain matching fea-

ture point pairs between two frame feature points with loopback, and then the PNP algo-
rithm was used to obtain the pose changes between two frames.

2.5.3. The Management of 4-Dof Pose Diagram

When creating the pose map, the information ˆ ˆ,φ θ obtained by IMU estimation was
considered as accurate and they were therefore free from optimization. Therefore, the
pose map only contained the remaining 4Dof, namely the yaw angle iψ and its position
information x, y, z, respectively.

Here, the edge residual between frames i and j is defined as:

() () ()1

,

ˆ ˆ, ,
, ,

ˆ

ˆ
,

w w i
i i i j i ijw w

i j i i j j

j i ij

φ θ ψ
ψ ψ

ψ ψ ψ

− − − =
 − − 

R p p p
r p p (23)

Among them, ˆ ˆ,i iφ θ are IMU roll and pitch angle estimations that were directly ob-
tained from monocular VIO.

The whole pose map with sequential edges and loop-back edges is optimized by min-
imizing the following cost function:

()2 2

, ,,
(,) (,)

min i j i j
i j i j

ψ
ρ

∈ ∈

  + 
  
 p

r r
 

 (24)

where S is the set of all sequential edges and L is the set of loopback edges. Although
tightly coupled relocation was able to reduce false loopbacks, a Huber norm ()ρ ⋅ was
introduced to further eliminate false loopbacks. In addition, any high-robustness norm
was not used between sequential edges, and VIO was considered to have a strong enough
elimination mechanism for exterior points.

Figure 7. Loopback detection and exterior point elimination (the same method in VINS-MONO).

Symmetry 2022, 14, 2608 12 of 45

2.5.2. Bidirectional KLT Tracking and PNP Relocation

Like in Section 2.2.1 (1), bidirectional KLT tracking was used to obtain matching feature
point pairs between two frame feature points with loopback, and then the PNP algorithm
was used to obtain the pose changes between two frames.

2.5.3. The Management of 4-Dof Pose Diagram

When creating the pose map, the information φ̂, θ̂ obtained by IMU estimation was
considered as accurate and they were therefore free from optimization. Therefore, the
pose map only contained the remaining 4Dof, namely the yaw angle ψi and its position
information x, y, z, respectively.

Here, the edge residual between frames i and j is defined as:

ri,j

(
pw

i , ψi, pw
j , ψj

)
=

[
R
(
φ̂i, θ̂i, ψi

)−1
(

pw
j − pw

i

)
− p̂i

ij

ψj − ψi − ψ̂ij

]
(23)

Among them, φ̂i, θ̂i are IMU roll and pitch angle estimations that were directly obtained
from monocular VIO.

The whole pose map with sequential edges and loop-back edges is optimized by
minimizing the following cost function:

min
p,ψ

 ∑
(i,j)∈S

‖ri,j‖2 + ∑
(i,j)∈L

ρ
(
‖ri,j‖2

) (24)

where S is the set of all sequential edges and L is the set of loopback edges. Although tightly
coupled relocation was able to reduce false loopbacks, a Huber norm ρ(·) was introduced
to further eliminate false loopbacks. In addition, any high-robustness norm was not used
between sequential edges, and VIO was considered to have a strong enough elimination
mechanism for exterior points.

2.6. Simulation Analysis Test

Before the real flight verification, a physical simulation engine was firstly built in the
project, and the ROS Gazebo + Pixhawk scheme was adopted to realize the simulation
verification of the algorithm.

2.6.1. Simulation Engine Gazebo

Gazebo is a 3-D dynamic simulator that accurately and effectively simulates robot
crowds in complex indoor and outdoor environments, as shown in Figure 8. In the same
way that game engines provide high-fidelity visual simulations, Gazebo provides high-
fidelity physical simulations as well as a full suite of sensor models, and very user-friendly
and programs-friendly interactions.

The typical uses of Gazebo include:

• To test a robot algorithm;
• To design a robot;
• To perform a regression test in actual scenarios.

This engine possesses the following characteristics:

• It contains multiple physics engines;
• It contains a rich library of robot models and environments;
• It contains a variety of sensors;
• The program is convenient to design and has a simple graphical interface.

Gazebo can build a simulation scene for robot tests. It can imitate the real world by
adding objects library, garbage bins, ice cream buckets, and even dolls. It can also introduce

Symmetry 2022, 14, 2608 13 of 45

2D house design drawings using a building editor and build 3D houses based on the
design drawings.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 47

2.6. Simulation Analysis Test
Before the real flight verification, a physical simulation engine was firstly built in the

project, and the ROS Gazebo + Pixhawk scheme was adopted to realize the simulation
verification of the algorithm.

2.6.1. Simulation Engine Gazebo
Gazebo is a 3-D dynamic simulator that accurately and effectively simulates robot

crowds in complex indoor and outdoor environments, as shown in Figure 8. In the same
way that game engines provide high-fidelity visual simulations, Gazebo provides high-
fidelity physical simulations as well as a full suite of sensor models, and very user-friendly
and programs-friendly interactions.

Figure 8. Gazebo.

The typical uses of Gazebo include:
 To test a robot algorithm;
 To design a robot;
 To perform a regression test in actual scenarios.

This engine possesses the following characteristics:
 It contains multiple physics engines;
 It contains a rich library of robot models and environments;
 It contains a variety of sensors;
 The program is convenient to design and has a simple graphical interface.

Gazebo can build a simulation scene for robot tests. It can imitate the real world by
adding objects library, garbage bins, ice cream buckets, and even dolls. It can also intro-
duce 2D house design drawings using a building editor and build 3D houses based on the
design drawings.

Gazebo has a very powerful sensor model library, including camera, depth camera,
laser, IMU and other sensors that are commonly used by robots. In addition, it has a sim-
ulation library, which can be used directly. A new sensor can also be created without any
basis and have its specific parameters added. A sensor noise model can even be added to
make the sensor more realistic.

Figure 8. Gazebo.

Gazebo has a very powerful sensor model library, including camera, depth camera,
laser, IMU and other sensors that are commonly used by robots. In addition, it has a
simulation library, which can be used directly. A new sensor can also be created without
any basis and have its specific parameters added. A sensor noise model can even be added
to make the sensor more realistic.

2.6.2. Simulation System

The simulation was carried out in the Gazebo engine. A PX4 UAV with a built-in
IRIS platform was selected, carrying a RealSense d435i depth camera. The simulation
environment was as shown in Figures 9 and 10:

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 47

2.6.2. Simulation System
The simulation was carried out in the Gazebo engine. A PX4 UAV with a built-in IRIS

platform was selected, carrying a RealSense d435i depth camera. The simulation environ-
ment was as shown in Figures 9 and 10:

Figure 9. Simulation environment.

The flight path of the UAV is shown below:

Figure 10. Schematic diagram of the flight path.

Since the final degree of freedom of the pose map was 4Dof, the roll angle and pitch
angle directly determined by IMU were ignored in the evaluation process, and the accu-
racy of the four degrees of freedom of x, y, z and yaw were investigated, as shown in Table
1.

Table 1. Quantitative interpretation and conclusion of Figures 11–15.

Maximum error along X direction < 0.5m Yaw angle error < 5 °
Maximum error along Y direction < 0.6m Absolute error < 0.3m
Maximum error along Z direction < 0.4m Calculated closed-loop error 0.4%≈

Standard deviation
X < 0.05 m
Y < 0.06 m
Z < 0.03m

Figure 9. Simulation environment.

The flight path of the UAV is shown below:

Symmetry 2022, 14, 2608 14 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 47

2.6.2. Simulation System
The simulation was carried out in the Gazebo engine. A PX4 UAV with a built-in IRIS

platform was selected, carrying a RealSense d435i depth camera. The simulation environ-
ment was as shown in Figures 9 and 10:

Figure 9. Simulation environment.

The flight path of the UAV is shown below:

Figure 10. Schematic diagram of the flight path.

Since the final degree of freedom of the pose map was 4Dof, the roll angle and pitch
angle directly determined by IMU were ignored in the evaluation process, and the accu-
racy of the four degrees of freedom of x, y, z and yaw were investigated, as shown in Table
1.

Table 1. Quantitative interpretation and conclusion of Figures 11–15.

Maximum error along X direction < 0.5m Yaw angle error < 5 °
Maximum error along Y direction < 0.6m Absolute error < 0.3m
Maximum error along Z direction < 0.4m Calculated closed-loop error 0.4%≈

Standard deviation
X < 0.05 m
Y < 0.06 m
Z < 0.03m

Figure 10. Schematic diagram of the flight path.

Since the final degree of freedom of the pose map was 4Dof, the roll angle and pitch
angle directly determined by IMU were ignored in the evaluation process, and the accuracy
of the four degrees of freedom of x, y, z and yaw were investigated, as shown in Table 1.

Table 1. Quantitative interpretation and conclusion of Figures 11–15.

Maximum error along X direction < 0.5 m Yaw angle error < 5◦

Maximum error along Y direction < 0.6 m Absolute error < 0.3 m

Maximum error along Z direction < 0.4 m Calculated closed-loop error ≈ 0.4%

Standard deviation
X < 0.05 m

Y < 0.06 m

Z < 0.03 m

In the 12 m × 14 m orbit with a total length of about 70 m, the maximum error along
the x direction was less than 0.5 m, less than 0.6 m along the y direction, and 0.4 m along
the z direction. The yaw angle error was less than 5◦, and absolute error was less than
0.3 m. The yaw error generally stayed at zero, with some small fluctuations when the yaw
angle changed abruptly. The calculated closed-loop error was about 0.3/70 = 0.4%.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 47

Figure 11. Comparison between SLAM and real value along x axis.

Figure 12. Comparison between SLAM and real value along y axis.

Figure 13. Comparison between SLAM and real value along z axis.

Figure 11. Comparison between SLAM and real value along x axis.

Symmetry 2022, 14, 2608 15 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 47

Figure 11. Comparison between SLAM and real value along x axis.

Figure 12. Comparison between SLAM and real value along y axis.

Figure 13. Comparison between SLAM and real value along z axis.

Figure 12. Comparison between SLAM and real value along y axis.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 47

Figure 11. Comparison between SLAM and real value along x axis.

Figure 12. Comparison between SLAM and real value along y axis.

Figure 13. Comparison between SLAM and real value along z axis. Figure 13. Comparison between SLAM and real value along z axis.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 47

Figure 14. Comparison between SLAM and real value along yaw direction.

Figure 15. Diagram of position error.

In the 12 14m m× orbit with a total length of about 70 m, the maximum error along
the x direction was less than 0.5 m, less than 0.6 m along the y direction, and 0.4 m along
the z direction. The yaw angle error was less than 5°, and absolute error was less than 0.3
m. The yaw error generally stayed at zero, with some small fluctuations when the yaw
angle changed abruptly. The calculated closed-loop error was about 0.3/70 = 0.4%.

2.7. Section Conclusion
This section introduced the detailed design of the autonomous positioning algorithm

and the scene construction and simulation of the algorithm carried out in the Gazebo en-
gine. Through the simulations, under a scene with fixed size, autonomous positioning
with a certain extent of accuracy was achieved.

3. Detailed Design of the Map-Building and Trajectory-Planning Algorithm
3.1. The Introduction of the Autonomous Positioning Module

In the mapping and path planning part, the RGB-D camera was selected as a reliable
source of in-depth information. An octree map with mature technology was applied to
realize the construction of the three-dimensional map. The RRT* algorithm was used to
realize obstacle avoidance path planning, and finally the third order spline curve β was
used for motion smoothing.

3.2. Octree Map

Figure 14. Comparison between SLAM and real value along yaw direction.

Symmetry 2022, 14, 2608 16 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 47

Figure 14. Comparison between SLAM and real value along yaw direction.

Figure 15. Diagram of position error.

In the 12 14m m× orbit with a total length of about 70 m, the maximum error along
the x direction was less than 0.5 m, less than 0.6 m along the y direction, and 0.4 m along
the z direction. The yaw angle error was less than 5°, and absolute error was less than 0.3
m. The yaw error generally stayed at zero, with some small fluctuations when the yaw
angle changed abruptly. The calculated closed-loop error was about 0.3/70 = 0.4%.

2.7. Section Conclusion
This section introduced the detailed design of the autonomous positioning algorithm

and the scene construction and simulation of the algorithm carried out in the Gazebo en-
gine. Through the simulations, under a scene with fixed size, autonomous positioning
with a certain extent of accuracy was achieved.

3. Detailed Design of the Map-Building and Trajectory-Planning Algorithm
3.1. The Introduction of the Autonomous Positioning Module

In the mapping and path planning part, the RGB-D camera was selected as a reliable
source of in-depth information. An octree map with mature technology was applied to
realize the construction of the three-dimensional map. The RRT* algorithm was used to
realize obstacle avoidance path planning, and finally the third order spline curve β was
used for motion smoothing.

3.2. Octree Map

Figure 15. Diagram of position error.

2.7. Section Conclusion

This section introduced the detailed design of the autonomous positioning algorithm
and the scene construction and simulation of the algorithm carried out in the Gazebo
engine. Through the simulations, under a scene with fixed size, autonomous positioning
with a certain extent of accuracy was achieved.

3. Detailed Design of the Map-Building and Trajectory-Planning Algorithm
3.1. The Introduction of the Autonomous Positioning Module

In the mapping and path planning part, the RGB-D camera was selected as a reliable
source of in-depth information. An octree map with mature technology was applied to
realize the construction of the three-dimensional map. The RRT* algorithm was used to
realize obstacle avoidance path planning, and finally the third order spline curve β was
used for motion smoothing.

3.2. Octree Map

The point cloud information output by the RGB-D camera can be directly used to
construct the point cloud map, but there are several following obvious defects in the
application of a point cloud map:

• It has a huge amount of data, and there is serious redundant storage and informa-
tion redundancy.

• Point cloud maps are stored in continuous space, which means they can’t be directly
discretized and fast searched.

• This method cannot deal with moving objects and observation errors because we can
add objects into the maps but not remove objects from maps.

In order to solve the above problems, the octree map was introduced. This map form
has the advantages of flexibility, compressibility, updating and discretization.

3.2.1. The Data Structure of the Octree Map

In a discrete map, it is common to model the 3D space as multiple cubes (voxels). If
each facet of the cube is divided into four equally, eight sub-cubes can be obtained until the
required precision is reached. If the process of expanding a cube into sub-cubes is regarded
as expanding eight sub-nodes from one node, then the process of subdividing the whole
space into the smallest sub-space can be regarded as an octo-tree.

Symmetry 2022, 14, 2608 17 of 45

The Figure 16 is the octree map structure diagram. The left one shows the process of
the cube being split into sub-cubes. If the largest cube is regarded as the root node and the
smallest cube as the leaf node, then the octree shown on the right can be formed.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 47

The point cloud information output by the RGB-D camera can be directly used to
construct the point cloud map, but there are several following obvious defects in the ap-
plication of a point cloud map:
 It has a huge amount of data, and there is serious redundant storage and information

redundancy.
 Point cloud maps are stored in continuous space, which means they can't be directly

discretized and fast searched.
 This method cannot deal with moving objects and observation errors because we can

add objects into the maps but not remove objects from maps.
In order to solve the above problems, the octree map was introduced. This map form

has the advantages of flexibility, compressibility, updating and discretization.

3.2.1. The Data Structure of the Octree Map
In a discrete map, it is common to model the 3D space as multiple cubes (voxels). If

each facet of the cube is divided into four equally, eight sub-cubes can be obtained until
the required precision is reached. If the process of expanding a cube into sub-cubes is
regarded as expanding eight sub-nodes from one node, then the process of subdividing
the whole space into the smallest sub-space can be regarded as an octo-tree.

The Figure 16 is the octree map structure diagram. The left one shows the process of
the cube being split into sub-cubes. If the largest cube is regarded as the root node and the
smallest cube as the leaf node, then the octree shown on the right can be formed.

Figure 16. The structure diagram of an octree.

An octree map saves storage space because of its data structure. When all the sub-
nodes of a cube are occupied or not occupied, there is no need to continue to expand the
node; therefore, only an empty root node is needed when a blank map begins to be estab-
lished. The actual objects are most closely linked, and it is the same with blank space.
Therefore, most octree nodes do not need to be expanded to cotyledon nodes, which can
save a lot of storage space.

The occupation information stored in each node of the octree is expressed by the
probability: 0 means completely blank and 1 means completely occupied. The initial value
is 0.5. If the node is detected to be continuously occupied, the value will increase; other-
wise, the value will decrease.

3.2.2. Node Probability Updating
According to the derivation of octree, assuming that when t = 1,2..., T, the observed

data is 1 , ..., Tz z , then the information recorded by the nth leaf node is:

Figure 16. The structure diagram of an octree.

An octree map saves storage space because of its data structure. When all the sub-
nodes of a cube are occupied or not occupied, there is no need to continue to expand
the node; therefore, only an empty root node is needed when a blank map begins to be
established. The actual objects are most closely linked, and it is the same with blank space.
Therefore, most octree nodes do not need to be expanded to cotyledon nodes, which can
save a lot of storage space.

The occupation information stored in each node of the octree is expressed by the
probability: 0 means completely blank and 1 means completely occupied. The initial value
is 0.5. If the node is detected to be continuously occupied, the value will increase; otherwise,
the value will decrease.

3.2.2. Node Probability Updating

According to the derivation of octree, assuming that when t = 1,2, . . . , T, the observed
data is z1, . . . , zT , then the information recorded by the nth leaf node is:

P(n | z1:T) =

[
1 +

1− P(n | zT)

P(n | zT)

1− P(n | z1:T−1)

P(n | z1:T−1)

P(n)
1− P(n)

]−1

(25)

Since the information expressed directly by probability is too complex to be updated,
the algorithm uses log-odds as an alternative description method. Set y ∈ R as a probability
logarithm, x as the probability value between 0 and 1, then the transformation between
them can be described by logit transformation:

y = logit(x) = log
(

x
1− x

)
(26)

And its inverse transformation is shown below:

x = logit−1(y) =
exp(y)

exp(y) + 1
(27)

When y changes from −∞ to +∞, x correspondingly changes from 0 to 1. When y = 0,
x = 0.5, so we can judge whether a node is occupied or not by storing the value of y. When

Symmetry 2022, 14, 2608 18 of 45

point clouds are observed continuously in nodes, y increases by a value; when the observed
node is empty, y decreases by a certain value. Transfer y to the probability space and utilize
the logit inverse transformation when checking the probability.

Set a node as n and the observed data as z. The probability value of this node from the
beginning to t is L(n|z1:t) , and the probability at t + 1 is as follows:

L(n | z1:t+1) = L(n | z1:t−1) + L(n | zt) (28)

With this log probability, the entire octree map can be updated according to RGB-D
data. If the depth of a pixel observed in the RGB-D graph is d, it means that an occupied
point is observed in the space corresponding to the depth value, and there is no obstacle in
the path from the camera optical center to this point.

3.3. Path Planning

Rapidly exploring random tree (RRT) was selected as the path planning algorithm. Tra-
ditional path planning algorithms such as the artificial potential field method, the method
of fuzzy rules, genetic algorithm, neural network and simulated annealing algorithm, ant
colony optimization algorithm, etc., are not suitable for the path planning of multi-degree-
of-freedom robots in complex environments because they all require modeling obstacles in
a certain space, and the computational complexity has an exponential relationship with the
DOF of robots.

RRT effectively solves the problem of path planning under conditions of high-dimensional
space and complex constraints because it avoids space modeling by detecting the collision of
sampling points in the state space, avoiding the modeling of the space. The characteristic of
this method is that it can search the high-dimensional space quickly and effectively and lead
detection to blank areas through random sampling points in the state space and then find a
planned path from the starting point to the target point, which is suitable for solving the path
planning of multi-degree-of-freedom robots in complex and dynamic environments. Note
that the RRT algorithm is probabilistically complete and non-optimal, and path planning only
finds a feasible path, which may not be optimal.

3.3.1. Basic RRT Algorithm

RRT is an efficient planning method in multi-dimensional space. It takes an initial
point as the root node and generates a randomly extended tree by adding leaf nodes
through random sampling [26–28]. When the leaf nodes in the random tree contain the
target point or enter the target area, a path from the initial point to the target point can be
found in the random tree. The workflow of a basic RRT algorithm is as follows:

Initialize the random root node Xinit, which is the starting point of path planning.
A random number P between 0 and 1 is generated. When P < Prob, a sampling point

is randomly selected from the state space as Xrand. When P > Prob, the target point is used
as Xrand.

Select the nearest point from Xrand in random tree nodes as Xnearest, expand some
distance from Xnearest to Xrand to obtain the new node Xnew and the new edge Lnew.

Record the running time: if the run times out, it returns no solution.
If Xnew and Lnew collide with the obstacles in the state space, return to step 2 and

repeat it. If there is no collision, then run tree growth, and add Xnew into the random tree
as Xnearest’s leaf node.

Judge whether Xnew is the target point or not; if it is, then output the current random
tree; otherwise, return to step 2 and repeat it.

The basic RRT algorithm process is shown in Figure 17 below:

Symmetry 2022, 14, 2608 19 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 20 of 47

target point or enter the target area, a path from the initial point to the target point can be
found in the random tree. The workflow of a basic RRT algorithm is as follows:

Initialize the random root node Xinit, which is the starting point of path planning.
A random number P between 0 and 1 is generated. When P < Prob, a sampling point

is randomly selected from the state space as Xrand. When P > Prob, the target point is used
as Xrand.

Select the nearest point from Xrand in random tree nodes as Xnearest, expand some
distance from Xnearest to Xrand to obtain the new node Xnew and the new edge Lnew.

Record the running time: if the run times out, it returns no solution.
If Xnew and Lnew collide with the obstacles in the state space, return to step 2 and

repeat it. If there is no collision, then run tree growth, and add Xnew into the random tree
as Xnearest's leaf node.

Judge whether Xnew is the target point or not; if it is, then output the current random
tree; otherwise, return to step 2 and repeat it.

The basic RRT algorithm process is shown in Figure 17 below:

Figure 17. Flow of basic RRT algorithm. Figure 17. Flow of basic RRT algorithm.

The basic RRT algorithm is not sensitive to the environment and can effectively explore
the whole space. However, it also has serious disadvantages in some application conditions:

The basic RRT algorithm is a pure random search algorithm, which degrades the
search efficiency significantly when the environment contains many obstacles or narrow
channel constraints, as shown in Figure 18.

Symmetry 2022, 14, 2608 20 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 47

The basic RRT algorithm is not sensitive to the environment and can effectively ex-
plore the whole space. However, it also has serious disadvantages in some application
conditions:

The basic RRT algorithm is a pure random search algorithm, which degrades the
search efficiency significantly when the environment contains many obstacles or narrow
channel constraints, as shown in Figure 18.

Figure 18. Performance of the RRT algorithm in a maze.

Because the narrow channel area is small, the probability of being touched is low,
and this is why it is difficult to find a path in an environment with narrow passageways,
as shown in Figure 19.

Figure 19. Performance of the RRT algorithm in an environment with narrow passageways.

Because the nodes of the RRT algorithm are completely randomly generated, the path
may not be relatively smooth, and it cannot be directly applied for path and motion plan-
ning.

3.3.2. RRT* Algorithm
Although RRT is a relatively efficient algorithm that can deal with path planning

problems with nonholonomic constraints, and has great advantages in many aspects, the

Figure 18. Performance of the RRT algorithm in a maze.

Because the narrow channel area is small, the probability of being touched is low, and
this is why it is difficult to find a path in an environment with narrow passageways, as
shown in Figure 19.

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 47

The basic RRT algorithm is not sensitive to the environment and can effectively ex-
plore the whole space. However, it also has serious disadvantages in some application
conditions:

The basic RRT algorithm is a pure random search algorithm, which degrades the
search efficiency significantly when the environment contains many obstacles or narrow
channel constraints, as shown in Figure 18.

Figure 18. Performance of the RRT algorithm in a maze.

Because the narrow channel area is small, the probability of being touched is low,
and this is why it is difficult to find a path in an environment with narrow passageways,
as shown in Figure 19.

Figure 19. Performance of the RRT algorithm in an environment with narrow passageways.

Because the nodes of the RRT algorithm are completely randomly generated, the path
may not be relatively smooth, and it cannot be directly applied for path and motion plan-
ning.

3.3.2. RRT* Algorithm
Although RRT is a relatively efficient algorithm that can deal with path planning

problems with nonholonomic constraints, and has great advantages in many aspects, the

Figure 19. Performance of the RRT algorithm in an environment with narrow passageways.

Because the nodes of the RRT algorithm are completely randomly generated, the path
may not be relatively smooth, and it cannot be directly applied for path and motion planning.

3.3.2. RRT* Algorithm

Although RRT is a relatively efficient algorithm that can deal with path planning
problems with nonholonomic constraints, and has great advantages in many aspects, the
RRT algorithm can’t guarantee that the obtained feasible path is relatively optimized. RRT*
was improved based on RRT, mainly by reselecting the parent node and rewiring.

In RRT, the nearest point to Xrand is selected as the parent node in the extended node
policy, but this choice is not necessarily optimal. The goal of planning is to make this point

Symmetry 2022, 14, 2608 21 of 45

as close as possible to the starting point. Many improvements have been achieved using
RRT* by drawing a small circle around the sampling point after it is added to the path tree
and considering whether there are better parent nodes to connect to that point so that the
distance from the starting point to the point is shorter (although those nodes may not be
the closest points to the sampling point). If a more suitable parent is chosen, then connect
them and remove the original wiring (rewiring).

The RRT* algorithm is asymptotically optimized, which means that the resulting path
is more and more optimized with the increase of the number of iterations, and it is never
possible to obtain the optimal path in limited time. In other words, it takes a certain amount
of running time to get a relatively satisfactory and optimized path.

In the rewiring process, the tree structure is optimized by introducing the path length
parameter to achieve the optimal path planning. The specific optimization process in-
cludes the following 15 main steps. The process and steps of rewiring are introduced as
Figures 20–22:

(1) Generate a random point Xrand;
(2) Find the nearest node Xnearest from Xrand on the tree;
(3) Connect Xrand with Xnearest;
(4) With Xrand as the center, search for nodes in the tree with a certain radius and find

out the set of potential parent nodes {Xpotential_parent}. The purpose is to update
Xrand and observe whether there is a better parent node;

(5) Start with a potential parent, Xpotential_parent;
(6) Calculate the cost of Xnearest being the parent node;
(7) Instead of performing collision detection, connect Xpotential_parent with Xchild (that

is, Xrand) and calculate the path cost;
(8) Compare the cost of the new path with that of the initial path. If the cost of the new

path is smaller, the collision detection will be carried out; otherwise, the next potential
parent node will be replaced;

(9) If collision detection fails, the potential parent node will not act as the new parent node;
(10) Turn to the next potential parent;
(11) Connect the potential parent node to Xchild (that is, Xrand) and calculate the path cost;
(12) Compare the cost of the new path with the cost of the original path. If the cost of the

new path is smaller, the collision detection will be carried out; if the cost of the new
path is larger, the next potential parent node will be replaced;

(13) The collision detection passes;
(14) Delete the previous edges from the tree;
(15) Add a new edge to the tree, and take the current Xpotential_parent as the parent

of Xrand.

Symmetry 2022, 14, x FOR PEER REVIEW 22 of 47

RRT algorithm can’t guarantee that the obtained feasible path is relatively optimized.
RRT* was improved based on RRT, mainly by reselecting the parent node and rewiring.

In RRT, the nearest point to Xrand is selected as the parent node in the extended node
policy, but this choice is not necessarily optimal. The goal of planning is to make this point
as close as possible to the starting point. Many improvements have been achieved using
RRT* by drawing a small circle around the sampling point after it is added to the path tree
and considering whether there are better parent nodes to connect to that point so that the
distance from the starting point to the point is shorter (although those nodes may not be
the closest points to the sampling point). If a more suitable parent is chosen, then connect
them and remove the original wiring (rewiring).

The RRT* algorithm is asymptotically optimized, which means that the resulting path
is more and more optimized with the increase of the number of iterations, and it is never
possible to obtain the optimal path in limited time. In other words, it takes a certain
amount of running time to get a relatively satisfactory and optimized path.

In the rewiring process, the tree structure is optimized by introducing the path length
parameter to achieve the optimal path planning. The specific optimization process in-
cludes the following 15 main steps. The process and steps of rewiring are introduced as
Figures 20–22:
(1) Generate a random point Xrand;
(2) Find the nearest node Xnearest from Xrand on the tree;
(3) Connect Xrand with Xnearest;
(4) With Xrand as the center, search for nodes in the tree with a certain radius and find

out the set of potential parent nodes {Xpotential_parent}. The purpose is to update
Xrand and observe whether there is a better parent node;

(5) Start with a potential parent, Xpotential_parent;
(6) Calculate the cost of Xnearest being the parent node;
(7) Instead of performing collision detection, connect Xpotential_parent with Xchild

(that is, Xrand) and calculate the path cost;
(8) Compare the cost of the new path with that of the initial path. If the cost of the new

path is smaller, the collision detection will be carried out; otherwise, the next poten-
tial parent node will be replaced;

(9) If collision detection fails, the potential parent node will not act as the new parent
node;

(10) Turn to the next potential parent;
(11) Connect the potential parent node to Xchild (that is, Xrand) and calculate the path

cost;
(12) Compare the cost of the new path with the cost of the original path. If the cost of the

new path is smaller, the collision detection will be carried out; if the cost of the new
path is larger, the next potential parent node will be replaced;

(13) The collision detection passes;
(14) Delete the previous edges from the tree;
(15) Add a new edge to the tree, and take the current Xpotential_parent as the parent of

Xrand.

(a) (b) (c)

Figure 20. Cont.

Symmetry 2022, 14, 2608 22 of 45Symmetry 2022, 14, x FOR PEER REVIEW 23 of 47

(d) (e) (f)

Figure 20. Step (1) to (6). (a) Generate random point; (b) find the nearest node; (c) find initial par-
ent node; (d) find potential parent nodes; (e) select potential parent node; (f) calculate the initial
path cost.

(a) (b) (c)

(d) (e) (f)

Figure 21. Step (7) to (12). (a) Calculate the new path cost; (b) compare the cost of new path and
initial; (c) failure of collision detection; (d) select new parent nodes; (e) calculate the new path cost;
(f) the comparison of the cost of new and initial paths.

(a) (b) (c)

Figure 22. Collision detection passes. (a) The collision detection passes; (b) delete the previous
path edges; (c) add new edges.

Figure 20. Step (1) to (6). (a) Generate random point; (b) find the nearest node; (c) find initial parent
node; (d) find potential parent nodes; (e) select potential parent node; (f) calculate the initial path cost.

Symmetry 2022, 14, x FOR PEER REVIEW 23 of 47

(d) (e) (f)

Figure 20. Step (1) to (6). (a) Generate random point; (b) find the nearest node; (c) find initial par-
ent node; (d) find potential parent nodes; (e) select potential parent node; (f) calculate the initial
path cost.

(a) (b) (c)

(d) (e) (f)

Figure 21. Step (7) to (12). (a) Calculate the new path cost; (b) compare the cost of new path and
initial; (c) failure of collision detection; (d) select new parent nodes; (e) calculate the new path cost;
(f) the comparison of the cost of new and initial paths.

(a) (b) (c)

Figure 22. Collision detection passes. (a) The collision detection passes; (b) delete the previous
path edges; (c) add new edges.

Figure 21. Step (7) to (12). (a) Calculate the new path cost; (b) compare the cost of new path and
initial; (c) failure of collision detection; (d) select new parent nodes; (e) calculate the new path cost;
(f) the comparison of the cost of new and initial paths.

Symmetry 2022, 14, x FOR PEER REVIEW 23 of 47

(d) (e) (f)

Figure 20. Step (1) to (6). (a) Generate random point; (b) find the nearest node; (c) find initial par-
ent node; (d) find potential parent nodes; (e) select potential parent node; (f) calculate the initial
path cost.

(a) (b) (c)

(d) (e) (f)

Figure 21. Step (7) to (12). (a) Calculate the new path cost; (b) compare the cost of new path and
initial; (c) failure of collision detection; (d) select new parent nodes; (e) calculate the new path cost;
(f) the comparison of the cost of new and initial paths.

(a) (b) (c)

Figure 22. Collision detection passes. (a) The collision detection passes; (b) delete the previous
path edges; (c) add new edges.

Figure 22. Collision detection passes. (a) The collision detection passes; (b) delete the previous path
edges; (c) add new edges.

Symmetry 2022, 14, 2608 23 of 45

3.4. Smoothing the Interpolation of Third-Order β Spline

Although the RRT* algorithm improves the optimality and smoothness of the planned
trajectory, it still has many sharp points and cannot be directly used for trajectory control.
Here, third-order β spline interpolation is used to smoothen the solution of RRT*, which
can ensure the continuous acceleration control signal of the motion trajectory.

3.4.1. Node Table

The node table is the key parameter to generating the basic function table, and it
is strictly equal to the sum of the number of control points: the number of orders plus
one. The parameters of the node table are set artificially. For β spline curve, there are two
general ways to set it: sequential method and clamped method. The former is used to make
standard β spline open and closed curves, and the latter is used to make a more practical β
spline curve.

The order list only needs to be set linearly from 0 to 1, while the clamped list needs to
set the nodes of each order plus 1 before and after as 0. Taking the third-order spline curve
with six control points as an example, the size of its node table is 6 + 3 + 1 = 10.

If it is a sequential list, we only need to set it in order:

0,
1
9

,
2
9

,
3
9

,
4
9

,
5
9

,
6
9

,
7
9

,
8
9

, 1 (29)

If it is a clamped list, since it is the third order, the former 3 + 1 parameters are set as 0,
the latter 3 + 1 parameters are set as 1, and the remaining parameters increase evenly:

0, 0, 0, 0,
1
3

,
2
3

, 1, 1, 1, 1 (30)

3.4.2. Basic Function Tables

The basic function table is essentially a recursive equation, but it is also an intermediate
parameter at the same time. The formula is as follows:

Bi,deg(t) =
t− knoti

knoti+deg − knoti
Bi,deg−1(t) +

knoti+deg+1 − t
knoti+deg+1 − knoti+1

Bi+1,deg−1(t) (31)

where, t is the node to be interpolated; knoti represents the ith element in the node table;
Bi,deg(t) is the parameter of the basic function table, whose structure is a two-dimensional
array, and its meaning is the value of the ith element of the basic function table at the deg
order when the user input is t.

The recursive characteristics of the function table can be seen from (31). The current
elements of the deg order need to be calculated by two elements of the deg − 1 order. In
addition, β spline curve algorithm requires that when the function table returns to order 0,
it can be calculated according to the following formula:

Bi,0

{
1 knoti ≤ t ≤ knoti+1
0 knoti > t or knoti+1 < t

(32)

3.4.3. Calculation

Assuming that the corresponding position of the t value in the β spline curve is C(t)
finally, the calculation formula of the final β spline curve is:

Ct =
n−1

∑
i=0

Bi,deg(t)Pi (33)

where Bi,deg(t) is the value of the ith deg order basic function table at t, and Pi is the ith
interpolation control point.

Symmetry 2022, 14, 2608 24 of 45

3.5. Simulation Test and Analysis

The simulation was carried out in the Gazebo engine. A UAV PX4 with a built-in
IRIS platform was selected and carried a RealSense D435I depth camera. The simulation
environment is shown in Figure 23:

Symmetry 2022, 14, x FOR PEER REVIEW 25 of 47

1

,deg
0

()
n

t i i
i

C B t P
−

=

= (33)

where ,deg ()iB t is the value of the ith deg order basic function table at t, and iP is the ith
interpolation control point.

3.5. Simulation Test and Analysis
The simulation was carried out in the Gazebo engine. A UAV PX4 with a built-in IRIS

platform was selected and carried a RealSense D435I depth camera. The simulation envi-
ronment is shown in Figure 23:

Figure 23. Screenshots of mapping simulation environment. Figure 23. Screenshots of mapping simulation environment.

In the map building test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was adopted as
the positioning system. The results of map building of the simulation environment are
shown in Figure 24:

Symmetry 2022, 14, 2608 25 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 26 of 47

In the map building test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was adopted as
the positioning system. The results of map building of the simulation environment are
shown in Figure 24:

Figure 24. Cont.

Symmetry 2022, 14, 2608 26 of 45Symmetry 2022, 14, x FOR PEER REVIEW 27 of 47

Figure 24. Map building results.

In the path planning test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was chosen as
the positioning system. The path planning environment is shown in Figure 25:

Figure 25. The path planning simulation environment.

Through path planning, the UAV can autonomously avoid obstacles in indoor envi-
ronments and reach the target location. Parts of the path planning results are shown in
Figures 26 and 27:

Figure 24. Map building results.

In the path planning test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was chosen as the
positioning system. The path planning environment is shown in Figure 25:

Symmetry 2022, 14, x FOR PEER REVIEW 27 of 47

Figure 24. Map building results.

In the path planning test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was chosen as
the positioning system. The path planning environment is shown in Figure 25:

Figure 25. The path planning simulation environment.

Through path planning, the UAV can autonomously avoid obstacles in indoor envi-
ronments and reach the target location. Parts of the path planning results are shown in
Figures 26 and 27:

Figure 25. The path planning simulation environment.

Through path planning, the UAV can autonomously avoid obstacles in indoor envi-
ronments and reach the target location. Parts of the path planning results are shown in
Figures 26 and 27:

Symmetry 2022, 14, 2608 27 of 45

1

Figure 26. Path planning working condition 1.

1

Figure 27. Path planning working condition 2.

3.6. Section Conclusion

In this section, the map building and path planning algorithms were introduced in
detail, and the above two algorithms were verified by the Gazebo engine. The results show
that the proposed algorithm can fulfill the task requirements well.

4. The Detailed Design of the Target Detection and Recognition Algorithm
4.1. The Introduction of Target Detection and Recognition Module

Since there is no specific cooperation target for detection, the recognition algorithm to
be selected needs to be commonly appliable, transferable, and robust. At the same time, the
algorithm should be optimized and accelerated under limited performance of the airborne
processor to ensure that the high-speed UAV can accurately capture the target [29,30].

Symmetry 2022, 14, 2608 28 of 45

Therefore, the Jetson series GPU development board XavierNX was finally selected as
the computing platform, the YOLOv3 network was used as the basic detection algorithm,
and TensorRT architecture was introduced to achieve GPU inference acceleration.

4.2. Target Detection Network

At present, target detection algorithms can be divided into two categories according
to the process. One of them is the region-convolutional neural network (R-CNN) algorithm
based on region proposals such as R-CNN, fast R-CNN, etc. These algorithms are two-stage
methods, which require the use of heuristic methods or convolutional neural networks to
generate candidate regions, and after that the regions need classification and regression.
The other category is the one-stage algorithm, e.g., YOLO and SSD, which uses a unified
convolutional neural network structure to perform regressive prediction for the location
and categorization of targets at the same time. The first kind of method is characterized by
high accuracy but slow speed, and the second kind of algorithm runs fast with low accuracy.

Overall, the YOLO algorithm is an end-to-end target recognition network, using a
separate full-convolution neural network model, and its workflow is shown in Figure 28:
Firstly, the resolution of the input images should be unified as 448 × 448, then put the
images into the convolution neural network, finally these images are processed by the
output part, and obtain the location and category information of the target. Compared with
R-CNN and other two-stage algorithms, its structure is more concise and unified, with
faster processing speed and easier hardware acceleration. At the same time, the YOLO
training and processing courses are both end-to-end, and the available network can be
directly obtained from the image training set.

Symmetry 2022, 14, x FOR PEER REVIEW 29 of 47

Therefore, the Jetson series GPU development board XavierNX was finally selected
as the computing platform, the YOLOv3 network was used as the basic detection algo-
rithm, and TensorRT architecture was introduced to achieve GPU inference acceleration.

4.2. Target Detection Network
At present, target detection algorithms can be divided into two categories according

to the process. One of them is the region-convolutional neural network (R-CNN) algo-
rithm based on region proposals such as R-CNN, fast R-CNN, etc. These algorithms are
two-stage methods, which require the use of heuristic methods or convolutional neural
networks to generate candidate regions, and after that the regions need classification and
regression. The other category is the one-stage algorithm, e.g., YOLO and SSD, which uses
a unified convolutional neural network structure to perform regressive prediction for the
location and categorization of targets at the same time. The first kind of method is charac-
terized by high accuracy but slow speed, and the second kind of algorithm runs fast with
low accuracy.

Overall, the YOLO algorithm is an end-to-end target recognition network, using a
separate full-convolution neural network model, and its workflow is shown in Figure 28:
Firstly, the resolution of the input images should be unified as 448 × 448, then put the
images into the convolution neural network, finally these images are processed by the
output part, and obtain the location and category information of the target. Compared
with R-CNN and other two-stage algorithms, its structure is more concise and unified,
with faster processing speed and easier hardware acceleration. At the same time, the
YOLO training and processing courses are both end-to-end, and the available network
can be directly obtained from the image training set.

Figure 28. The workflow of the YOLO target detection network.

In terms of network structure, YOLO uses a unified convolutional neural network
sequence to process images and obtain feature sequences, and then uses a shallow convo-
lutional neural network to perform position regression and category prediction. The spe-
cific network structure is shown in Figure 29.

In terms of the internal structure of the network, a 3 × 3 convolution kernel is mainly
used for feature extraction and abstraction, a 1 × 1 convolution kernel is used for cascade
cross-channel parameter pooling, and a LeakyReLU function is adopted as the activation
function: max(, 0.1)x x . Note that the activation function at the last layer of the network is
replaced with a linear one. The final output of the network is a tensor whose size is 7 7 30× ×
, where 7S = is the number of grids, the first 20 elements in the third dimension repre-
sent the degree of confidence of the 20 classifications, elements 21–22 are the degree of
confidence of the bounding box 2B= , and the last 8 elements are the (, , ,)x y w h of the
bounding box 2B= .

Figure 28. The workflow of the YOLO target detection network.

In terms of network structure, YOLO uses a unified convolutional neural network
sequence to process images and obtain feature sequences, and then uses a shallow convolu-
tional neural network to perform position regression and category prediction. The specific
network structure is shown in Figure 29.

Symmetry 2022, 14, x FOR PEER REVIEW 30 of 47

Figure 29. YOLO network structure.

The main features of the YOLO target detector are as follows:
(1) Features extraction network

Although the YOLOv1 network adopts the structure of the GoogLeNet classification
network; it uses 1*1 and 3*3 CNN networks in feature extraction to lower the dimension-
ality of high-dimensional information and realize the information integration of high and
low channels in the network. In the main part of feature extraction, YOLOv2 uses the
multi-scale feature fusion method of the single shot multi-box detector (SSD) network and
proposes to use the DarkNET-19 network to improve the fine-grained feature extraction
in images. Since YOLOv2 only performs feature fusion in the latter layer and produces
fixed-size feature maps, this method easily leads to the loss of most fine-grained infor-
mation in the fusion process of high and low semantics. Thus, YOLOv2 has a poor detec-
tion effect for intensive small targets. While maintaining the detection speed, YOLOv3
adopts the simplified residual basic module to replace the 1*1 and 3*3 modules in the
original CNN, and a deeper DarkNET-53 network is constructed as the feature extraction
backbone network of YOLOv3.
(2) Residual mechanism

The YOLOv2 feature extraction in DarkNET-19 uses a straight tube network struc-
ture such as GoogLeNet or visual geometry group (VGG). Convolution is directly added
in DarkNET-19 to deepen the network to realize the purpose of extracting more useful
feature information by convolution network. This easily leads to the disappearance or ex-
plosion of the loss gradient in the network learning training process. For this reason,
YOLOv3 in DarkNET-53, drawing on the concept of ResNet, uses a residual module to
achieve the superposition of the output feature map of convolution with the input to solve
the contradiction between network depth and gradient disappearance.
(3) Feature map

In the network, before YOLOv3 outputs the feature map, a method combining the
feature pyramid network (FPN) and upsampling is proposed based on the FPN method
in SSD, which improves the problem of the loss of fine-grained target feature information
in the fusion of multiple high-level information and low-level information in the feature
map. The basic idea of this method is: based on the current feature map, the upsampling
method is used to concatenate the output features of a convolution layer into a new feature
map. This structure can not only improve the feature richness of fine-grained targets, but
also help the algorithm to improve the accuracy of target prediction.

4.3. TensorRT Inference Acceleration
NvidiaTensorRT, formerly known as the graphics processing unit (GPU) inference

engine (GIE), is a high-performance deep learning inference optimizer that can provide

Figure 29. YOLO network structure.

In terms of the internal structure of the network, a 3 × 3 convolution kernel is mainly
used for feature extraction and abstraction, a 1 × 1 convolution kernel is used for cascade

Symmetry 2022, 14, 2608 29 of 45

cross-channel parameter pooling, and a LeakyReLU function is adopted as the activation
function: max(x, 0.1x). Note that the activation function at the last layer of the network
is replaced with a linear one. The final output of the network is a tensor whose size is
7× 7× 30, where S = 7 is the number of grids, the first 20 elements in the third dimension
represent the degree of confidence of the 20 classifications, elements 21–22 are the degree
of confidence of the bounding box B = 2, and the last 8 elements are the (x, y, w, h) of the
bounding box B = 2.

The main features of the YOLO target detector are as follows:

(1) Features extraction network

Although the YOLOv1 network adopts the structure of the GoogLeNet classification
network; it uses 1 × 1 and 3 × 3 CNN networks in feature extraction to lower the di-
mensionality of high-dimensional information and realize the information integration of
high and low channels in the network. In the main part of feature extraction, YOLOv2
uses the multi-scale feature fusion method of the single shot multi-box detector (SSD)
network and proposes to use the DarkNET-19 network to improve the fine-grained feature
extraction in images. Since YOLOv2 only performs feature fusion in the latter layer and
produces fixed-size feature maps, this method easily leads to the loss of most fine-grained
information in the fusion process of high and low semantics. Thus, YOLOv2 has a poor
detection effect for intensive small targets. While maintaining the detection speed, YOLOv3
adopts the simplified residual basic module to replace the 1 × 1 and 3 × 3 modules in the
original CNN, and a deeper DarkNET-53 network is constructed as the feature extraction
backbone network of YOLOv3.

(2) Residual mechanism

The YOLOv2 feature extraction in DarkNET-19 uses a straight tube network structure
such as GoogLeNet or visual geometry group (VGG). Convolution is directly added in
DarkNET-19 to deepen the network to realize the purpose of extracting more useful feature
information by convolution network. This easily leads to the disappearance or explosion
of the loss gradient in the network learning training process. For this reason, YOLOv3
in DarkNET-53, drawing on the concept of ResNet, uses a residual module to achieve
the superposition of the output feature map of convolution with the input to solve the
contradiction between network depth and gradient disappearance.

(3) Feature map

In the network, before YOLOv3 outputs the feature map, a method combining the
feature pyramid network (FPN) and upsampling is proposed based on the FPN method in
SSD, which improves the problem of the loss of fine-grained target feature information in
the fusion of multiple high-level information and low-level information in the feature map.
The basic idea of this method is: based on the current feature map, the upsampling method
is used to concatenate the output features of a convolution layer into a new feature map.
This structure can not only improve the feature richness of fine-grained targets, but also
help the algorithm to improve the accuracy of target prediction.

4.3. TensorRT Inference Acceleration

NvidiaTensorRT, formerly known as the graphics processing unit (GPU) inference
engine (GIE), is a high-performance deep learning inference optimizer that can provide
low-latency and high-throughput deployment inference for deep learning applications.
TensorRT can be used to accelerate reasoning for exceedingly large-scale data centers,
embedded platforms or autonomous driving platforms. TensorRT can now support al-
most all deep learning frameworks such as TensorFlow, Caffe, Mxnet, Pytorch and so on.
Combining TensorRT with NVIDIA GPU, a fast and efficient deployment inference can be
realized in almost all frameworks. TensorRT is currently the only programmable inference
accelerator that can build and optimize customized network structures in addition to its
on-premise network structure, so it can adapt to existing network structures and ones in
the near future.

Symmetry 2022, 14, 2608 30 of 45

TensorRT has the following optimization methods, the most important of which are
the first two kinds of adjustment to the network operation structure:

(1) Interlayer fusion and tensor fusion

Taking a GoogleNetInception calculation as an example, the left part of Figure 30 below
is the calculation chart. There are many layers in this structure. During the deployment of
model inference, the calculations of each layer are completed by the GPU, but in the actual
computing process, the GPU starts different compute unified device architecture (CUDA)
cores to complete the computation. The computing speed of the CUDA core tensor is very
fast, and the operation time mainly consists of the slow core startup and read and write
processes of the tensor, which cause a large amount of occupation of memory bandwidth
and a waste of GPU computing resource. By the transverse and longitudinal merger
between layers (the merged structure of convolution, bias and ReLU layers are fused to
form a single layer called case-based reasoning (CBR)), the number of layers in the network
is greatly reduced while maintaining the original functions. Lateral merging can combine
convolution, offset and activation layers into a CBR structure. Vertical merging can combine
layers with the same structure but different weights into a wider layer. Both operations
can make the optimized structure occupy only one CUDA, and reduce the number of data
transfers, memory bandwidth occupation and the time of core start and stop.

Symmetry 2022, 14, x FOR PEER REVIEW 31 of 47

low-latency and high-throughput deployment inference for deep learning applications.
TensorRT can be used to accelerate reasoning for exceedingly large-scale data centers, em-
bedded platforms or autonomous driving platforms. TensorRT can now support almost
all deep learning frameworks such as TensorFlow, Caffe, Mxnet, Pytorch and so on. Com-
bining TensorRT with NVIDIA GPU, a fast and efficient deployment inference can be re-
alized in almost all frameworks. TensorRT is currently the only programmable inference
accelerator that can build and optimize customized network structures in addition to its
on-premise network structure, so it can adapt to existing network structures and ones in
the near future.

TensorRT has the following optimization methods, the most important of which are
the first two kinds of adjustment to the network operation structure:
(1) Interlayer fusion and tensor fusion

Taking a GoogleNetInception calculation as an example, the left part of Figure 30
below is the calculation chart. There are many layers in this structure. During the deploy-
ment of model inference, the calculations of each layer are completed by the GPU, but in
the actual computing process, the GPU starts different compute unified device architec-
ture (CUDA) cores to complete the computation. The computing speed of the CUDA core
tensor is very fast, and the operation time mainly consists of the slow core startup and
read and write processes of the tensor, which cause a large amount of occupation of
memory bandwidth and a waste of GPU computing resource. By the transverse and lon-
gitudinal merger between layers (the merged structure of convolution, bias and ReLU
layers are fused to form a single layer called case-based reasoning (CBR)), the number of
layers in the network is greatly reduced while maintaining the original functions. Lateral
merging can combine convolution, offset and activation layers into a CBR structure. Ver-
tical merging can combine layers with the same structure but different weights into a
wider layer. Both operations can make the optimized structure occupy only one CUDA,
and reduce the number of data transfers, memory bandwidth occupation and the time of
core start and stop.

The combined calculation is shown on the right side of Figure 30. Fewer computation
layers lead to less occupation of CUDA cores, and the entire model structure is more com-
pact and efficient.

Figure 30. TensorRT optimization model.

(2) Data accuracy calibration
Most deep learning frameworks train neural networks with tensors at full 32-bit pre-

cision (FP32), and once the network is trained, the data length can be reduced to speed up
the access and operation because backpropagation is not needed in the process of deploy-
ing inference. TensorRT supports FP16 and INT8 data compression acceleration modes.
TensorRT provides a fully automatic calibration process to lower FP32 accuracy to INT8
accuracy with best matching performance and minimize performance loss.

Figure 30. TensorRT optimization model.

The combined calculation is shown on the right side of Figure 30. Fewer computation
layers lead to less occupation of CUDA cores, and the entire model structure is more
compact and efficient.

(2) Data accuracy calibration

Most deep learning frameworks train neural networks with tensors at full 32-bit
precision (FP32), and once the network is trained, the data length can be reduced to speed
up the access and operation because backpropagation is not needed in the process of
deploying inference. TensorRT supports FP16 and INT8 data compression acceleration
modes. TensorRT provides a fully automatic calibration process to lower FP32 accuracy to
INT8 accuracy with best matching performance and minimize performance loss.

(3) CUDA core optimization

In the inference calculation of the network model, the CUDA core of GPU is called for
calculation. TensorRT can adjust CUDA kernel for different algorithms, different network
models, and different GPU platforms to ensure the optimal calculation performance of the
current model on a specific platform.

(4) Tensor memory management

Due to the characteristics of the neural network itself, the size of each feature map
remains the same during its operation, so the video memory can be allocated in advance.
TensorRT assigns certain video memory for every tensor during application, reducing
memory usage and improving reuse efficiency.

(5) GPU multi-stream optimization

Symmetry 2022, 14, 2608 31 of 45

For bypass networks that cannot be merged, GPUs generally adopt multi-stream
computing and then perform stream synchronization. TensorRT can optimize the flow
operation from the hardware aspect to achieve the optimal synchronization effect.

4.4. Analysis Test

The acceleration performance test was performed on a JetsonXavierNX computer. In
15 W working mode, the CPU (no optimization), GPU (CUDA optimization), and GPU
(TensorRT optimization) were used for the test. The relative parameters of the device are
shown in Table 2.

Table 2. JetsonXavierNX performance parameters.

Ability 10 W Mode 15 W Mode

AI performance 14 TOPS (INT8) 21 TOPS (INT8)
GPU 384-core NVIDIA Volta™ GPU with 48 Tensor cores

GPU max freq 800 MHz 1100 MHz

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU
6 MB L2 + 4 MB L3

CPU max freq 2-core @ 1500 MHz
4-core @ 1200 MHz

2-core @ 1900 MHz
4/6-core @ 1400 Mhz

Memory 8 GB 128-bit LPDDR4x @ 1600 MHz
51.2 GB/s

Storage 16 GB eMMC 5.1
Power 10 W|15 W

The test used 1280 × 720 resolution images to identify 1000 groups and average the
time. Since CUDA and TensorRT require pre-start of the CUDA core, the time in this section
was recorded separately. The results of the speed test are shown in Table 3:

Table 3. Results of processing speed using different computing platforms.

Computing Platforms Initialization/ms Average Time/ms

CUP - 790
GPU(CUDA) 2310 85

GPU(TensorRT) 1103 12

After optimization, the network inference speed was greatly improved, about 66 times
as fast as CPU inference, and about 7 times as fast as the CUDA inference, finally reaching
about 83FPS. At the same time, due to the simplified network structure, the CUDA core
startup process was accelerated by about two times after TensorRT optimization.

Part of the recognition results are shown in Figures 31–33:
Symmetry 2022, 14, x FOR PEER REVIEW 33 of 47

Figure 31. Recognition result 1.

Figure 32. Recognition result 2.

Figure 33. Recognition result 3.

Figure 31. Recognition result 1.

Symmetry 2022, 14, 2608 32 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 33 of 47

Figure 31. Recognition result 1.

Figure 32. Recognition result 2.

Figure 33. Recognition result 3.

Figure 32. Recognition result 2.

Symmetry 2022, 14, x FOR PEER REVIEW 33 of 47

Figure 31. Recognition result 1.

Figure 32. Recognition result 2.

Figure 33. Recognition result 3. Figure 33. Recognition result 3.

4.5. Section Conclusion

In this section, the target recognition algorithm was introduced in detail, and the
algorithm was verified on the corresponding equipment. The results show that YOLO can
realize the recognition of targets with high precision and accuracy.

5. Technical Validation

Based on the system mentioned above, an indoor UAV platform that is appliable for
indoor environments was built for this paper, which adopted the following plan:

5.1. Introduction of the Platform Plan

The platform consisted of four parts, including the body part, the autonomous naviga-
tion system, the ground control system, and the data transfer system. The overall structure
is shown in Figure 34:

Symmetry 2022, 14, 2608 33 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 34 of 47

4.5. Section Conclusion
In this section, the target recognition algorithm was introduced in detail, and the al-

gorithm was verified on the corresponding equipment. The results show that YOLO can
realize the recognition of targets with high precision and accuracy.

5. Technical Validation
Based on the system mentioned above, an indoor UAV platform that is appliable for

indoor environments was built for this paper, which adopted the following plan:

5.1. Introduction of the Platform Plan
The platform consisted of four parts, including the body part, the autonomous navi-

gation system, the ground control system, and the data transfer system. The overall struc-
ture is shown in Figure 34:

Figure 34. Diagram of overall structure.

According to the content in the figure, the aircraft platform built is shown in Figure
35:

Figure 35. Flight platform.

Figure 34. Diagram of overall structure.

According to the content in the figure, the aircraft platform built is shown in Figure 35:

Symmetry 2022, 14, x FOR PEER REVIEW 34 of 47

4.5. Section Conclusion
In this section, the target recognition algorithm was introduced in detail, and the al-

gorithm was verified on the corresponding equipment. The results show that YOLO can
realize the recognition of targets with high precision and accuracy.

5. Technical Validation
Based on the system mentioned above, an indoor UAV platform that is appliable for

indoor environments was built for this paper, which adopted the following plan:

5.1. Introduction of the Platform Plan
The platform consisted of four parts, including the body part, the autonomous navi-

gation system, the ground control system, and the data transfer system. The overall struc-
ture is shown in Figure 34:

Figure 34. Diagram of overall structure.

According to the content in the figure, the aircraft platform built is shown in Figure
35:

Figure 35. Flight platform. Figure 35. Flight platform.

The subsystems are described as follows.

5.1.1. The Fuselage Part

The body part was composed of power system, frame, and flight control system, which
are described as follows.

(1) Power system

The power package was an Air Gear 450, manufactured by Tmotor, as shown in
Figure 36:

Symmetry 2022, 14, 2608 34 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 47

The subsystems are described as follows.

5.1.1. The Fuselage Part
The body part was composed of power system, frame, and flight control system,

which are described as follows.
(1) Power system

The power package was an Air Gear 450, manufactured by Tmotor, as shown in Fig-
ure 36:

Figure 36. Air Gear 450 power package.

(2) Frame design
The frame was assembled using carbon fiber with aluminum alloy CNC parts.

(3) Battery
The Leopard 4S-6000mah was adopted as the battery, and its discharge rate is 60 C,

as shown in Figure 37.

Figure 37. Leopard battery.

(4) Flight control system
The flight control system adopted the self-developed flight control module, as shown

in Figure 38, whose detailed parameters are as follows:
Main control: STM32F103@72MHz frequency;
IMU: ICM20689*2.

Figure 38. Flight control IC.

Figure 36. Air Gear 450 power package.

(2) Frame design

The frame was assembled using carbon fiber with aluminum alloy CNC parts.

(3) Battery

The Leopard 4S-6000mah was adopted as the battery, and its discharge rate is 60 C, as
shown in Figure 37.

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 47

The subsystems are described as follows.

5.1.1. The Fuselage Part
The body part was composed of power system, frame, and flight control system,

which are described as follows.
(1) Power system

The power package was an Air Gear 450, manufactured by Tmotor, as shown in Fig-
ure 36:

Figure 36. Air Gear 450 power package.

(2) Frame design
The frame was assembled using carbon fiber with aluminum alloy CNC parts.

(3) Battery
The Leopard 4S-6000mah was adopted as the battery, and its discharge rate is 60 C,

as shown in Figure 37.

Figure 37. Leopard battery.

(4) Flight control system
The flight control system adopted the self-developed flight control module, as shown

in Figure 38, whose detailed parameters are as follows:
Main control: STM32F103@72MHz frequency;
IMU: ICM20689*2.

Figure 38. Flight control IC.

Figure 37. Leopard battery.

(4) Flight control system

The flight control system adopted the self-developed flight control module, as shown
in Figure 38, whose detailed parameters are as follows:

Main control: STM32F103@72MHz frequency;
IMU: ICM20689*2.

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 47

The subsystems are described as follows.

5.1.1. The Fuselage Part
The body part was composed of power system, frame, and flight control system,

which are described as follows.
(1) Power system

The power package was an Air Gear 450, manufactured by Tmotor, as shown in Fig-
ure 36:

Figure 36. Air Gear 450 power package.

(2) Frame design
The frame was assembled using carbon fiber with aluminum alloy CNC parts.

(3) Battery
The Leopard 4S-6000mah was adopted as the battery, and its discharge rate is 60 C,

as shown in Figure 37.

Figure 37. Leopard battery.

(4) Flight control system
The flight control system adopted the self-developed flight control module, as shown

in Figure 38, whose detailed parameters are as follows:
Main control: STM32F103@72MHz frequency;
IMU: ICM20689*2.

Figure 38. Flight control IC. Figure 38. Flight control IC.

Since IMU was used as the underlying module, two IMU were installed face-to-face to
suppress the gyro drift.

For detailed technical parameters, see the datasheet of IMU and the main control unit.

5.1.2. Autonomous Navigation System

The autonomous navigation system took an NVIDIA module as the processing core
and an Intel camera as the sensor.

(1) Core processing unit

Symmetry 2022, 14, 2608 35 of 45

The NVIDIA Jetson Xavier NX was introduced as the processing core unit, as shown
in Figure 39.

Symmetry 2022, 14, x FOR PEER REVIEW 36 of 47

Since IMU was used as the underlying module, two IMU were installed face-to-face
to suppress the gyro drift.

For detailed technical parameters, see the datasheet of IMU and the main control unit.

5.1.2. Autonomous Navigation System
The autonomous navigation system took an NVIDIA module as the processing core

and an Intel camera as the sensor.
(1) Core processing unit

The NVIDIA Jetson Xavier NX was introduced as the processing core unit, as shown
in Figure 39.

Figure 39. Jetson XAVIER NX module.

(2) Sensor
The sensor used an Intel RealSense Camera D435i and T265 as the vision sensing

module.
D435i was used to provide depth information, and its performance is shown in Fig-

ure 40:

Figure 40. D435i camera.

T265 provides SLAM mapping information, as shown in Figure 41. The T265 contains
two fisheye lens sensors, an IMU, and a Movidius Myriad 2 VPU. The camera enjoys low
delay and very efficient power consumption. Through extensive performance tests and
validation, under expected application conditions, the closed-loop offset was less than 1%.
The delay between the pose action and the action reflection was less than 6 milliseconds.

Figure 41. T265 camera.

5.1.3. Data Transfer System
The Huawei AP6750-10T was adopted as data transfer system, as shown in Figure

42:

Figure 39. Jetson XAVIER NX module.

(2) Sensor

The sensor used an Intel RealSense Camera D435i and T265 as the vision sensing module.
D435i was used to provide depth information, and its performance is shown in

Figure 40:

Symmetry 2022, 14, x FOR PEER REVIEW 36 of 47

Since IMU was used as the underlying module, two IMU were installed face-to-face
to suppress the gyro drift.

For detailed technical parameters, see the datasheet of IMU and the main control unit.

5.1.2. Autonomous Navigation System
The autonomous navigation system took an NVIDIA module as the processing core

and an Intel camera as the sensor.
(1) Core processing unit

The NVIDIA Jetson Xavier NX was introduced as the processing core unit, as shown
in Figure 39.

Figure 39. Jetson XAVIER NX module.

(2) Sensor
The sensor used an Intel RealSense Camera D435i and T265 as the vision sensing

module.
D435i was used to provide depth information, and its performance is shown in Fig-

ure 40:

Figure 40. D435i camera.

T265 provides SLAM mapping information, as shown in Figure 41. The T265 contains
two fisheye lens sensors, an IMU, and a Movidius Myriad 2 VPU. The camera enjoys low
delay and very efficient power consumption. Through extensive performance tests and
validation, under expected application conditions, the closed-loop offset was less than 1%.
The delay between the pose action and the action reflection was less than 6 milliseconds.

Figure 41. T265 camera.

5.1.3. Data Transfer System
The Huawei AP6750-10T was adopted as data transfer system, as shown in Figure

42:

Figure 40. D435i camera.

T265 provides SLAM mapping information, as shown in Figure 41. The T265 contains
two fisheye lens sensors, an IMU, and a Movidius Myriad 2 VPU. The camera enjoys low
delay and very efficient power consumption. Through extensive performance tests and
validation, under expected application conditions, the closed-loop offset was less than 1%.
The delay between the pose action and the action reflection was less than 6 milliseconds.

Symmetry 2022, 14, x FOR PEER REVIEW 36 of 47

Since IMU was used as the underlying module, two IMU were installed face-to-face
to suppress the gyro drift.

For detailed technical parameters, see the datasheet of IMU and the main control unit.

5.1.2. Autonomous Navigation System
The autonomous navigation system took an NVIDIA module as the processing core

and an Intel camera as the sensor.
(1) Core processing unit

The NVIDIA Jetson Xavier NX was introduced as the processing core unit, as shown
in Figure 39.

Figure 39. Jetson XAVIER NX module.

(2) Sensor
The sensor used an Intel RealSense Camera D435i and T265 as the vision sensing

module.
D435i was used to provide depth information, and its performance is shown in Fig-

ure 40:

Figure 40. D435i camera.

T265 provides SLAM mapping information, as shown in Figure 41. The T265 contains
two fisheye lens sensors, an IMU, and a Movidius Myriad 2 VPU. The camera enjoys low
delay and very efficient power consumption. Through extensive performance tests and
validation, under expected application conditions, the closed-loop offset was less than 1%.
The delay between the pose action and the action reflection was less than 6 milliseconds.

Figure 41. T265 camera.

5.1.3. Data Transfer System
The Huawei AP6750-10T was adopted as data transfer system, as shown in Figure

42:

Figure 41. T265 camera.

5.1.3. Data Transfer System

The Huawei AP6750-10T was adopted as data transfer system, as shown in Figure 42:

Symmetry 2022, 14, 2608 36 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 37 of 47

Figure 42. AP data transfer system.

Its performance indicators are as Table 4.

Table 4. Autonomous navigation system.

Model AP6750-10T

Type Distributed wireless router

Wireless standard IEEE 802.11 a/b/g/ac/ac wave2, support 2×2MIMO

Wireless rate 3000 Mbps

Working frequency range 2.4 GHz, 5 GHz

Support agreement 802.11a/b/g/n/ac/ax

Software parameters

WPS support Supports WPS one-click encryption

Safety performance

Support Open System authentication
Support WEP authentication, and support 64-bit, 128-bit,

152-bit, and 192-bit encryption bytes
Support wap2-psk

Support wpa2-802.1x
Support wpa3-sae

Support wap3-802.1x
Support wap-wpa2
Support wap-wpa3

Internet management

Support IEEE 802.3ab standard
Support sub-negotiation of rate and duplex mode

Compatible with the IEEE 802.1 q
Support NAT

Qos support

Based on the WMM, it supports the WMM power saving
mode, uplink packet priority mapping, queue mapping,
queue mapping, VR/ mobile game application accelera-

tion, and hierarchical HQos scheduling for airports.

Hardware parameters
Local network interfaces 2 × 10 GE electrical interface, 1 × 10 GE SFP+

Other interfaces one

Figure 42. AP data transfer system.

Its performance indicators are as Table 4.

Table 4. Autonomous navigation system.

Model AP6750-10T
Type Distributed wireless router

Wireless standard IEEE 802.11 a/b/g/ac/ac wave2, support 2×2MIMO
Wireless rate 3000 Mbps

Working frequency range 2.4 GHz, 5 GHz
Support agreement 802.11a/b/g/n/ac/ax

Software parameters
WPS support Supports WPS one-click encryption

Safety performance

Support Open System authentication
Support WEP authentication, and support 64-bit, 128-bit,

152-bit, and 192-bit encryption bytes
Support wap2-psk

Support wpa2-802.1x
Support wpa3-sae

Support wap3-802.1x
Support wap-wpa2
Support wap-wpa3

Internet management

Support IEEE 802.3ab standard
Support sub-negotiation of rate and duplex mode

Compatible with the IEEE 802.1 q
Support NAT

Qos support

Based on the WMM, it supports the WMM power saving
mode, uplink packet priority mapping, queue mapping,

queue mapping, VR/ mobile game application acceleration,
and hierarchical HQos scheduling for airports.

Hardware parameters
Local network interfaces 2 × 10 GE electrical interface, 1 × 10 GE SFP+

Other interfaces one
Type of antenna Built-in type

Working environment Temperature: −10~+50 ◦C

5.1.4. Ground Control System

The ground control system was coded by Qt software, as shown in Figure 43.

Symmetry 2022, 14, 2608 37 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 38 of 47

Type of antenna Built-in type
Working environment Temperature：−10 ℃～+50 ℃

5.1.4. Ground Control System
The ground control system was coded by Qt software, as shown in Figure 43.

Figure 43. Qt software for coding ground control system.

5.2. Flight Test
5.2.1. Performance Test
(1) Positioning accuracy of integrated navigation

Four reference points were used for accuracy comparison, which were (0, 0, 0), (0, 0,
0.51), (2, 0, 0.51) and (2, −1, 0.51).

When the UAV was placed at the above four points, the corresponding navigation
position was obtained, as shown in Figures 44–47:

Figure 44. (0, 0, 0) position navigation data map.

Figure 43. Qt software for coding ground control system.

5.2. Flight Test
5.2.1. Performance Test

(1) Positioning accuracy of integrated navigation

Four reference points were used for accuracy comparison, which were (0, 0, 0), (0, 0,
0.51), (2, 0, 0.51) and (2, −1, 0.51).

When the UAV was placed at the above four points, the corresponding navigation
position was obtained, as shown in Figures 44–47:

Symmetry 2022, 14, x FOR PEER REVIEW 38 of 47

Type of antenna Built-in type
Working environment Temperature：−10 ℃～+50 ℃

5.1.4. Ground Control System
The ground control system was coded by Qt software, as shown in Figure 43.

Figure 43. Qt software for coding ground control system.

5.2. Flight Test
5.2.1. Performance Test
(1) Positioning accuracy of integrated navigation

Four reference points were used for accuracy comparison, which were (0, 0, 0), (0, 0,
0.51), (2, 0, 0.51) and (2, −1, 0.51).

When the UAV was placed at the above four points, the corresponding navigation
position was obtained, as shown in Figures 44–47:

Figure 44. (0, 0, 0) position navigation data map. Figure 44. (0, 0, 0) position navigation data map.

Symmetry 2022, 14, x FOR PEER REVIEW 39 of 47

Figure 45. (0, 0, 0.5) position navigation data map.

Figure 46. (2, 0, 0.5) position navigation data map.

Figure 47. (2, −1, 0.5) position navigation data map.

Figure 45. (0, 0, 0.5) position navigation data map.

Symmetry 2022, 14, 2608 38 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 39 of 47

Figure 45. (0, 0, 0.5) position navigation data map.

Figure 46. (2, 0, 0.5) position navigation data map.

Figure 47. (2, −1, 0.5) position navigation data map.

Figure 46. (2, 0, 0.5) position navigation data map.

Symmetry 2022, 14, x FOR PEER REVIEW 39 of 47

Figure 45. (0, 0, 0.5) position navigation data map.

Figure 46. (2, 0, 0.5) position navigation data map.

Figure 47. (2, −1, 0.5) position navigation data map. Figure 47. (2, −1, 0.5) position navigation data map.

The actual four-point navigation positions were (0, 0, 0), (0.02, 0,02, 0.54), (2.19, −0.01,
0.52), (2.18, −1.11, 0.52). According to the above results, it can be seen that this meets the
requirements of the actual conditions, namely:

• Combined navigation and positioning accuracy (CEP): ≤0.2 m;
• Fixed-altitude, fixed-point flight accuracy (CEP): ≤0.5 m (RMS).

(2) Obstacles (stools) were directly placed 1 m, 2 m, 3 m, 4 m and 5 m away in front of the
UAV for evaluation, respectively. The measurement results are shown in Figures 48–52:

Symmetry 2022, 14, x FOR PEER REVIEW 40 of 47

The actual four-point navigation positions were (0, 0, 0), (0.02, 0,02, 0.54), (2.19, −0.01,
0.52), (2.18, −1.11, 0.52). According to the above results, it can be seen that this meets the
requirements of the actual conditions, namely:
 Combined navigation and positioning accuracy (CEP): ≤0.2 m;
 Fixed-altitude, fixed-point flight accuracy (CEP): ≤0.5 m (RMS).
(2) Obstacles (stools) were directly placed 1 m, 2 m, 3 m, 4 m and 5 m away in front of

the UAV for evaluation, respectively. The measurement results are shown in Figures
48–52:

Figure 48. Resultant figure when obstacle was 1 m away.

Figure 49. Resultant figure when obstacle was 2 m away.

Figure 50. Resultant figure when obstacle was 3 m away.

Figure 48. Resultant figure when obstacle was 1 m away.

Symmetry 2022, 14, 2608 39 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 40 of 47

The actual four-point navigation positions were (0, 0, 0), (0.02, 0,02, 0.54), (2.19, −0.01,
0.52), (2.18, −1.11, 0.52). According to the above results, it can be seen that this meets the
requirements of the actual conditions, namely:
 Combined navigation and positioning accuracy (CEP): ≤0.2 m;
 Fixed-altitude, fixed-point flight accuracy (CEP): ≤0.5 m (RMS).
(2) Obstacles (stools) were directly placed 1 m, 2 m, 3 m, 4 m and 5 m away in front of

the UAV for evaluation, respectively. The measurement results are shown in Figures
48–52:

Figure 48. Resultant figure when obstacle was 1 m away.

Figure 49. Resultant figure when obstacle was 2 m away.

Figure 50. Resultant figure when obstacle was 3 m away.

Figure 49. Resultant figure when obstacle was 2 m away.

Symmetry 2022, 14, x FOR PEER REVIEW 40 of 47

The actual four-point navigation positions were (0, 0, 0), (0.02, 0,02, 0.54), (2.19, −0.01,
0.52), (2.18, −1.11, 0.52). According to the above results, it can be seen that this meets the
requirements of the actual conditions, namely:
 Combined navigation and positioning accuracy (CEP): ≤0.2 m;
 Fixed-altitude, fixed-point flight accuracy (CEP): ≤0.5 m (RMS).
(2) Obstacles (stools) were directly placed 1 m, 2 m, 3 m, 4 m and 5 m away in front of

the UAV for evaluation, respectively. The measurement results are shown in Figures
48–52:

Figure 48. Resultant figure when obstacle was 1 m away.

Figure 49. Resultant figure when obstacle was 2 m away.

Figure 50. Resultant figure when obstacle was 3 m away. Figure 50. Resultant figure when obstacle was 3 m away.

Symmetry 2022, 14, x FOR PEER REVIEW 41 of 47

Figure 51. Resultant figure when obstacle was 4 m away.

Figure 52. Resultant figure when obstacle was 5 m away.

From the above results, the system meets the requirements of the technical require-
ments, namely:

Obstacle detection distance: ≥5 m.
(3) Obstacle detection channel and range

Because T265 was used as the obstacle measurement equipment, its field of view
(FOV) range was 163 ± 5°, and the effect is shown in Figure 53:

Figure 53. Results of obstacle measurement range.

It can be seen from the results that the system meets the obstacle detection channel
and range requirements, namely:

Figure 51. Resultant figure when obstacle was 4 m away.

Symmetry 2022, 14, x FOR PEER REVIEW 41 of 47

Figure 51. Resultant figure when obstacle was 4 m away.

Figure 52. Resultant figure when obstacle was 5 m away.

From the above results, the system meets the requirements of the technical require-
ments, namely:

Obstacle detection distance: ≥5 m.
(3) Obstacle detection channel and range

Because T265 was used as the obstacle measurement equipment, its field of view
(FOV) range was 163 ± 5°, and the effect is shown in Figure 53:

Figure 53. Results of obstacle measurement range.

It can be seen from the results that the system meets the obstacle detection channel
and range requirements, namely:

Figure 52. Resultant figure when obstacle was 5 m away.

From the above results, the system meets the requirements of the technical require-
ments, namely:

Symmetry 2022, 14, 2608 40 of 45

Obstacle detection distance: ≥5 m.

(3) Obstacle detection channel and range

Because T265 was used as the obstacle measurement equipment, its field of view (FOV)
range was 163 ± 5◦, and the effect is shown in Figure 53:

Symmetry 2022, 14, x FOR PEER REVIEW 41 of 47

Figure 51. Resultant figure when obstacle was 4 m away.

Figure 52. Resultant figure when obstacle was 5 m away.

From the above results, the system meets the requirements of the technical require-
ments, namely:

Obstacle detection distance: ≥5 m.
(3) Obstacle detection channel and range

Because T265 was used as the obstacle measurement equipment, its field of view
(FOV) range was 163 ± 5°, and the effect is shown in Figure 53:

Figure 53. Results of obstacle measurement range.

It can be seen from the results that the system meets the obstacle detection channel
and range requirements, namely:

Figure 53. Results of obstacle measurement range.

It can be seen from the results that the system meets the obstacle detection channel
and range requirements, namely:

The system possesses detection ability in at least three channels; namely, the front,
the top and the bottom. The detection range in each channel (≥ ±45◦ horizontally,
≥ ±45◦ vertically).

(4) Minimum size of detectable obstacle

The ruler was placed 5 m away from the camera to measure the recognition of obsta-
cle size.

It can be seen from Figure 54 that the system can complete the recognition of obstacles.
That is, at 2 m distance, to achieve the recognition of objects with a size of 100 × 5 mm.

Symmetry 2022, 14, x FOR PEER REVIEW 42 of 47

The system possesses detection ability in at least three channels; namely, the front,
the top and the bottom. The detection range in each channel (45≥ ± ° horizontally, 45≥ ± °
vertically).
(4) Minimum size of detectable obstacle

The ruler was placed 5 m away from the camera to measure the recognition of obsta-
cle size.

It can be seen from Figure 54 that the system can complete the recognition of obsta-
cles. That is, at 2m distance, to achieve the recognition of objects with a size of 100 * 5 mm.
(5) Obstacle detection rate

This test was placed in the flight test.

Figure 54. Obstacle size recognition.

5.2.2. Single-Machine Indoor Autonomous Obstacle Avoidance and Navigation
Scene tests under two conditions were performed in this paper. The maps of the two

sites are shown in Figure 55:

Figure 55. Maps of test sites.

In order to test the indoor autonomous obstacle avoidance and navigation algorithm,
a 7 * 7 m field was built in the room, in which two obstacles were placed. The UAV started

Figure 54. Obstacle size recognition.

Symmetry 2022, 14, 2608 41 of 45

(5) Obstacle detection rate

This test was placed in the flight test.

5.2.2. Single-Machine Indoor Autonomous Obstacle Avoidance and Navigation

Scene tests under two conditions were performed in this paper. The maps of the two
sites are shown in Figure 55:

Symmetry 2022, 14, x FOR PEER REVIEW 42 of 47

The system possesses detection ability in at least three channels; namely, the front,
the top and the bottom. The detection range in each channel (45≥ ± ° horizontally, 45≥ ± °
vertically).
(4) Minimum size of detectable obstacle

The ruler was placed 5 m away from the camera to measure the recognition of obsta-
cle size.

It can be seen from Figure 54 that the system can complete the recognition of obsta-
cles. That is, at 2m distance, to achieve the recognition of objects with a size of 100 * 5 mm.
(5) Obstacle detection rate

This test was placed in the flight test.

Figure 54. Obstacle size recognition.

5.2.2. Single-Machine Indoor Autonomous Obstacle Avoidance and Navigation
Scene tests under two conditions were performed in this paper. The maps of the two

sites are shown in Figure 55:

Figure 55. Maps of test sites.

In order to test the indoor autonomous obstacle avoidance and navigation algorithm,
a 7 * 7 m field was built in the room, in which two obstacles were placed. The UAV started

Figure 55. Maps of test sites.

In order to test the indoor autonomous obstacle avoidance and navigation algorithm,
a 7 × 7 m field was built in the room, in which two obstacles were placed. The UAV started
from the start point in Figure 55, then ran to the first point, the second point, and finally
returned to the end point. During this period, the system automatically recognized and
avoided the two obstacles in the picture.

(1) Scene experiment with three obstacles

The scene diagram of the three-obstacle experiment is shown in Figure 56:

Symmetry 2022, 14, x FOR PEER REVIEW 43 of 47

from the start point in Figure 55, then ran to the first point, the second point, and finally
returned to the end point. During this period, the system automatically recognized and
avoided the two obstacles in the picture.
(1) Scene experiment with three obstacles

The scene diagram of the three-obstacle experiment is shown in Figure 56:

Figure 56. Three-obstacle scene.

In this scenario, the UAV completed the flight test process from the starting point to
the end point well, as shown in Figure 57.

Figure 56. Three-obstacle scene.

In this scenario, the UAV completed the flight test process from the starting point to
the end point well, as shown in Figure 57.

Symmetry 2022, 14, 2608 42 of 45

Symmetry 2022, 14, x FOR PEER REVIEW 43 of 47

from the start point in Figure 55, then ran to the first point, the second point, and finally
returned to the end point. During this period, the system automatically recognized and
avoided the two obstacles in the picture.
(1) Scene experiment with three obstacles

The scene diagram of the three-obstacle experiment is shown in Figure 56:

Figure 56. Three-obstacle scene.

In this scenario, the UAV completed the flight test process from the starting point to
the end point well, as shown in Figure 57.

Symmetry 2022, 14, x FOR PEER REVIEW 44 of 47

Figure 57. Flight record of three-obstacle scene.

(2) Scene experiment with two obstacles
In the two-obstacle scenario experiments, the flight data of the UAV were recorded

as shown in Figure 58:

Figure 58. Flight record of two-obstacle scene.

6. Conclusions
This paper completed the following work: Firstly, an integrated navigation algorithm

based on machine vision/close-range detection/inertial measurement unit (IMU) was de-
signed and realized. Then, an indoor simultaneous localization and mapping (SLAM) al-
gorithm was designed and realized. Moreover, a method for obstacle detection, obstacle
avoidance motion decision and motion planning was designed and realized. At last, an
autonomous navigation and obstacle avoidance simulation system was built. In the mean-
time, the positioning and navigation system in an unknown environment as well as the
indoor obstacle avoidance flight was also demonstrated and verified. There are some ad-
vantages and weaknesses listed as follows:
 Advantages: (1) Uses distributed hardware solution to realize obstacle observation

(D435i) and SLAM (T265) functions, which greatly reduces the computational power
requirements of the airborne computer; (2) optimizes the YOLO network using Ten-
sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,
RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly
by GPU, making full use of onboard computer resources.

 Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment
remains static. If the environment moves in whole or part, the localization results will
be disturbed; (2) OctomAP requires a cumulative period of stable observations to
effectively identify obstacles, which makes the UAV unable to effectively respond to
obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

Figure 57. Flight record of three-obstacle scene.

Symmetry 2022, 14, 2608 43 of 45

(2) Scene experiment with two obstacles

In the two-obstacle scenario experiments, the flight data of the UAV were recorded as
shown in Figure 58:

Symmetry 2022, 14, x FOR PEER REVIEW 44 of 47

Figure 57. Flight record of three-obstacle scene.

(2) Scene experiment with two obstacles
In the two-obstacle scenario experiments, the flight data of the UAV were recorded

as shown in Figure 58:

Figure 58. Flight record of two-obstacle scene.

6. Conclusions
This paper completed the following work: Firstly, an integrated navigation algorithm

based on machine vision/close-range detection/inertial measurement unit (IMU) was de-
signed and realized. Then, an indoor simultaneous localization and mapping (SLAM) al-
gorithm was designed and realized. Moreover, a method for obstacle detection, obstacle
avoidance motion decision and motion planning was designed and realized. At last, an
autonomous navigation and obstacle avoidance simulation system was built. In the mean-
time, the positioning and navigation system in an unknown environment as well as the
indoor obstacle avoidance flight was also demonstrated and verified. There are some ad-
vantages and weaknesses listed as follows:
 Advantages: (1) Uses distributed hardware solution to realize obstacle observation

(D435i) and SLAM (T265) functions, which greatly reduces the computational power
requirements of the airborne computer; (2) optimizes the YOLO network using Ten-
sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,
RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly
by GPU, making full use of onboard computer resources.

 Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment
remains static. If the environment moves in whole or part, the localization results will
be disturbed; (2) OctomAP requires a cumulative period of stable observations to
effectively identify obstacles, which makes the UAV unable to effectively respond to
obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

Figure 58. Flight record of two-obstacle scene.

6. Conclusions

This paper completed the following work: Firstly, an integrated navigation algorithm
based on machine vision/close-range detection/inertial measurement unit (IMU) was
designed and realized. Then, an indoor simultaneous localization and mapping (SLAM)
algorithm was designed and realized. Moreover, a method for obstacle detection, obstacle
avoidance motion decision and motion planning was designed and realized. At last,
an autonomous navigation and obstacle avoidance simulation system was built. In the
meantime, the positioning and navigation system in an unknown environment as well as
the indoor obstacle avoidance flight was also demonstrated and verified. There are some
advantages and weaknesses listed as follows:

Symmetry 2022, 14, x FOR PEER REVIEW 44 of 47

Figure 57. Flight record of three-obstacle scene.

(2) Scene experiment with two obstacles

In the two-obstacle scenario experiments, the flight data of the UAV were recorded

as shown in Figure 58:

Figure 58. Flight record of two-obstacle scene.

6. Conclusions

This paper completed the following work: Firstly, an integrated navigation algorithm

based on machine vision/close-range detection/inertial measurement unit (IMU) was de-

signed and realized. Then, an indoor simultaneous localization and mapping (SLAM) al-

gorithm was designed and realized. Moreover, a method for obstacle detection, obstacle

avoidance motion decision and motion planning was designed and realized. At last, an

autonomous navigation and obstacle avoidance simulation system was built. In the mean-

time, the positioning and navigation system in an unknown environment as well as the

indoor obstacle avoidance flight was also demonstrated and verified. There are some ad-

vantages and weaknesses listed as follows:

➢ Advantages: (1) Uses distributed hardware solution to realize obstacle observation

(D435i) and SLAM (T265) functions, which greatly reduces the computational power

requirements of the airborne computer; (2) optimizes the YOLO network using Ten-

sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,

RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly

by GPU, making full use of onboard computer resources.

➢ Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment

remains static. If the environment moves in whole or part, the localization results will

be disturbed; (2) OctomAP requires a cumulative period of stable observations to

effectively identify obstacles, which makes the UAV unable to effectively respond to

obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

Advantages: (1) Uses distributed hardware solution to realize obstacle observation
(D435i) and SLAM (T265) functions, which greatly reduces the computational power
requirements of the airborne computer; (2) optimizes the YOLO network using Ten-
sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,
RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly
by GPU, making full use of onboard computer resources.

Symmetry 2022, 14, x FOR PEER REVIEW 44 of 47

Figure 57. Flight record of three-obstacle scene.

(2) Scene experiment with two obstacles

In the two-obstacle scenario experiments, the flight data of the UAV were recorded

as shown in Figure 58:

Figure 58. Flight record of two-obstacle scene.

6. Conclusions

This paper completed the following work: Firstly, an integrated navigation algorithm

based on machine vision/close-range detection/inertial measurement unit (IMU) was de-

signed and realized. Then, an indoor simultaneous localization and mapping (SLAM) al-

gorithm was designed and realized. Moreover, a method for obstacle detection, obstacle

avoidance motion decision and motion planning was designed and realized. At last, an

autonomous navigation and obstacle avoidance simulation system was built. In the mean-

time, the positioning and navigation system in an unknown environment as well as the

indoor obstacle avoidance flight was also demonstrated and verified. There are some ad-

vantages and weaknesses listed as follows:

➢ Advantages: (1) Uses distributed hardware solution to realize obstacle observation

(D435i) and SLAM (T265) functions, which greatly reduces the computational power

requirements of the airborne computer; (2) optimizes the YOLO network using Ten-

sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,

RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly

by GPU, making full use of onboard computer resources.

➢ Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment

remains static. If the environment moves in whole or part, the localization results will

be disturbed; (2) OctomAP requires a cumulative period of stable observations to

effectively identify obstacles, which makes the UAV unable to effectively respond to

obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment
remains static. If the environment moves in whole or part, the localization results
will be disturbed; (2) OctomAP requires a cumulative period of stable observations to
effectively identify obstacles, which makes the UAV unable to effectively respond to
obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

spline curve only has position command, but no speed and acceleration command,
and so cannot guide the UAV to fly at high speed.

There are also some weaknesses that should be noted and explored such as whether
the detection of the obstacle and the path computation are influenced by the changing
environments and so on.

Author Contributions: Methodology, C.C.; formal analysis, Z.W. and Z.G.; data curation, P.C.;
writing—original draft preparation, Z.W. and C.Z.; writing—review and editing, Y.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Symmetry 2022, 14, 2608 44 of 45

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

UAV Unmanned aerial vehicle
GNSS Global navigation satellite system
SLAM Simultaneous location and mapping
USV Unmanned surface vehicle
UAM Urban air mobility
SAFDAN Solar atomic frequency discriminator for autonomous navigation
VPC Visual predictive control
MPC Model predictive control
UUV Unmanned underwater vehicle
VR Virtual reality
GPS Global positioning system
VI-SLAM Visual–inertial simultaneous localization and mapping
IMU Inertial measurement unit
VIO Visual–inertial odometry
KLT tracking Kanade–Lucas–Tomasi tracking
RRT Rapidly exploring random trees
CNN Convolutional neural network
RCNN Region-convolutional neural network
SSD Single shot multi-box detector
VGG Visual geometry group
FPN Feature pyramid network
GPU Graphics processing unit
GIE GPU inference engine
CUDA Compute unified device architecture
CBR Case-based reasoning
FP32 Full 32-bit precision
FOV Field of view

References
1. Li, Z.; Lu, Y.; Shi, Y.; Wang, Z.; Qiao, W.; Liu, Y. A Dyna-Q-based solution for UAV networks against smart jamming attacks.

Symmetry 2019, 11, 617. [CrossRef]
2. Kuriki, Y.; Namerikawa, T. Consensus-based cooperative formation control with collision avoidance for a multi-UAV system.

In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; IEEE: New York, NY, USA, 2014;
pp. 2077–2082.

3. Kwak, J.; Park, J.H.; Sung, Y. Unmanned aerial vehicle flight point classification algorithm based on symmetric big data. Symmetry
2016, 9, 1. [CrossRef]

4. Turan, E.; Speretta, S.; Gill, E. Autonomous navigation for deep space small satellites: Scientific and technological advances. Acta
Astronaut. 2022, 193, 56–74. [CrossRef]

5. Kayhani, N.; Zhao, W.; McCabe, B.; Schoellig, A.P. Tag-based visual-inertial localization of unmanned aerial vehicles in indoor
construction environments using an on-manifold extended Kalman filter. Autom. Constr. 2022, 135, 104112. [CrossRef]

6. Li, Z.; Zhang, Y. Constrained ESKF for UAV Positioning in Indoor Corridor Environment Based on IMU and WiFi. Sensors 2022,
22, 391. [CrossRef]

7. Aldao, E.; González-de Santos, L.M.; González-Jorge, H. LiDAR Based Detect and Avoid System for UAV Navigation in UAM
Corridors. Drones 2022, 6, 185. [CrossRef]

8. Zhang, W.; Yang, Y.; You, W.; Zheng, J.; Ye, H.; Ji, K.; Chen, X.; Lin, X.; Huang, Q.; Cheng, X.; et al. Autonomous navigation
method and technology implementation of high-precision solar spectral velocity measurement. Sci. China Phys. Mech. Astron.
2022, 65, 289606. [CrossRef]

9. Ramezani Dooraki, A.; Lee, D.J. A Multi-Objective Reinforcement Learning Based Controller for Autonomous Navigation in
Challenging Environments. Machines 2022, 10, 500. [CrossRef]

10. Durand Petiteville, A.; Cadenat, V. Advanced Visual Predictive Control Scheme for the Navigation Problem. J. Intell. Robot. Syst.
2022, 105, 35. [CrossRef]

11. Specht, C.; Świtalski, E.; Specht, M. Application of an autonomous/unmanned survey vessel (ASV/USV) in bathymetric
measurements. Pol. Marit. Res. 2017, nr 3, 36–44. [CrossRef]

http://doi.org/10.3390/sym11050617
http://doi.org/10.3390/sym9010001
http://doi.org/10.1016/j.actaastro.2021.12.030
http://doi.org/10.1016/j.autcon.2021.104112
http://doi.org/10.3390/s22010391
http://doi.org/10.3390/drones6080185
http://doi.org/10.1007/s11433-022-1922-3
http://doi.org/10.3390/machines10070500
http://doi.org/10.1007/s10846-022-01623-2
http://doi.org/10.1515/pomr-2017-0088

Symmetry 2022, 14, 2608 45 of 45

12. Xie, S.; Wu, P.; Peng, Y.; Luo, J.; Qu, D.; Li, Q.; Gu, J. The obstacle avoidance planning of USV based on improved artificial
potential field. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China,
28–30 July 2014; IEEE: New York, NY, USA, 2014; pp. 746–751.

13. Wang, X.; Yadav, V.; Balakrishnan, S.N. Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control.
Syst. Technol. 2007, 15, 672–679. [CrossRef]

14. Manhães, M.M.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based package for underwater
intervention and multi-robot simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23
September 2016; pp. 1–8.

15. Liu, L.; Wu, Y.; Fu, G.; Zhou, C. An Improved Four-Rotor UAV Autonomous Navigation Multisensor Fusion Depth Learning.
Wirel. Commun. Mob. Comput. 2022, 2022, 2701359. [CrossRef]

16. Sajjadi, S.; Mehrandezh, M.; Janabi-Sharifi, F. A Cascaded and Adaptive Visual Predictive Control Approach for Real-Time
Dynamic Visual Servoing. Drones 2022, 6, 127. [CrossRef]

17. Nascimento, T.; Saska, M. Embedded Fast Nonlinear Model Predictive Control for Micro Aerial Vehicles. J. Intell. Robot. Syst.
2021, 103, 74. [CrossRef]

18. Ambroziak, L.; Ciężkowski, M.; Wolniakowski, A.; Romaniuk, S.; Bożko, A.; Ołdziej, D.; Kownacki, C. Experimental tests of
hybrid VTOL unmanned aerial vehicle designed for surveillance missions and operations in maritime conditions from ship-based
helipads. J. Field Robot. 2021, 39, 203–217. [CrossRef]

19. Hassan, S.A.; Rahim, T.; Shin, S.Y. An Improved Deep Convolutional Neural Network-Based Autonomous Road Inspection
Scheme Using Unmanned Aerial Vehicles. Electronics 2021, 10, 2764. [CrossRef]

20. Zhu, H.; Liu, C.; Li, M.; Shang, B.; Liu, M. Unmanned aerial vehicle passive detection for Internet of Space Things. Phys. Commun.
2021, 49, 101474. [CrossRef]

21. He, L.; Aouf, N.; Song, B. Explainable Deep Reinforcement Learning for UAV autonomous path planning. Aerosp. Sci. Technol.
2021, 118, 107052. [CrossRef]

22. Miranda, V.R.; Rezende, A.; Rocha, T.L.; Azpúrua, H.; Pimenta, L.C.; Freitas, G.M. Autonomous Navigation System for a Delivery
Drone. J. Control. Autom. Electr. Syst. 2022, 33, 141–155. [CrossRef]

23. Zhao, X.; Chong, J.; Qi, X.; Yang, Z. Vision Object-Oriented Augmented Sampling-Based Autonomous Navigation for Micro
Aerial Vehicles. Drones 2021, 5, 107. [CrossRef]

24. Ren, Y.; Liu, X.; Liu, W. DBCAMM: A novel density based clustering algorithm via using the Mahalanobis metric. Appl. Soft
Comput. 2012, 12, 1542–1554. [CrossRef]

25. Guitton, A.; Symes, W.W. Robust inversion of seismic data using the Huber norm. Geophysics 2003, 68, 1310–1319. [CrossRef]
26. Elmokadem, T.; Savkin, A.V. Towards Fully Autonomous UAVs: A Survey. Sensors 2021, 21, 6223. [CrossRef] [PubMed]
27. Zammit, C.; Van Kampen, E.J. Comparison between A* and RRT algorithms for UAV path planning. In Proceedings of the 2018

AIAA Guidance Navigation, and Control Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 1846.
28. Aguilar, W.G.; Morales, S.; Ruiz, H.; Abad, V. RRT* GL based optimal path planning for real-time navigation of UAVs. In

Proceedings of the International Work-Conference on Artificial Neural Networks, Cádiz, Spain, 14–16 June 2017; Springer: Cham,
Switzerland, 2017; pp. 585–595.

29. Wang, C.; Meng, M.Q.H. Variant step size RRT: An efficient path planner for UAV in complex environments. In Proceedings of
the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016;
IEEE: New York, NY, USA, 2016; pp. 555–560.

30. Kang, Z.; Zou, W. Improving accuracy of VI-SLAM with fish-eye camera based on biases of map points. Adv. Robot. 2020,
34, 1272–1278. [CrossRef]

http://doi.org/10.1109/TCST.2007.899191
http://doi.org/10.1155/2022/2701359
http://doi.org/10.3390/drones6050127
http://doi.org/10.1007/s10846-021-01522-y
http://doi.org/10.1002/rob.22046
http://doi.org/10.3390/electronics10222764
http://doi.org/10.1016/j.phycom.2021.101474
http://doi.org/10.1016/j.ast.2021.107052
http://doi.org/10.1007/s40313-021-00828-4
http://doi.org/10.3390/drones5040107
http://doi.org/10.1016/j.asoc.2011.12.015
http://doi.org/10.1190/1.1598124
http://doi.org/10.3390/s21186223
http://www.ncbi.nlm.nih.gov/pubmed/34577430
http://doi.org/10.1080/01691864.2020.1815573

	Introduction
	Autonomous Positioning
	Map Building and Trajectory Planning
	Target Detection and Recognition

	Autonomous Positioning
	The Introduction of the Autonomous Positioning Module
	The Preprocessing of Signals
	Visual Front-End
	IMU Pre-Integration

	Pose Initialization
	The Depth Estimation of Feature Points
	Pose Initialization

	VIO Algorithm
	Sliding Window Method
	The Calculation of IMU Measurement Residual
	Visual Measurement Residual

	Loopback Optimization
	DBoW Loopback Detection
	Bidirectional KLT Tracking and PNP Relocation
	The Management of 4-Dof Pose Diagram

	Simulation Analysis Test
	Simulation Engine Gazebo
	Simulation System

	Section Conclusion

	Detailed Design of the Map-Building and Trajectory-Planning Algorithm
	The Introduction of the Autonomous Positioning Module
	Octree Map
	The Data Structure of the Octree Map
	Node Probability Updating

	Path Planning
	Basic RRT Algorithm
	RRT* Algorithm

	Smoothing the Interpolation of Third-Order Spline
	Node Table
	Basic Function Tables
	Calculation

	Simulation Test and Analysis
	Section Conclusion

	The Detailed Design of the Target Detection and Recognition Algorithm
	The Introduction of Target Detection and Recognition Module
	Target Detection Network
	TensorRT Inference Acceleration
	Analysis Test
	Section Conclusion

	Technical Validation
	Introduction of the Platform Plan
	The Fuselage Part
	Autonomous Navigation System
	Data Transfer System
	Ground Control System

	Flight Test
	Performance Test
	Single-Machine Indoor Autonomous Obstacle Avoidance and Navigation

	Conclusions
	References

