Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects
Abstract
:1. Introduction
- What is the comparative effect of the unsteady parameter when it is considered on the bidirectional component of x- axis and y-axis and when it is not considered?
- How does the presence of magnetic field and absence of it affect the velocity components?
- Whether present or absent, does the stretching parameter have any noticeable influence on and directions?
- What is the effect of friction coefficients, Nusselt number, and Sherwood number on the model?
2. Mathematical Modeling
2.1. Transport Equations
2.2. Geometry
2.3. Boundary Restrictions
2.4. Transformations
2.5. Transformed Transport Equations
2.6. Restructured Boundary Conditions
2.7. Physical Quantities
2.8. Dimensionless Numbers/Parameters
3. Numerical Simulation
3.1. Keller-Box Method Procedure
3.2. Solution Convergence
3.3. Code Validation
4. Results and Discussion
5. Conclusions
- The decline in the velocity components of the x-axis and y-axis direction is due to progressive flourishing of the unsteady parameter and magnetic field.
- Temperature distribution rises with a corresponding increase in the values of the heat source, Ludwig–Soret factor, temperature Biot number with an opposite effect for heat sink, stretching parameter, and power indices of r and s.
- Given the growth of the concentration Biot number, power indices of r and s, the concentration of the nanofluidic is enhanced.
- Friction coefficients decline for the stretching parameter, magnetic field, and unsteady parameter growth along the bidirectional velocity components.
- The rate of heat transmission is amplified with the temperature ratio and temperature Biot number and a reverse effect is noticed for the heat source and unsteady parameter.
- Mass transfer is enhanced for pedesis motion, unsteady parameter, and the concentration Biot number, with reverse impact of the Ludwig–Soret parameter.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seddeek, M.A. Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. Int. J. Heat Mass Transf. 2001, 45, 931–935. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A. Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study. J. Taiwan Inst. Chem. Eng. 2014, 45, 1176–1183. [Google Scholar] [CrossRef]
- Lu, D.; Ramzan, M.; Ahmad, S.; Shafee, A.; Suleman, M. Impact of Nonlinear Thermal Radiation and Entropy Optimization Coatings with Hybrid Nanoliquid Flow Past a Curved Stretched Surface. Coatings 2018, 8, 430. [Google Scholar] [CrossRef] [Green Version]
- Mahanthesh, B.; Thriveni, K. Significance of inclined magnetic field on nano-bioconvection with nonlinear thermal radiation and exponential space based heat source: A sensitivity analysis. Eur. Phys. J. Spec. Top. 2021, 230, 1487–1501. [Google Scholar] [CrossRef]
- Rana, P.; Dhanai, R.; Kumar, L. Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable magnetic field: Dual solutions. Ain Shams Eng. J. 2017, 8, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M. Numerical study of entropy generation with nonlinear thermal radiation on Magnetohydrodynamics non-Newtonian nanofluid through a porous shrinking sheet’s. Magnetics 2016, 21, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.W.; Alghtani, A.H.; Khan, I.; Andualem, M. Thermal Transport in Radiative Nanofluids by Considering the Influence of Convective Heat Condition. J. Nanomater. 2022, 2022, 1854381. [Google Scholar]
- Mustafa, M.; Mushtaq, A.; Hayat, T.; Ahmad, B. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study. PLoS ONE 2014, 9, e103946. [Google Scholar] [CrossRef]
- Imran, M.; Farooq, U.; Muhammad, T.; Khan, S.U.; Waqas, H. Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation. Case Stud. Therm. Eng. 2021, 26, 101129. [Google Scholar] [CrossRef]
- Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Bin-Mohsin, B. Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput. Appl. 2017, 28, 2041–2050. [Google Scholar] [CrossRef]
- Ramzan, M.; Yousaf, F. Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 2015, 5, 057132. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink. AIP Adv. 2015, 5, 017107. [Google Scholar] [CrossRef]
- Javed, T.; Faisal, M.; Ahmad, I. Actions of viscous dissipation and Ohmic heating on bidirectional flow of a magneto-Prandtl nanofluid with prescribed heat and mass fluxes. Heat Transf. 2020, 49, 4801–4819. [Google Scholar] [CrossRef]
- Ahmad, I.; Faisal, M.; Zan-Ul-Abadin, Q.; Javed, T.; Loganathan, K. Unsteady 3D heat transport in hybrid nanofluid containing brick shaped ceria and zinc-oxide nanocomposites with heat source/sink. Nanocomposites 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Khan, S.U.; Alabdan, R.; Al-Qawasmi, A.; Vakkar, A.; Handa, M.B.; Tlili, I. Bioconvection applications for double stratification 3-D flow of Burgers nanofluid over a bidirectional stretched surface: Enhancing energy system performance. Case Stud. Therm. Eng. 2021, 26, 101073. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, I.; Javed, T. Significances of prescribed heat sources on magneto Casson nanofluid flow due to unsteady bi-directionally stretchable surface in a porous medium. SN Appl. Sci. 2020, 2, 1472. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S. MHD three dimensional flow of Oldroyd-B nanofluid over a bidirectional stretching sheet: DTM-Padé Solution. Nonlinear Eng. 2019, 8, 744–754. [Google Scholar] [CrossRef]
- Bag, R.; Kundu, P.K. Radiative nanofluidic transport over bidirectional stretching sheet with multiple convective conditions and heat source/sink. Partial. Differ. Equ. Appl. Math. 2022, 5, 100358. [Google Scholar] [CrossRef]
- Ahmad, I.; Khurshid, I.; Faisal, M.; Javed, T.; Abbas, Z. Mixed convective flow of an Oldroyd-B nanofluid impinging over an unsteady bidirectional stretching surface with the significances of double stratification and chemical reaction. SN Appl. Sci. 2020, 2, 1599. [Google Scholar] [CrossRef]
- Munir, A.; Shahzad, A.; Khan, M. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface. PLoS ONE 2015, 10, e0130342. [Google Scholar] [CrossRef]
- Bilal, S.; Rehman, K.U.; Malik, M.Y.; Hussain, A.; Khan, M. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface. Results Phys. 2017, 7, 204–212. [Google Scholar] [CrossRef]
- Raju, C.S.; Sandeep, N. Heat and Mass Transfer in 3D Non-Newtonian Nano and Ferro Fluids over a Bidirectional Stretching Surface. Int. J. Eng. Res. Afr. 2015, 21, 33–51. [Google Scholar] [CrossRef]
- Ahmad, R.; Mustafa, M.; Hayat, T.; Alsaedi, A. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet. J. Magn. Magn. Mater. 2016, 407, 69–74. [Google Scholar] [CrossRef]
- Ahmad, I.; Faisal, M.; Javed, T. Magneto-nanofluid flow due to bidirectional stretching surface in a porous medium. Spéc. Top. Rev. Porous Media Int. J. 2019, 10, 457–473. [Google Scholar] [CrossRef]
- Ahmad, I.; Faisal, M.; Javed, T. Bi-directional stretched nanofluid flow with Cattaneo–Christov double diffusion. Results Phys. 2019, 15, 102581. [Google Scholar] [CrossRef]
- Afify, A.A. The influence of slip boundary condition on Casson nanofluid flow over a stretching sheet in the presence of viscous dissipation and chemical reaction. Math. Probl. Eng. 2017, 2017, 3804751. [Google Scholar] [CrossRef] [Green Version]
- Dawar, A.; Saeed, A.; Shah, Z.; Kumam, W.; Islam, S.; Kumam, P. Analytical Simulation for Magnetohydrodynamic Maxwell Fluid Flow Past an Exponentially Stretching Surface with First-Order Velocity Slip Condition. Coatings 2021, 11, 1009. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharyya, A.; Seth, G.S.; Chamkha, A.J. Transportation of magnetite nanofluid flow and heat transfer over a rotating porous disk with Arrhenius activation energy: Fourth order Noumerov’s method. Chin. J. Phys. 2021, 69, 172–185. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Mariam, A.; Ali, L.; Aldossary, O.M. Finite Element Study for Magnetohydrody namic (MHD) Tangent Hyperbolic Nanofluid Flow over a Faster/Slower Stretching Wedge with Activation Energy. Mathematics 2021, 9, 25. [Google Scholar] [CrossRef]
- Abbas, T.; Ayub, M.; Bhatti, M.M.; Rashidi, M.M.; Ali, M.E. Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate. Entropy 2016, 18, 223. [Google Scholar] [CrossRef]
- Jayaprakash, M.C.; Asogwa, K.K.; Lalitha, K.R.; Veeranna, Y.; Sreenivasa, G.T. Passive control of nanoparticles in stagnation point flow of Oldroyd-B Nanofluid with aspect of magnetic dipole. Part E J. Process Mech. Eng. 2021. [Google Scholar] [CrossRef]
- Shah, N.A.; Tosin, O.; Shah, R.; Salah, B.; Chung, J.D. Brownian motion and thermophoretic diffusion effects on the dynamics of MHD upper convected maxwell nanofluid flow past a vertical surface. Phys. Scr. 2021, 96, 125722. [Google Scholar] [CrossRef]
- Zeeshan; Rasheed, H.U.; Khan, W.; Khan, I.; Alshammari, N.; Hamadneh, N. Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface. Sci. Rep. 2022, 12, 2708. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Gul, T.; Islam, S.; Khan, M.A.; Bonyah, E.; Hussain, F.; Mukhtar, S.; Ullah, M. Three dimensional third grade nanofluid flow in a rotating system between parallel plates with brownian motion and thermophoresis effects. Results Phys. 2018, 10, 36–45. [Google Scholar] [CrossRef]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Alharbi, S.O.; Thounthong, P.; Nisar, K.S. Keller-Box Analysis of Buongiorno Model with Brownian and Thermophoretic Diffusion for Casson Nanofluid over an Inclined Surface. Symmetry 2019, 11, 1370. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Islam, S.; Gul, T.; Khan, I.; Dennis, L.C.; Khan, W.; Khan, A. The Brownian and Thermophoretic analysis of the non-newtonian Williamson fluid flow of thin film in a porous space over an unstable stretching surface. Appl. Sci. 2017, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Islam, Z.; Azad, A.K.; Hasan, M.J.; Hossain, R.; Rahman, M.M. Unsteady periodic natural convection in a triangular enclosure heated sinusoidally from the bottom using CNT-water nanofluid. Results Eng. 2022, 14, 100376. [Google Scholar] [CrossRef]
- Asogwa, K.K.; Mebarek-Oudina, F.; Animasaun, I.L. Comparative investigation of water-based Al2O3 Nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative Riga plate surface via heat transport. Arab. J. Sci. Eng. 2022, 47, 8721–8738. [Google Scholar] [CrossRef]
- Asogwa, K.K.; Uwanta, I.J.; Momoh, A.A.; Omokhuale, E. Heat and mass transfer over a vertical plate with periodic Suction and heat sink. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 7–15. [Google Scholar] [CrossRef]
- Shoaib, M.; Khan, R.A.; Ullah, H.; Nisar, K.S.; Raja, M.A.Z.; Islam, S.; Felemban, B.F.; Yahia, I.S. Heat transfer impacts on Maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical technique via artificial neural networks. Coatings 2021, 11, 1483. [Google Scholar] [CrossRef]
- Liu, I.C.; Andersson, H.I. Heat transfer over a bidirectional stretching sheet with variable thermal conditions. Int. J. Heat Mass Transf. 2008, 51, 4018–4024. [Google Scholar] [CrossRef]
- Wang, C.Y. The three dimensional flow due to a stretching flat surface. Phys. Fluids 1984, 27, 1915–1917. [Google Scholar] [CrossRef]
Grid Points | Step Size | ||||
---|---|---|---|---|---|
100 | 1/5 | 1.49809 | 0.39968 | 0.4051 | 0.14813 |
500 | 1/25 | 1.49852 | 0.39959 | 0.40504 | 0.14822 |
1000 | 1/50 | 1.49854 | 0.39958 | 0.40503 | 0.14822 |
1500 | 1/75 | 1.49854 | 0.39958 | 0.40503 | 0.14822 |
Present scrutiny | 0.751498 | 0.751498 | 1.173722 | 1.173722 |
Liu and Andersson [41] | 0.751494 | 0.751494 | 1.173721 | 1.173721 |
Wang [42] | 0.751527 | 0.751527 | 1.173720 | 1.173720 |
Present scrutiny | 0.842387 | 0.451678 | 1.093095 | 0.465205 |
Liu and Andersson [41] | 0.842360 | 0.451663 | 1.093096 | 0.465206 |
Wang [42] | 0.842360 | 0.451671 | 1.093097 | 0.465205 |
Present scrutiny | 1.0 | 0.0 | −1.0 | 0.0 |
Liu and Andersson [41] | 1.0 | 0.0 | −1.0 | 0.0 |
Wang [42] | 1.0 | 0.0 | −1.0 | 0.0 |
0.1 | 0.5 | 0.4 | −2.703724 | −0.221048 |
0.5 | −2.805763 | −1.277634 | ||
0.9 | −2.903119 | −2.57092 | ||
0.2 | 0.3 | −2.578544 | −0.423887 | |
0.6 | −2.802237 | −0.477544 | ||
0.9 | −3.009137 | −0.525623 | ||
0.4 | 0.2 | −2.543627 | −0.416068 | |
0.6 | −2.764274 | −0.468131 | ||
0.9 | −2.922576 | −0.504867 |
0.3 | 0.5 | 0.2 | 1.1 | 0.480382 |
0.5 | 0.741029 | |||
0.7 | 0.962075 | |||
0.9 | 0.4 | 1.14159 | ||
0.8 | 1.17459 | |||
1.2 | 1.202528 | |||
1.6 | 0.4 | 1.210284 | ||
0.6 | 1.192313 | |||
0.8 | 1.171314 | |||
1.1 | 1.3 | 1.209605 | ||
1.5 | 1.374133 | |||
1.7 | 1.548237 |
0.3 | 0.5 | 0.2 | 0.3 | 0.069379 |
0.5 | 0.096893 | |||
0.7 | 0.11673 | |||
0.9 | 0.4 | 0.11797 | ||
0.8 | 0.16536 | |||
1.2 | 0.1995 | |||
1.6 | 0.3 | 0.306 | ||
0.4 | 0.34569 | |||
0.5 | 0.36951 | |||
0.6 | 0.4 | 0.36094 | ||
0.5 | 0.33677 | |||
0.6 | 0.3129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.; Asogwa, K.K.; Alessa, N.; Loganathan, K. Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects. Symmetry 2022, 14, 2609. https://doi.org/10.3390/sym14122609
Faisal M, Asogwa KK, Alessa N, Loganathan K. Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects. Symmetry. 2022; 14(12):2609. https://doi.org/10.3390/sym14122609
Chicago/Turabian StyleFaisal, Muhammad, Kanayo Kenneth Asogwa, Nazek Alessa, and Karuppusamy Loganathan. 2022. "Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects" Symmetry 14, no. 12: 2609. https://doi.org/10.3390/sym14122609
APA StyleFaisal, M., Asogwa, K. K., Alessa, N., & Loganathan, K. (2022). Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects. Symmetry, 14(12), 2609. https://doi.org/10.3390/sym14122609