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Abstract: Today, aircraft demand is exceeding the capacity of the Air Traffic Control (ATC) system.
As a result, airspace is becoming a very complex environment to control. The complexity of airspace
is thus closely related to the workload of controllers and is a topic of great interest. The major concern
is that variables that are related to complexity are currently recognised, but there is still a debate
about how to define complexity. This paper attempts to define which variables determine airspace
complexity. To do so, a novel methodology based on the use of machine learning models is used. In
this way, it tries to overcome one of the main disadvantages of the current complexity models: the
subjectivity of the models based on expert opinion. This study has determined that the main indicator
that defines complexity is the number of aircraft in the sector, together with the occupancy of the
traffic flows and the vertical distribution of aircraft. This research can help numerous studies on both
air traffic complexity assessment and Air Traffic Controller (ATCO) workload studies. This model
can also help to study the behaviour of air traffic and to verify that there is symmetry in structure and
the origin of the complexity in the different ATC sectors. This would have a great benefit on ATM, as
it would allow progress to be made in solving the existing capacity problem.

Keywords: complexity; relative importance; machine learning; Air Traffic Management; Air Traffic
Controller; Big Data

1. Introduction

The Air Traffic Management (ATM) system’s main role is to ensure the safe and
efficient transport of passengers and goods [1]. Modern aviation is facing a major challenge,
namely the increase in demand for aircraft. In recent years, aircraft demand has increased
by 3–6% per year, and EUROCONTROL estimates that it will continue to increase by 2%
per year until 2025 [2]. This increase in aircraft demand exceeds the capacity of the ATM
system, and this imbalance is among the main reasons for delays and congestion in air
traffic [3]. Specifically, the capacity of an ATC sector is measured as the maximum number
of aircraft that can cross the sector in a given time [4]. Capacity is therefore affected by many
uncontrollable factors, such as the weather and actions or experience of the controllers. This
makes capacity difficult to increase [5]. For this reason, the imbalance between capacity
and demand is a difficult problem to solve.

According to ICAO forecasts, the current situation makes airspace very complex for
the (ATC) system and this will remain so in the future. This situation is important because
the Air Traffic Control system is responsible for the safe and efficient management of air
traffic flows [6]. Among the current concerns of the ATM system is to reduce airspace
complexity. The reason for wanting to reduce airspace complexity is that the complexity
and congestion of ATC sectors are closely related to the workload of (ATCOs) [7]. It is,
indeed, natural to assess the workload of ATCOs through airspace complexity, as it is
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independent of the human factor and this relationship is very valuable to be researched [8].
However, what is airspace complexity? It is clear that complexity is an area of concern
because of its effects on traffic and ATCOs. However, there is currently no consensus on
how to define complexity [9]. There are multiple metrics of complexity, most of them
agreeing that air traffic complexity is a complex measure dependent on several factors
and their relationships, but there is also a need for new complexity metrics [10]. A very
generalised and comprehensive complexity indicator is dynamic density (DD) [11]. This
indicator, or its variants, is still widely used today [12,13]. This indicator is based on a
weighted sum of different variables. Although it is a widely used indicator and it has
been the source of many subsequent indicators of complexity, it is considered to have a
limitation. As this indicator is based on the conflicts generated in the airspace, as well as
on traffic indicators, it is indirectly based on the actions of the ATCOs. This means that this
indicator is also influenced by human performance.

This uncertainty in the definition of complexity, coupled with its direct relationship
to the workload of controllers, means that this topic has received a considerable amount
of interest from researchers around the world in recent years [14–16]. Although there are
discrepancies in the definition of complexity, different authors agree on certain aspects. The
authors think that air traffic density, in particular the number of aircraft, is the indicator
that best expresses complexity. However, this parameter alone does not adequately reflect
the workload of ATCOs [17]. Therefore, these authors also express the need to use other
variables such as interactions between aircraft or changes in direction or speed [18]. These
factors that determine the complexity of air traffic, and therefore of airspace, are of a very
different nature. For this reason, interest has arisen in finding out which of the aspects
mentioned in the literature are important or not, to unify the efforts made and help arrive
at a complexity indicator that could be used independently of the disparate characteristics
of the ATC sectors. An attempt is therefore made to arrive at an indicator that is based
exclusively on air traffic characteristics.

With this in mind, this paper aims to determine which variables are really important in
the determination of complexity, independently of human performance. With this objective
in mind, an attempt will be made to answer the following research question: What are
the variables that really determine the complexity of airspace? Throughout this paper, the
methodology necessary to try to answer this question will be developed. It will be tested.
At the end of the results, a reflection will be added in case this question can be answered.

The approach of this paper is novel. The model developed is based on real operational
data and through the application of Big Data analysis and machine learning algorithms.

In this case, the data themselves determined in this methodology which variables are
most important in determining the complexity of the airspace.

This methodology was used to identify which variables are most important in deter-
mining the complexity of airspace. For this purpose, it was based on a dynamic feature
weights selection [19,20]. This approach is novel and useful, as it overcomes one of the
major limitations of current complexity models. This limitation is the dependence of the
models on the opinion of the ATCOs, which is subject to their bias [21]. Although the
starting point of the model is, in this paper, expert opinion, this methodology should lead
to the same results regardless of the initial values of the model. Therefore, the approach
followed in this paper has the following advantages:

• Determination of the most important variables in an objective way, using artificial
intelligence applications. Dynamic feature weight selection made it possible to identify
which variables are more important in the complexity definition, without being based
on human bias.

• Possibility of capturing different behaviours and trends, due to the different nature of the
ATC sectors. This is also possible thanks to the application of machine learning algorithms.

• Ability to adapt and capture changes in results over time as new operational data are
added to the model.



Symmetry 2022, 14, 2629 3 of 26

Thanks to all these advantages offered by a methodology that allows obtaining which
variables are more important in the determination of the complexity of airspace, it is
intended to help define a complexity indicator. Although this indicator should be composed
of a static series of variables to be a consistent indicator, their relative importance should be
able to vary dynamically and automatically depending on the sector and the time horizon
analysed. In this way, this supposed indicator could adapt to the situation analysed.

This methodology is based on feature selection [22] to develop a machine learning
model based on the application of Big Data analysis [23]. The dynamic feature selection
is made through the function Gini [24]. Although both Gini and Entropy are supposed to
work well in this situation, Gini has been selected because it works properly in research
related to this topic [25], where classification models with the random forest algorithm
were developed. This model made it possible to study the behaviour of air traffic and to
draw conclusions such as whether its structure and the origin of its complexity are indeed
symmetrical in ATC sectors of different natures.

To show the methodology followed in this paper to determine which variables are most
important to determine airspace complexity, Section 2 shows the methodology followed.
Section 3 shows the results obtained with a real application. Section 4 shows the conclusions
obtained in the definition of the methodology and its application and the future steps for
its improvement.

2. Materials and Methods

This section presents the methodology proposed to detect which variables are the
most important in the determination of airspace complexity. This methodology is divided
into two main areas.

• Definition of complexity: To be able to estimate the variables that make the airspace
more complex, it is first necessary to define what complexity is.

• Identification of the most important variables: Once the complexity has been defined,
it is appropriate to identify which variables are the most influential.

The complete methodology is developed below.

2.1. Complexity Definition

The first step in determining which variables are most important for understanding
sector complexity is to define what sector complexity is.

Many studies currently exist that attempt to estimate the complexity of airspace, many
of them using artificial intelligence [26–28]. Of interest within these models are models
that define airspace complexity in terms of a few simple indicators [29]. In particular,
the methodology presented in [30] was the basis for the methodology of this paper. This
methodology is based on the determination of complexity from the behaviour of air traffic
flows within the sector. This methodology proposes the classification of air traffic flows
through a variable called “impact” and the classification of ATC sectors through a variable
called “complexity”, this classification is supported by machine learning models.

This methodology has the advantage of defining complexity in terms of simple statisti-
cal variables. However, this selected methodology has certain limitations that were resolved
before the implementation of the methodology for selecting the most important variables.

Specifically, the complexity of an ATC sector depends on the behaviour of its aircraft,
represented in this case through air traffic flows. However, it also depends on the structural
aspects of the sector [31]. This last aspect is not explicitly included in this methodology.
For this reason, an attempt was made to add this dimension to the selected methodology
through three additional variables. These variables have been added through the review
of [32,33]. It is important to note that although these three variables have been based
on these references, the scope of this paper is different from the one in [32,33], having a
significant contribution. In [33], the paper models the determination of airspace complexity
through critical factors and genetic algorithms. In this case, a methodology based on it has
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been developed, but the focus of this paper goes beyond the development of the method-
ology. The intention of this paper is to find out which factors are critical in determining
airspace complexity. The development of the methodology, while necessary, is simply a
means to fulfil the real objective of this paper. In [32], a methodology for determining
complexity is also proposed. This paper is also based on the work done in this reference.
In addition, in this reference, there are also studies of causalities in Bayesian networks.
However, in [32], a very complete model has been developed, but in which the opinion of
experts is very present, which is exactly what we want to eliminate in this paper. The aim of
this paper is to determine the most influential factors independently of expert opinion, for
which machine learning models are used. However, in order to improve the methodology
for determining the complexity, the subsequent selection of important parameters has
been the basis. Additionally, the variables in Tables 1 and 2 are based on these references
but are different. This results in a different methodology from the one proposed in these
two papers.

Table 1. Variables used to define air traffic flow impact.

Air Traffic Density Air Traffic Vertical Density Time Distribution ATFCM Regulations

Daily number of aircraft in the
air traffic flow

(0.4297)

Percentage of changing FL
aircraft in the air traffic flow

(1)

Days that the air traffic flow is
occupied within a year

(0.5833)

Percentage of regulated aircraft
in the air traffic flow

(0.0755)

Hourly number of aircraft in
the air traffic flow

(0.2714)

Number of
ascending/descending

aircraft in the air traffic flow
(0.4206)

Hours that the air traffic flow
is occupied within a day

(0.9914)

Mean regulations in the air
traffic flow

(0.0163)

Maximum aircraft in an hour
in the air traffic flow

(0.4)

Number of cruise aircraft in
the air traffic flow

(0)

Mean regulations based on
regulated aircraft in the air

traffic flow
(0)

Number of occupied FL in
the air traffic flow

(0.75)

Percentage of delayed aircraft in
the air traffic flow

(0.0189)

Number of aircraft per FL in
the air traffic flow

(0.3305)

Mean delay in the air traffic flow
(0.0008)

Mean delay based on regulated
aircraft in the air traffic flow

(0.0151)

Mean delay based on delayed
aircraft in the air traffic flow

(0.0047)

Table 2. Variables used to define ATC sector complexity.

Flow Parameter Sector Parameter

Percentage of air traffic flows with 5-level impact
(2.043)

Distribution of wake turbulence categories in the ATC sector
(2.965)

Number of air traffic flows in the ATC sector
(3.046)

Number of points where aircraft enter/exit the ATC sector
(1.5)

Distance between points where aircraft enter/exit the ATC sector
(2.011)
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The three variables added are:

• Mix of aircraft wake turbulence categories in the sector: Aircraft mix is traffic de-
pendent but is considered within the structural aspects of the sector as this will vary
depending on the geographical location and the type of operations and routes within
the sector. For this reason, it has been considered a structural aspect of the sector.

• Number of entry and exit points: The number of aircraft entry and exit points is a
structural aspect of the sector which gives an idea of the complexity of traffic within
the sector. If there are many points, the operation will be more complex.

• Distance between entry and exit points: It is not only the number of points that is
important, but also their concentration. If the points are further apart, the operation in
the ATC sector will be more uniform and simpler than if the points are concentrated
in certain areas of the sector.

With the incorporation of these three variables into the proposed methodology in [30]
the characterisation methodology is completed. This methodology is proposed to study
the complexity of the sectors from the behaviour of their air traffic flows (based on the
behaviour of individual aircraft) but also on the structural aspects of the sector itself.
Furthermore, it is important to note that the influence of machine learning models has been
removed from this methodology, as it is considered that for the scope of this paper, machine
learning models were used for another purpose. The characterisation methodology is
presented in Figure 1.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 1. Characterisation of the ATC sectors by their complexity. 

This methodology is therefore the proposed methodology for defining complexity in 

the airspace. This methodology defines both the complexity of ATC sectors and the impact 

of air traffic flows daily. This methodology is based on statistical variables obtained from 

individual operations in the sector over time. For a better interpretation of the complexity 

definition methodology, these variables have been divided into four different areas [30]: 

• Air traffic density: Traffic density is the variable most closely related to complexity 

in the literature. For this reason, it is the first area to be considered and its importance 

is expected to be high. 

• Vertical air traffic density: To know the complexity of airspace, it is also necessary to 

know how aircraft occupy this airspace vertically. The distribution of aircraft per FLs 

is also a variable that is widely considered in the literature. 

• Time Distribution: This field studies the percentage of hours and days that the flows 

were open. This area may also be of interest. 

• ATFCM Regulations: Regulations appear when the capacity of the ATC system can-

not cope with the aircraft demand. For this reason, regulations will appear in the 

most complex airspaces. The relationship between these regulations and complexity 

may also be of great interest. 

The variables inside each of the areas are calculated as: 

• Daily number of Aircraft in the air traffic flow: As the air traffic flow is data provided 

by the CRIDA company, and the exact time of entry and exit to the sector is also 

available, a count of aircraft belonging to each flow is made each day. 

• Hourly number of Aircraft in the air traffic flow: As for the previous variable, it is 

easy to perform a count of aircraft entering the sector by a concrete flow each hour. 

To maintain the daily time horizon, all hourly counts on the same day are averaged. 

• Maximum aircraft in an hour in the air traffic flow: Starting from the hourly counts 

of a given day for each flow, the maximum of the sample is taken. This is taken be-

cause the peak hourly traffic is just as important as the average hourly traffic. 

• Percentage of changing FL Aircraft in the air traffic flow: Information on the average 

flight level of all aircraft, and the standard deviation is taken. If the standard devia-

tion of the FL is different from zero, it is because the aircraft has changed FL at some 

point. All aircraft with a standard deviation of FL different from 0 are divided by the 

total number of aircraft each day. 

• Number of Ascending/Descending aircraft in the air traffic flow: Data are available 

for the vertical speed of aircraft in the sector. If this vertical speed is other than 0, the 

aircraft is ascending/descending. The ascents and descents are combined because one 

Figure 1. Characterisation of the ATC sectors by their complexity.

This methodology is therefore the proposed methodology for defining complexity in
the airspace. This methodology defines both the complexity of ATC sectors and the impact
of air traffic flows daily. This methodology is based on statistical variables obtained from
individual operations in the sector over time. For a better interpretation of the complexity
definition methodology, these variables have been divided into four different areas [30]:

• Air traffic density: Traffic density is the variable most closely related to complexity in
the literature. For this reason, it is the first area to be considered and its importance is
expected to be high.

• Vertical air traffic density: To know the complexity of airspace, it is also necessary to
know how aircraft occupy this airspace vertically. The distribution of aircraft per FLs
is also a variable that is widely considered in the literature.

• Time Distribution: This field studies the percentage of hours and days that the flows
were open. This area may also be of interest.

• ATFCM Regulations: Regulations appear when the capacity of the ATC system cannot
cope with the aircraft demand. For this reason, regulations will appear in the most
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complex airspaces. The relationship between these regulations and complexity may
also be of great interest.

The variables inside each of the areas are calculated as:

• Daily number of Aircraft in the air traffic flow: As the air traffic flow is data provided
by the CRIDA company, and the exact time of entry and exit to the sector is also
available, a count of aircraft belonging to each flow is made each day.

• Hourly number of Aircraft in the air traffic flow: As for the previous variable, it is
easy to perform a count of aircraft entering the sector by a concrete flow each hour. To
maintain the daily time horizon, all hourly counts on the same day are averaged.

• Maximum aircraft in an hour in the air traffic flow: Starting from the hourly counts of
a given day for each flow, the maximum of the sample is taken. This is taken because
the peak hourly traffic is just as important as the average hourly traffic.

• Percentage of changing FL Aircraft in the air traffic flow: Information on the average
flight level of all aircraft, and the standard deviation is taken. If the standard deviation
of the FL is different from zero, it is because the aircraft has changed FL at some point.
All aircraft with a standard deviation of FL different from 0 are divided by the total
number of aircraft each day.

• Number of Ascending/Descending aircraft in the air traffic flow: Data are available
for the vertical speed of aircraft in the sector. If this vertical speed is other than 0, the
aircraft is ascending/descending. The ascents and descents are combined because one
case is equally complex for the ATCOs as the other. To obtain this variable, a count is
made of all aircraft per day and per flow that have a vertical speed different from 0.

• Number of Cruise aircraft in the air traffic flow: Complementary to the previous
variable, this variable is obtained by counting all aircraft per day and per flow that
have a vertical speed of 0.

• Number of Occupied FL in the air traffic flow: Information is available on the flight
levels of the aircraft within each sector. Information is also available on the flows to
which each aircraft belongs. With this, a count is made of the different flight levels
that appear each day in the flow. This variable will be the total number of different
flight levels.

• Number of Aircraft per FL in the air traffic flow: With the above information, it is also
easy to make a count of how many aircraft are in each flight level per flow per day.
With the number of aircraft in each flight level, an arithmetic mean is made.

• Days that the air traffic flow is occupied within a year: A flow does not necessarily
have aircraft every day of the year. With the information on the entry and exit of the
aircraft sector of each flow, the day of entry is considered. This is used to calculate
which days there will be aircraft and which days there will not. The number of days on
which there will be aircraft is divided by 365 to give the percentage. These data will be
unique for each flow during the whole period, contrary to the rest of the parameters,
but are still considered as they give very useful information.

• Hours that the air traffic flow is occupied within a day: Like the previous variable,
the time of the entry of the aircraft is used, and the flow to which they belong. In this
case, the specific time is considered, and a count is made of the hours during which
the flow will have aircraft. The total of these hours is calculated and divided by 24 to
make the percentage.

• Percentage of regulated aircraft in the air traffic flow: Another piece of information
is the number of regulations affecting each flight. All those aircraft in the flow each
day with a non-zero number of regulations have been divided by the total number of
aircraft in the flow on that day.

• Mean regulations in the air traffic flow: Of all aircraft in each flow on the analysis day,
the arithmetic means of the regulations are calculated.

• Mean regulations based on regulated aircraft in the air traffic flow: Of all aircraft
with several regulations greater than zero (regulated aircraft) in each flow on the
analysis day, the arithmetic mean of the regulations is calculated. This variable is
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also considered because the meaning is different from the previous variable. It is not
the same to see which regulations affect on average, being strongly influenced by
unregulated aircraft, as it is to see the average regulations only when knowing that
they are regulated.

• Percentage of delayed aircraft in the air traffic flow: This is also available for each
aircraft. The number of aircraft with a delay greater than zero on a day in a flow is
divided by the number of total aircraft on that day in that flow.

• Mean delay in the air traffic flow: From all aircraft in each flow on the analysis day,
the arithmetic mean delay is calculated.

• Mean delay based on regulated aircraft in the air traffic flow: From all regulated
aircraft in each flow on the analysis day, the arithmetic mean of the delay is calculated.

Mean delay based on delayed aircraft in the air traffic flow: Of all aircraft with a delay
greater than zero (delayed aircraft) in each flow on the analysis day, the arithmetic mean of
the delay is calculated.

These statistical variables were rescaled between 0 and 1 (where 0 is the minimum
and 1 is the maximum of the variable for all air traffic flows in the period considered) so
that some variables do not stand out over others throughout the methodology.

To achieve better comprehension of the methodology, and of the subsequent machine
learning models implemented, all the statistical variables studied are presented in Table 1,
divided into the four areas described. Furthermore, to improve the reproducibility of the
methodology, an example of a real case of the variables is presented in Table 1 in brackets
to better understand the format of the data.

With these variables, mean values and coefficients of variation were calculated. Addi-
tionally, with these values, the variables called mean impact and impact variability were
calculated using weighted sums (see [30]). The mean impact and impact variability were
later re-scaled between values 1 and 5. These variables were calculated daily, which results
in a methodology that defines complexity daily. In the example data shown in Table 1, the
mean impact is 3.69 and the impact variability is 1.68.

The next stage of the methodology is the definition of the impact of air traffic flows.
This is defined from the mean impact and impact variability by using a table model. This
table model is presented in Figure 2.
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Figure 2. Table model to define air traffic flow impact.

This model table is based on a risk matrix [34,35]. In these matrices, the risk tier of the
impact and the probability of occurrence are assessed. In these matrices, the two variables
are discretised from 1 to 5 and a discretised risk from 1 to 5 will also be obtained. In this
model table, the axes will be the average impact and the variability of the impact. These
two variables will also be discretised from 1 to 5, resulting in 5 impact tiers. Tier 1 is green,
and tier 5 is dark red. The distribution of impact tiers has been done employing expert
opinion with staff from Enaire, CRIDA and Universidad Politécnica de Madrid.

Although the mean impact and impact variability are continuous variables, they are
discretised for this table model. In the case of the example, they would change from 3.69
and 1.68 to 4 and 2, respectively. These two values are combined in the table model, and
result in an impact of 5.

At this point, the variable impact has already been defined. This variable is fundamen-
tal to the model as it allows the behaviour of flows to be studied. The behaviour of the
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flows, together with the newly added structural aspects, constitute the complexity of the
ATC sectors.

Table 2 presents the variables used in the definition of complexity, divided into those
that form the flow parameter and those that form the sector parameter. As stated before, the
main addition of this methodology from the one in [30] is the sector parameter variables.
These variables and the flow parameter variables were calculated daily as we are defining
a methodology that calculates the complexity of the ATC sectors daily. These variables are
calculated as:

• Number of air traffic flows in the ATC sector: The number of flows into which the
airspace is distributed is provided by CRIDA.

• Percentage of air traffic flows with 5-level impact: Of the total flows present in the
airspace on the day of analysis, the impact is calculated as described above. The
number of flows with 5-level impact is divided by the total number of flows.

• Distribution of wake turbulence categories in the ATC sector: The most complex
situation for the ATC service is that there is an equal number of aircraft of the different
wake turbulence categories. The simplest situation is when all aircraft are in the same
wake turbulence category. Therefore, the most complex situation will be 5 of the
overall variables, and the simplest will be 1. The percentage of aircraft in each wake
turbulence category is therefore calculated on the day of operation, and the deviation
from these two extremes is measured.

• Number of points where Aircraft enter/exit the ATC sector: All air traffic flows will
have a sector entry and exit point. However, the entry or exit points of several flows
may coincide. Therefore, the number of entry or exit points may be 2·number of flows
or less. The number of entry or exit points is calculated and divided by (2·number of
flows). This will result in a parameter between 0 and 1.

• Distance between points where Aircraft enter/exit the ATC sector: The distance in km
between the different entry or exit points is calculated. The arithmetic mean is then
calculated.

These variables are rescaled directly between 1 and 5 using as limits for each variable
its maximum and minimum over the whole period studied. In Table 2, a real data example
is presented in brackets to show the format of the data.

The flow parameter and the new sector parameter are defined with weighted sums of
their parameters, and then the complexity is defined using a table model similar to Figure 2.
The flow parameter can be paralleled with the mean impact, and the sector parameter with
the impact variability to define the complexity table model. In the proposed example, the
flow parameter is 2.55 and the sector parameter is 2.16. This results in a complexity of 3.

With this last step, the methodology to assess the complexity of airspace based on the
methodology proposed in [30] is fully defined. This methodology is therefore able to define
both the impact of an air traffic flow and the complexity of the airspace, depending on
several different characteristics. This model has been chosen because of several advantages:

• The model determines the impact of flows, and the complexity of the sector, based on
simple statistical variables. These variables are representative.

• The division of the variables is accurate and based on a correct analysis of the literature.
• The definition of impact and complexity is based on weighted sums, which is good for

a machine learning model to obtain relative importance and be representative.

It has been identified how the complexity of the sectors was defined. The next step
was to define how to come up with a model that allows us to say which variables are most
important in determining complexity.

2.2. Most Important Variables Identification

Once a model has been identified with which complexity can be determined based on
several simple statistical variables, it is necessary to determine which variables are the most
important. A machine learning model is used for this purpose. The major advantage of
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using a machine learning model is that the results obtained are the product of the patterns
present in the data, rather than the bias of the experts.

Even if in this case expert opinion is used as a starting point. Expert opinion is only
a necessary starting point for the methodology. To test that the methodology leads to the
same results independently of expert opinion, the starting point of the methodology has
been arbitrarily varied. As the results obtained were similar, it can be justified that the
methodology eliminates the expert bias.

Even so, this expert opinion is the most operationally meaningful starting point. This
will later be used to compare it with the results obtained. Moreover, this good starting point
served to accelerate the convergence of the algorithm. For these reasons, expert opinion is
used as a starting point in this paper.

In this paper, two machine learning models were determined. The first model de-
termined the impact of air traffic flows. The first model determined the complexity of
the ATC sectors. This division was based on the fact that the distribution of flows is a
fundamental indicator of complexity [36], and that in this model it is represented by the
impact of the air traffic flows. The function of machine learning models was not to predict
the output, as in most machine learning for ATM [28,37]. In this case, the objective is to
analyse the relative importance of the input variables. A wide variety of algorithms are
used in industry for machine learning models [38]. There are algorithms based on decision
trees such as the random forest algorithm or the logistic tree classifier. There are also other
families of classifiers such as ree, Perceptron, Lazy, Bayes, SVM, Regressions and ANN [39].

In this case, a random forest algorithm was, therefore, used for both these models, as
it works properly in different nature problems [40,41], and it is also easy to extract relative
importance with decision tree-based algorithms [42]. This relative importance analysis
was the key to finding out which variables are the most influential in determining impact
and complexity. This relative importance extraction was based on the feature importance
method [43].

As the determination of impact and complexity is based on weighted sums, the result
will change if the weights of these sums change. Thus, the relative weights obtained by
the machine learning model were considered the new weighted sum weights, so that the
model is mainly influenced by the machine learning algorithm rather than by the bias of
the experts. However, the relative weights proposed by the machine learning model may
vary greatly from the initial relative weights. Therefore, it cannot be said that these are the
final relative weights.

To solve this, an iterative process is implemented in which the relative importance
varied until a certain stability is reached. This stability is achieved when, between one
iteration and the next, none of the model’s relative importance has varied by more than 5%.

Stabilitity ↔ RIi
j − RIi−1

j < 0.05 · RIi
j ∀ j (1)

where RI is the relative importance of the j variables in iterations i and i − 1.
When the required stability is reached, the relative weights obtained remain approxi-

mately constant. It is these relative weights that will tell which variables are most important
in determining both the impact of air traffic flows and the complexity of ATC sectors.

Figure 3 presents the process of obtaining the relative weights which tell which
variables are most important in determining impact and complexity. The process marked
in red indicates the first iteration of the loop, using the weighted sum with the weights
indicated in [30], based on expert opinion. In black is marked the update loop of the
relative importance, this loop is run until it reaches the final relative importance with which
stability is reached. As the process is common to the two machine learning models defined,
the input and output variables of the model are not specified in the process of Figure 3. It
has been specified in Figure 3 that there are two models, the first to determine the impact
of air traffic flows, and the second to determine the complexity of the ATC sectors.
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Figure 3. Process of more/less important variables identification.

This process is very robust and has a great advantage. The process allows obtaining,
based on initial relative importance based on the bias of the experts, relative importance
based mainly on the real operating data. This eliminates much of the subjectivity of the
initial model.

2.3. Evaluation of Machine Learning Models

The aim of this methodology is not to predict the output of a machine learning model,
but to analyse the relative importance of the variables. However, to verify that the relative
importance obtained is valid, the performance of the model was evaluated in parallel. As
the impact and complexity are determined in two independent models, they were also
evaluated independently. In this section, the evaluation methods of the developed machine
learning models are mentioned.

First, it has been decided to propose an evaluation method using the following indica-
tors, based on [44].

The first indicator selected is accuracy. This indicator measures the total percentage of
well-classified cases out of the total number of cases. The mathematical equation for this
indicator is:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

TP being True Positive elements, TN being True Negative elements, FP being False
Positive elements, and FN being False Negative elements.

As the methodology operates on the assumption that the output is correct, a minimum
tier of 90% accuracy is set to be able to perform an analysis of the relative importance of the
variables.

Accuracy is a great indicator to measure the overall performance of the model, but
three additional indicators are also presented for more detailed information [44,45]:

precision =
TP

TP + FP
(3)
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recall =
TP

TP + FN
(4)

F1-score = 2 · precision · recall
precision + recall

=
TP

TP + FN+FP
2

(5)

Recall indicates the ability of the algorithm to accurately detect when the sector will be
regulated or not. The precision indicates the ability of the algorithm to detect the categories.
Additionally, the F1-score is a harmonic mean of the recall and the precision [46]. The F1-score
complements the precision and recall indicators. The precision indicator measures FP
elements, the recall measures FN elements. Therefore, the F1-score is a measure of both FP
and FN that is widely used in the evaluation of machine learning models.

These indicators should also be above 0.9 out of 1 to be considered adequate in
these models.

With these four parameters, the machine learning models are evaluated. If the defined
requirements were met, the models were considered correct, and the analysis of the relative
importance of the variables was considered meaningful.

3. Results

Once the methodology to identify which variables are the most important in determin-
ing both the impact and the complexity of the model has been presented, the validity of this
methodology is tested in a real scenario application. For this test, data from all operations
in six ATC sectors in Spanish airspace during 2019 have been used.

The input data to the methodology comprise more than 3 million aircraft from different
sectors. They have been obtained based on ENAIRE radar traces and have been provided to
the authors after processing and validation by the company CRIDA. ENAIRE and CRIDA’s
presence for the pre-filtering of the data is a great help. The data belong to radar traces,
so it can be expected that there will be a lot of noise in the sample, coming from a highly
noisy environment. However, thanks to ENAIRE and CRIDA, it can be assured that the
data used for the development of this methodology and for its testing will be free of errors
due to the noise in the sample.

Figure 4 shows the sectors where the model has been tested.
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Six sectors have been chosen to try to capture the different typologies of ATC sectors
in Spanish airspace.

• Low Sectors: These sectors are sectors where aircraft are in evolution (climbing/
descending) and at a low flight level (FL). These ATC sectors are the sectors im-
mediately above the terminal maneuvering area (TMA) of the airports. Available
examples of these sectors are Castejón Low (LECMCJL) and Gran Canaria Northeast
(GCCCRNE).

• Upper Sectors: These ATC sectors are occupied by aircraft flying at high FLs and in a
cruising regime. There is usually much less variability in operation. They are more
stable sectors. The sectors selected as a sample, in this case, are Pamplona Upper
(LECMPAU) and Domingo Upper (LECMDGU).

• Integrated Sectors: These are sectors where enroute operation is combined with
arrival and departure operation. They are normally operational at night as there are
fewer aircraft. As there is more variability in the operation, they are only operational
when traffic is lower so that the same ATCOs can take care of the operation in cruise
and evolution. The integrated sectors to be studied are Teruel Zaragoza Integrated
(LECMTZI) and Toledo Integrated (LECMTLI).

This selection of sectors has been made with two main purposes in mind:

• To assess the suitability of the methodology for sectors operating differently from
each other and whether it can detect the most important variables under different
operating conditions.

• To verify whether the sectors classified in the different groups are similar in nature
and whether the methodology can capture this.

The results obtained were divided into two subsections, respecting the two different
machine learning models proposed in the methodology. Therefore, the results obtained
from the analysis of the impact of air traffic flows and the analysis of the complexity of the
ATC sectors are shown separately.

3.1. Hyperparameters of Machine Learning Models

As already mentioned, the random forest algorithm has been chosen for the develop-
ment of these machine learning models, but this algorithm can be customised depending
on the hyperparameters that are specified. The correct choice of the hyperparameters of
the model can have a great influence on its accuracy [48]. For this reason, it was decided
to analyse the hyperparameters of the machine learning models before their complete
evaluation. Specifically, the hyperparameters chosen are:

• N_estimators: Total number of trees to be constructed in the forest [49].
• Max_features: Used for denoting the maximum number of variables used in indepen-

dent trees [49].
• Max_depth: The maximum number of times that the trees will be divided.
• Min_samples_split: The minimum number of samples necessaries to split the branch

of the tree.

It is estimated that these hyperparameters are sufficient to optimise the results of the models.
As in this methodology, the number of machine learning models applied will depend

on the number of iterations until stability is reached, it is not possible to test all the models
beforehand. For this reason, it has been decided to test each of the models once, optimise
their hyperparameters, and leave them constant throughout the process. In particular, the
impact and complexity model which relative weights correspond to expert opinion has
been optimised.

Firstly, the analysis of the impact model is carried out. Plots will be shown where
accuracy will be evaluated as the hyperparameters studied vary. First, in Figure 5, the
influence of n_estimators and max_features are shown.
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Figure 5. Influence of n_estimators and max_features on accuracy of impact machine learning model.

Very similar behaviour is observed for the three max_features, in which, as n_estimators
increases, accuracy stabilises. It is important to consider that the graph has a lot of zoom, so
the behaviour is much more stable than it seems. The final accuracy values are also very
similar, although sqrt seems to perform slightly better.

The influence of max_depth and min_samples_split is then presented. This is depicted
in Figure 6.
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Figure 6. Influence of max_depth and min_samples_split on accuracy of impact machine learning model.

As for max_depth, behaviour stabilises at a max_depth of 15. From this point on,
accuracy remains approximately constant. On the other hand, the min_samples_split
decreases the accuracy as it increases. This is expected since the higher the hyperparameter,
the less accurate the model will be. In order to avoid underfitting or overfitting, it has been
decided to keep it at 5.

With these three plots it has been possible to study the behaviour of the machine
learning model of impact. Subsequently, the specific parameters that will make up this
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random forest algorithm have been selected. These hyperparameters are shown in Table 3
once the complexity has been analysed.

Table 3. Hyperparameters of machine learning models.

Machine
Learning Model N_estimators Max_features Max_depth Min_samples_split

Impact 100 sqrt 15 2
Complexity 100 sqrt 15 35

The next model to be studied is the complexity model. To analyse its hyper-parameters,
the same process is used as for the impact model. Therefore, first the influence of n_estimators
and max_features is shown in Figure 7.
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Figure 7. Influence of n_stimators and max_features on accuracy of complexity machine learning model.

The hyperparameter n_estimators in this case has a much more stable behaviour from
80 trees onwards in the random forest. The max_feature log2 is not visible in Figure 7
because it has exactly the same values as sqrt. As these are slightly more stable, and for
consistency with the impact model, the same values of these hyperparameters are selected.

The next analysis is that of max_depth and min_samples_split in the complexity model.
This analysis is presented in Figure 8.

In this case, the behaviour of max_depth in the complexity model is analogous to the
behaviour of the impact model. The parameter has no influence on accuracy at 15 and above.
On the other hand, min_samples_split seems to stabilise at 25 samples and above. For this
reason, this is the value chosen for this hyperparameter.

Once this analysis has been completed, we proceed to define all the hyperparameters
for both models. These are listed in Table 3.

Therefore, the optimal results will be obtained with these hyperparameters. It is
important to note that the models are very robust, so the results in this case will not be
greatly influenced by the hyperparameters. The variation is as low as 0.01, except for very
low values of max_depth where the variation is noticeable.
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3.2. Evaluation of Machine Learning Models

Once the hyperparameters are defined, and before obtaining the results of the features’
relative importance. It is important to evaluate the performance of the machine learning
models on which the proposed methodology is based. In this section, both the machine
learning model that predicts the impact of the air traffic flows and the complexity of the
ATC sectors are evaluated.

To evaluate these models, the parameters proposed in Section 2.3 are used. First, an
overview of the models are given using accuracy. Subsequently, a more exhaustive analysis
was carried out using the parameters of Equations (3)–(5).

The evaluation of the models has been performed using 80% of the total data for
training and 20% for the test.

The first model to be evaluated is the model predicting the impact of air traffic flows,
which accuracy is:

Accuracy 1 = 0.97 (6)

The accuracy is above 0.95, so it satisfies the previously defined requirements. A 97% accuracy
of the total number of cases tested is an almost perfect performance of the impact prediction
model. The three parameters for each of the impact tiers are presented in Table 4 below.

Table 4. Evaluation of impact prediction machine learning model.

Impact Level Precision Recall f1-Score

2 0.97 0.97 0.97
3 0.98 0.97 0.97
4 0.96 0.97 0.97
5 0.96 0.96 0.97

In all cases described in Table 3, the parameters are above 0.95. This leads to a model
that is both generally and specifically very reliable. In the sample analysed, there are no
impact flows at level 1, so it is not shown in the table.

With these results, the impact prediction model is validated against the established
criteria. The next model is the one that predicts the complexity of the ATC sectors. Firstly,
their overall performance is assessed by employing accuracy.

Accuracy 2 = 0.97 (7)



Symmetry 2022, 14, 2629 16 of 26

The accuracy of this model is again 0.97, so the previously defined criteria are met. For
a better verification of the performance of the model, the parameters accuracy, recall and
f 1-score are presented in Table 5.

Table 5. Evaluation of complexity definition machine learning model.

Complexity Level Precision Recall f1-Score

2 0.95 0.97 0.96
3 0.99 0.97 0.98
4 1 1 1

In this case, none of the ATC sectors has a complexity of 1 or 5 in the test sample. The
indicators are again equal to or greater than 0.95. With this table, it can be assured that the
complexity prediction model also performs very well in the scenarios studied.

With the results obtained in this section, it can be assured that the models are very
accurate so that the analysis of features’ relative importance can be performed as proposed
in the proposed methodology.

3.3. Analysis of the Impact Most Important Variables

Once the machine learning models have been proven to be correct and the predictions
made are accurate, the first step in the analysis of the results is to assess which variables
are most important in determining the impact of air traffic flows on the available airspace.
In total, in the six sectors analysed, there is a total of 1.8 million data, which correspond to
the 17 variables and the impact of the different flows identified for each of the 365 days of
the year.

Despite appearing to be a complex model with 17 variables, the model is actually very
simple, as it is based on the methodology described above. For this reason, it was very easy
for the model to determine its prediction. The aim of this paper is not to know the output,
but to study the relative weights in order to know which variables are most important. In
fact, the previous analysis determined that the prediction results of the model are excellent.
Moreover, the computation time for training and prediction of each model was around 45s
in total. This is a minimum time. This is because the model will easily find the behavioural
patterns as they are explicitly given by the methodology.

The proposed methodology has been conducted for the six ATC sectors separately to
differentiate the results. To achieve stability, different iterations have been needed in each
case. The higher the number of iterations needed to reach stability, the more complex the
determination of the relative importance is. This makes the number of iterations important
information of the model and indicates in which sector the traffic patterns are clearer. These
iterations are shown in Table 6:

Table 6. Number of machine learning model iterations in each ATC sector when analysing impact of
air traffic flows.

ATC Sector Number of Machine Learning Model Iterations

GCCCRNE 5
LECMCJL 4

LECMDGU 4
LECMPAU 12
LECMTLI 7
LECMTZI 7

The number of iterations varies considerably depending on the sector of analysis.
Studying their behaviour by groups, it is observed that low sectors reach convergence with
a lower number of iterations, while integrated sectors need more iterations. Integrated ATC
sectors combine climb/descent operation with the enroute operation, so traffic patterns are
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more complex. On the other hand, in the upper sectors, there is a large variability in the
number of iterations. LECMDGU reaches convergence in 4 iterations, following the trend
of the low sectors, which reach the required stability earlier than the integrated sectors.
LECMPAU, on the other hand, reaches convergence in 12 iterations. It is estimated that this
difficulty in reaching the final results is since the operation in this sector is very complex
and the algorithm needs more iterations to find the traffic patterns necessary to know the
relative importance of the variables that define the impact of air traffic flows.

From the proposed methodology, the data worth analysing are the final relative
importance of the variables. The rest of the intermediate relative importance were simply
data that the model obtained to continue the process, but they have no theoretical value.
The results obtained for the different sectors, in terms of the final relative importance, are
shown below. These results are shown in Figure 9. The initial relative importance, proposed
by expert opinion, is also shown. The aims are to see and compare the results in each of
the sectors, making a comparison between the different types of ATC sectors if possible.
Another objective is to see how the relative importance has changed concerning what was
proposed by expert opinion.
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In all ATC sectors, the most important variables are the number of aircraft flying
through the flow in a day, and the maximum number of aircraft flying through the flow in
an hour. In all cases, this relative importance is significantly above that estimated by expert
opinion. Although there are some differences thereafter.

• In the upper sectors (LECMDGU and LECMPAU) the importance of the number of
aircraft per hour is lower than in the rest of the ATC sectors. Conversely, in these
sectors, the importance of occupancy is more important (the number of hours that
the flows are open in LECMPAU and the number of days that the flows are open in
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LECMDGU). Moreover, in these sectors, the importance of delays is higher here than
in the rest of the ATC sectors, although lower than estimated by expert opinion.

• The integrated sectors (LECMTLI and LECMTZI) give less importance to occupancy, in
favour of the number of aircraft in the flows per hour, and a more uniform distribution
in the rest of the variables. It can be seen how, especially in LECMTLI, the distribution
of aircraft in the different FLs is quite important, above that estimated by expert
opinion. This does make sense from an operational point of view. Since the occupancy
of these ATC sectors will always be at night, occupancy will not be such an influential
variable on the impact of the flows. Conversely, by mixing enroute operation with
climb/descent operation, the vertical distribution of aircraft becomes more important.

• The low sectors, on the other hand, differ more from each other. In GCCCRNE,
the model gives a high importance to aircraft per hour in the flows, and a higher
importance to regulations in their flows. In contrast, occupancy is not as important.
LECMCJL gives less importance to hourly aircraft in the flows. In contrast, the overall
importance of occupancy is higher. This sector is the only one where the importance
of the percentage of aircraft climbing/descending is higher than the one proposed by
expert opinion. This is because this sector is where the aircraft that take off or land at
Madrid airport pass through. Therefore, the aircraft on climb/descent is higher than
in the rest of the sector.

Despite these similarities found in the analysis, each of the ATC sectors have different
relative importance. This means that the methodology described can capture the patterns
of behaviour in the different ATC sectors. Overall, however, certain variables can be found
to be more important in determining the impact of air traffic flows. Figure 10 is presented
below as a conclusion of the above analysis. This figure represents the union of the relative
importance of the different sectors, in the form of a boxplot and divided by the groups in
Table 1 for easier interpretation. The boxplots represent the quartile values of the relative
importance of the different variables. These boxplots, therefore, allow both an analysis of
the mean values and the variability of the relative importance.

From this graph, it is possible to extract in a general way which variables determine
the impact of air traffic flows, which is the objective of this paper.

By far the greatest relative importance is that of the number of aircraft operating in
a flow per day, and the maximum number of hourly aircraft per day. The second tier of
importance is occupancy, with its two characteristic variables, and aircraft per hour. All
these indicators are indicators of traffic density or related to when a flow will contain traffic.
In the literature, traffic density is among the most used indicators for assessing airspace
complexity [50]. It is therefore correct that traffic density-related variables are highlighted.

The third tier of importance is part of the vertical traffic analysis. This tier, although
of lesser importance, is still important enough to have to be considered by the model. As
for the vertical state of the aircraft, it is considered in the literature as a good indicator
of complexity [51]. This is reflected in the importance of the number of occupied FL and
aircraft per FL.

Regulations, on the other hand, are the least important variables in the model. Regula-
tions arise to avoid airspace congestion by making aircraft wait on the ground rather than
increasing airspace traffic [52]. Therefore, it is expected that there is a direct relationship
between airspace complexity and regulations. Although, as a solution to this complexity, it
is possible that in situations with many regulations, traffic will behave in a more orderly
way than in situations with a lot of traffic and no regulations.

Once the impact of air traffic flows, dependent on traffic behaviour, has been analysed,
the complexity of the sectors is analysed. Both in the proposed model and the literature,
the complexity depends both on the behaviour of air traffic flows and on the structural
aspects of the sector, so the influence of the traffic parameters analysed here also formed
the basis of the following study.
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3.4. Analysis of the Complexity Most Important Variables

The last step of the methodology is the analysis of the complexity parameter. The
process was the same as in the impact analysis. In this case, we have a smaller data frame
of 13,000 data corresponding to the data of the 5 variables and of daily complexity for each
of the sectors in the 365 days of the year.

As with the impact prediction model, the computation time is minimal, with each of
the models taking around 10s. In this case, the number of variables and data are much
smaller, and the behavioural patterns are also defined by the methodology. In this case,
the training of the models has been even simpler than in the previous case, and very good
results have been achieved. However, the real objective of this paper is still the analysis of
the evolution of the relative weights until stability is reached.

The first step is to determine the iterations needed to reach convergence of the relative
importance. This gave an idea of the difficulty with which the algorithms found patterns in
the behaviour. The results are shown in Table 7.

Table 7. Number of machine learning model iterations in each ATC sector when analysing complexity.

ATC Sector Number of Machine Learning Model Iterations

GCCCRNE 7
LECMCJL 6

LECMDGU 5
LECMPAU 4
LECMTLI 5
LECMTZI 4
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In this case, the number of iterations is practically the same in all cases. In the low
sectors, the number of iterations is slightly higher—7 in GCCCRNE and 6 in LECMCJL—
although they do not differ much from the rest of the ATC sectors. The low sectors are
located above the terminal maneuvering area of the airports. For this reason, the operation is
more variable, and convergence was more difficult to achieve. However, as only 5 variables
are considered in this step of the process, convergence was reached more easily than in the
case of impact, which was based on 17 variables.

The next step is the monitoring of the relative importance obtained after the application
of the methodology. As in the previous case, the only relative importance that is worth
studying is the obtained in the last iteration, and the proposed by expert opinion. The
objective is again the comparison of the final relative importance between sectors, being
able to find similarities between the same types of sectors. The comparison of the relative
importance obtained with the relative weights proposed by expert opinion is again an
interesting result. The data could give prominence to parameters other than the experts.
Additionally, these differences are of interest. This analysis is shown in Figure 11.
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In this case, the final relative importance tends to be more dispersed. Despite this,
certain similarities can be found:

• The upper sectors have the most similar behaviour. The number of flows in the
sector is by far the most important variable, approximately 60% more important than
predicted by expert opinion. The distance between entry and exit points to the sector
is also more important than in the rest of the sectors, and slightly more important than
predicted by expert opinion. On the other hand, the rest of the variables have minimal
relative importance, less than 0.1 in all cases. This relative importance is below that
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predicted by expert opinion in the three remaining cases. The relative importance in
LECMPAU and LECMDGU is very similar, so it can be concluded in this case that the
upper sectors have a complexity mainly determined by the amount of air traffic flows
and by the distribution of aircraft entry and exit points in the sector.

• The low and integrated sectors have disparate trends, and it is not possible to find
similarities between the different groups. For the LECMTLI and GCCCRNE sectors,
the complexity depends to a large extent on the percentage of flows with 5-level impact
and the distribution of wake turbulence categories in the sector, as well as the number
of entry and exit points. LECMTZI and LECMCJL have similar relative importance
to the upper sectors, with the main indicator of complexity being the number of air
traffic flows.

In the case of the low and integrated sectors, the relative importance is much more
different than in the upper sectors. The upper sectors are sectors with cruise operations,
and the operation is much more structured. It is therefore logical that the complexity
is determined by the same variables. However, the low and integrated sectors are very
different from each other. The operation and structural components of the sectors are very
different depending on the sector analysed, so, logically, the machine learning models
detect that the complexity is determined by different variables.

To capture the relative importance of the different sectors, a boxplot is again presented
that gathers the results of the machine learning models, dividing the variables according to
the groups in Table 2 to facilitate representation. These boxplots are presented in Figure 12.
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In this case, as mentioned above, the variability is much higher. This is why the boxes
are much wider. However, general conclusions can be drawn from the results obtained.
Specifically, it can be said that complexity in the sectors analysed depends largely on traffic
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behaviour, represented by traffic flows in the first two variables. The boxes are higher
in both cases than the variables about the structural aspects of the sector. On the other
hand, the relative importance of the variables belonging to the structural aspects of the
sector is rather low. In the case of entry and exit points, according to their number and
distribution, there is very little variability in their relative importance. The distribution of
wake turbulence categories in certain cases can also help to determine the complexity of
the sector.

With this last analysis, in addition to the previous one, it has been possible to determine
on which factors the complexity of airspace depends. By combining the two analyses, one
conclusion is that complexity is influenced by flow behaviour. In turn, the behaviour of the
flows was determined by the density of aircraft, their occupancy, and to a lesser extent the
vertical density of aircraft. This process is depicted in Figure 13.
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Therefore, it can be said with this process that variables are the ones that determine
the complexity of airspace in general. In the case studied, these variables are the variables
on the left-hand side of Figure 12.

As a final result, these results have been compared with [32], where conclusions are also
drawn on which factors may be more influential on complexity, although with a different
methodology. In this reference, the most influential factors are: presence/proximity of
restricted airspace; occupancy; flow distribution; number of interaction points; number of
main flows; flight times; traffic entries.

In particular, there are certain similarities between the two papers. Both studies
consider the number of flows, traffic density and time distribution as important variables.
However, in this paper, traffic entries and point distribution are not considered important,
unlike in [32]. Furthermore, in this paper, the vertical traffic density is considered important,
and regulations are not considered important.

Returning to the research question: What are the variables that really determine the
complexity of airspace? It has been shown that this methodology can indeed determine the
most influential factors when calculating the complexity of airspace. This determination
of the factors has also been carried out by means of machine learning models, so that the
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determining factors will be defined exclusively by the data. With the results obtained,
summarised in Figure 13, the research question posed at the beginning of this paper can
therefore be resolved.

4. Conclusions and Future Works

After defining a methodology that aims to determine which variables most determine
the complexity of airspace, and having performed an application of this methodology,
certain conclusions can be drawn.

1. Firstly, when testing the methodology in different types of sectors, it has been found
that there are certain common characteristics. However, there are also differences
between sectors that need to be considered. Thanks to the use of machine learning
models, the results are adapted to each sector. That the results were different in
different sectors is logical, as the sectors are very different in nature and being able to
capture this makes the model very interesting. On the other hand, that the model can
find similarities in sectors of the same type means that there are indeed similarities
between them, which is expected. This duality is captured by the model and makes
the methodology robust.

2. Related to the previous conclusion, it is important to note that this methodology can
be applied now with more sectors or in the future with new data. At present, there
is a large diversity of data. Despite this, the methodology will remain the same and
can be applied with data from different sources as long as they provide the minimum
necessary information. Moreover, without the need to change the methodology, it can
be applied to ATC sectors or to different time horizons, as the presence of machine
learning models makes the methodology adaptable.

3. The results arrived at by applying this methodology have been based on expert opin-
ion. However, expert opinion is merely a starting point, and the model is supposed to
arrive at the same results regardless of the starting point. This makes dynamic feature
weight selection independent of human bias.

4. In this case, data for a full year, which is 2019, have been used. However, if the data
used to apply the methodology were from a different time horizon, the results would
be different. Since the methodology is adapted to the nature of the sectors, it can also
be adapted to the desired time horizon.

5. Furthermore, thanks to the division into two different models, it has been possible
to analyse the sector’s operations in detail. It has been possible to establish that the
complexity at a high tier depends on the behaviour of its flows, but it is also possible
to analyse in more detail what determines the behaviour of the flows. This modularity
is also considered an advantage of the model.

6. Additionally, the computational cost of the developed models is minimal. In most
cases, stability is reached in less than 10 iterations, the time of an iteration being in the
order of less than a minute on a normal computer. Therefore, in a time of 15 min, a
complete analysis can be obtained for any sector.

Although the results are both logical from an operational point of view and optimal
from a methodological and computational development point of view, it is important to
continue to improve this methodology. Future lines of development are presented below.

7. First, this model will be applied to more sectors of different types. The objective is to
see if the similarities analysed here hold in other sectors and see if air traffic behaviour
is symmetrical in different ATC sectors. The application to more sectors will also
allow us to obtain other possible variables that may be important in the determination
of impact or complexity in different scenarios.

8. Further literature review to find additional variables that may be of interest for the
calculation of impact and complexity. It is expected that by considering different
variables, the patterns found will change and the relative importance will be differ-
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ent. Drawing conclusions with additional variables may be of great interest to the
development of the methodology.

9. An attempt will also be made to make a subsequent model by eliminating the variables
that have been considered less relevant here. In doing so, it is hoped to clarify the
patterns in the operation.
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Abbreviations

ATM Air Traffic Management
ATC Air Traffic Control
ATCO Air Traffic Controller
ATFCM Air Traffic Flow Capacity Management
RI Relative Importance
TMA Terminal Maneuvering Area
LECMCJL Castejon Low ATC sector
GCCCRNE Northeast Canary Island ATC sector
LECMPAU Pamplona Upper ATC sector
LECMDGU Domingo Upper ATC sector
LECMTLI Toledo Integrated ATC sector
LECMTZI Teruel Zaragoza Integrated ATC sector
FL Flight Level
TP True Positive
FP False Positive
FN False Negative
DD Dynamic Density
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