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Abstract: Rubber-like materials exhibit stress softening when subject to loading–unloading cycles,
i.e., the Mullins effect. However, this phenomenon can be recovered after annealing the previously
stretched sample under a stress-free state. The aim of this paper is to establish a constitutive model
with thermodynamic consistency to account for the stress softening and thermal recovery. Towards
this goal, (i) an explicit form of Helmholtz free energy can be found such that the restrictions
from thermodynamic law can be satisfied; (ii) a compressible, multi-axial strain-energy function
considering energy dissipation is proposed by introducing specific invariants; (iii) a unified shape
function based on the symmetry property of the test data in a one-dimensional case with stress
softening and thermal recovery is provided by introducing a weight variant; (iv) it is proven that
the new potential can automatically reduce to the one-dimensional case, i.e., uniaxial tension, equal
biaxial, or plane strain; (v) numerical results for model validation are exactly matched with classical
experimental data.

Keywords: stress softening; Mullins effect; thermodynamic consistency; explicit; thermal recovery

1. Introduction

It is widely known that rubber-like materials show stress softening from previous
extension, known as the Mullins effect [1]. In order to explain this behavior, Mullins and
Tobin [2], and Mullins [3] proposed the two-phase theory. They assumed that there were two
phases in the rubber, i.e., the hard phase and the soft phase. Stress softening happens when
the hard phase transforms into the soft phase. A strain amplification factor was introduced
to explain the enhanced softening phenomenon in filled rubber; Qi and Boyce [4] accepted
the two-phase theory and came up with an evolution law for the volume fraction of the soft
domains depending on stretch based on the eight-chain model for rubber-like materials [5].
A simpler evolution rule may be found in [6]; Simo [7] proposed a penalized elastic
strain energy density with the Kachanov form [8]. A parameter representing damage was
introduced to account for the physical phenomenon during stress softening. Two different
definitions of evolution of damage were proposed, one was accepted by Li et al. [9], Beatty
and Krishnaswamy [10], and Laiarinandrasana et al. [11], and another one was accepted by
Dorfmann and Ogden [12], Ogden and Roxburgh [13], and Horgan et al. [14]. The latest
research about the Mullins effect is shown in Sreejith et al. [15],Trentadue et al. [16], and
Fazekas and Goda [17].

Despite a good performance on simulating stress softening, many models are not
able to account for the recovery of the Mullins effect in a stress-free state. In fact, many
experimental results show that the Mullins effect may be partially or fully recovered at
different temperatures. Mullins [1] discovered that a filled rubber sample may recover
roughly 20% of its virgin state at 20 ◦C for 100 h, 40% of its virgin state at 60 ◦C for 100 h,
and 100% of its virgin state at 100 ◦C for 48 h; Rigbi [18] showed that stress softening can
be partially recovered in a reinforced rubber sample after 4 weeks of relaxation at room
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temperature; Laraba-Abbes et al. [19] found that it was sufficient for rubber samples to
restore their original stress–strain property after two days at 95 ◦C in a vacuum. Other
evidence regarding the thermal recovery of the Mullins effect can be found in Yan et al. [20],
Harwood and Payne [21], and Hanson et al. [22].

Few papers in the literature may account for the thermal recovery of the Mullins
effect except Drozdov and Dorfmann [23], and Wang and Chester [24]. Drozdov and
Dorfmann [23] introduced a parameter that characterized a mechanically induced increase
in the average size of globules formed by long chains, to account for stress softening and
thermal annealing. Recently, Wang and Chester [24] presented a temperature-dependent
reversible evolution equation for the hard/soft phase volume fraction to quantitatively
capture the thermal recovery of the Mullins effect. These models may roughly fit the
experimental data in Harwood and Payne [21]. However, there remain some issues that
need to be addressed:

• The compressible condition should be incorporated into the model to simplify calcula-
tions in the nonlinear elastic behavior at large deformation.

• All parameters incorporated into the model should be explicit so that the undue
complexities of computation can be avoided.

• A robust model should not only simulate one kind of experiment, for instance, uniaxial
tension, but also others.

• A unified form should be given out to exactly match the test data under first loading,
second loading, and third loading after thermal annealing.

The purpose of this article is to establish a compressible multi-axial potential with ther-
modynamic consistency to model the three benchmark tests of uniaxial tension/compression,
equal-biaxial tension/compression, and plane strain tension/compression in the processes
of first loading, second loading, and third loading after thermal annealing. A departure
from the previous studies in [25,26], Wang et al. [27], Yuan et al. [28], and Xiao et al. [29] is
that two new parameters are introduced into the new model: one parameter characterizing
energy dissipation to account for stress softening in the second loading, and another one
called weight factor that represents the percentage of recovery of the Mullins effect.

The paper is arranged as follows: First, a compressible multi-axial strain energy
function is established using three specific invariants based on the stress–strain curves
in the three benchmark tests. Second, it is demonstrated that the new model satisfies
thermodynamic laws by giving out the explicit formulations of the Helmholtz free energy
and the entropy. Third, a unified shape function with energy dissipation and weight
factor is proposed to capture the properties of stress softening and thermal recovery of the
Mullins effect. Finally, numerical results are obtained to compare with the test data. Finally,
concluding remarks are given out.

2. New Potential

The definitions of the symbols used in this article are shown in Table 1.

Table 1. Definitions for symbols.

Symbol Definition Symbol Definition

F Deformation gradient B Left Cauchy–Green tension
τ Kirchhoff Stress σ Cauchy–Green tension
J Volumetirc ratio ν Poisson ratio
W Potential h Hencky strain
h̃ Deriatoric Hencky strain I Second-order identity tensor
T Temperature D Stretching
ϕ Internal energy per unit q Heat flowing
r Heat supply η Specific entropy
ψ Helmholtz free energy ℘ Internal dissipation
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It is widely accepted that the strain with Hencky type is more direct for deducing the
Kirchhoff stress than any other types, as shown in Fitzjerald [30], Xiao [31], and Hill [32].
Kirchhoff stress can be derived from an elastic potential in terms of the Hencky strain h in
a broad sense to consider the temperature as follows:

τ̇ =
∂W2

∂h2 : ḣ +
∂W2

∂h∂T
Ṫ. (1)

When the temperature is constant, we have

τ =
∂W
∂h

. (2)

Here, the Hencky strain h is expressed by

h =
3

∑
r=1

(lnλr)nr ⊗ nr, (3)

λ1, λ2, λ3 are the three principal stretches and n1, n2, n3 are the three corresponding
orthonormal principal axis vectors (Eulerian triad); W is the compressible multi-axial strain
energy potential, which depends on the Hencky strain h and the dissipation energy κ,

W = W(h, κ). (4)

It is assumed that the variants τ and κ are independent. The relationship between the
Cauchy stress σ and Kirthhoff stress τ is

τ = Jσ. (5)

Towards the goal of establishing compressible multi-axial potential, three steps need
to be completed:

• One-dimensional potentials in three benchmark tests need to be derived from the their
corresponding stress–strain relationships.

• Three specific invariants need to be introduced to capture the compressible condition,
and to expand the one-dimensional potentials into a unified, multi-axial potential.

• It needs to be proven that the new potential can automatically reduce to the one-
dimensional case.

2.1. One-Dimensional Potentials

Let the one-dimensional stress–strain relationships in uniaxial, and equal-biaxial be
separately given by:

τu = fu(h, κ). (6)

τe = fe(h, κ). (7)

In the case of plane strain, the stress–strain relationship in the loaded direction is
given by:

τp = g(h, κ), (8)

and in the fixed direction, we have:

τ̄p = ĝ(h, κ), (9)

The explicit formulations of Equations (6), (8) and (9) may be determined by the test
data by means of rational interpolation, which will be explained in the following context.
Additionally, Equation (7) can be deduced from Equation (6), as shown in Xiao et al. [29].
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Three one-dimensional potentials may be separately derived from Equations (6)–(8),
and we obtain

wu(h, κ) =
∫ h

0
( fu(h, κ))dh, (10)

we(h, κ) =
∫ h

0
( fe(h, κ))dh, (11)

wp(h, κ) =
∫ h

0
(g(h, κ))dh. (12)

2.2. Specific Invariants

In order to account for the compressible condition and expand one-dimensional
potentials into a unified multi-axial potential, three specific invariants based on the Hencky
stress are introduced by

γ1 = i1 = ln(J), (13)

γ2 =

√
2
3

j2, (14)

γ3 =
√

6
j3

j1.5
2

, (15)

where,
is = tr(hs), (16)

js = tr(h̃s), (17)

s = 1, 2, 3. js can be derived from is as follows:

j2 = i2 −
1
3

i21, (18)

and
j3 = i3 − i1i2 +

2
9

i31. (19)

We briefly describe the three invariants as follows:

• γ1 is introduced to account for how the volume changes. If the rubber-like material is
incompressible, we have γ1 = 0.

• γ2 is introduced to bridge the one-dimensional case and the multi-axial case. γ2
becomes the Hencky strain h at the one-dimensional case.

• γ3 is introduced to combine the one-dimension potentials into a unified multi-axial
potential. We separately have γ3 = −1, 0, and 1 in the case of uniaxial compression,
plane strain,and uniaxial tension.

By using the three specific invariants γ1, γ2,, and γ3, instead of the Hencky stress h,
Equation (2) may be expressed as

τ =
∂W
∂γ1

I +
2
3

∂W
∂γ2

γ−1
2 h̃ +

∂W
∂γ3

ȟ, (20)

where,
ȟ = 4γ−3

2 h̃− 2γ−2
2 h̃− 2γ−1

2 I. (21)

The three tensors I, h̃, ȟ are mutually orthogonal in the sense of:
I : h̃ = 0,
I : ȟ = 0,
ȟ : h̃ = 0.

(22)
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Therefore, the three tensors I, h̃, ȟ form an orthogonal basis for the isotropic tensor
function of the Hencky strain h.

2.3. Compressible Multi-Axial Potential

A compressible multi-axial potential may be derived from the one-dimensional poten-
tials and the specific invariants by using a generalized procedure of Hermite interpolation,
as shown in Yuan et al. [28] and Xiao et al. [29], which accounts for the energy dissipation.
The new unified potential is expressed as follows:

W =
1− 2ν

3
wu(

γ1

1− 2ν
, κ) +

1 + ν

6
[Z+(1 + γ3)

2 + Z−(1− γ3)
2], (23)

with Z+ and Z− taking the forms of:

Z+ = (2− γ3)wu(
3/2γ2

1 + ν
, κ) + (γ3 − 1)Y+, (24)

Z− = (2 + γ3)wu(
−3/2γ2

1 + ν
, κ) + (γ3 + 1)Y−, (25)

and Y+ and Y− taking the forms of:{
Y+ = 5

2 wu(
3/2γ2
1+ν , κ)− 1

2 wu(− 3/2γ2
1+ν , κ)− 2wp(

3
√

3γ2
4(1+ν)

, κ)− G, (26){
Y− = 1

2 wu(
3/2γ2
1+ν , κ)− 5

2 wu(− 3/2γ2
1+ν , κ) + 2wp(

3
√

3γ2
4(1+ν)

, κ)− G, (27)

with

G =

√
3γ2

4(1 + ν)
(g(

3
√

3γ2

4(1 + ν)
, κ)− 2ĝ(

3
√

3γ2

4(1 + ν)
, κ)). (28)

ν is the Poisson ratio, which can be expressed by

ν = −h
h

(29)

where h is the lateral Hencky strain. Equations (23)–(28) form the compressible multi-axial
potential in the sense of capturing the property of strain softening and thermal recovery of
the Mullins effect.

2.4. Predictions for One-Dimensional Cases

Predictions for the three benchmark tests should be given to ensure the effectiveness
of the new potential. Three specific invariants, γ1, γ2, and γ3 in the one-dimensional case
are presented in Table 2.

Substituting the values γ1, γ2, and γ3 into Equations (23)–(28), we obtain the one-
dimensional potential, volume ratio, and stress–strain relationship in each benchmark test,
as shown in Table 3.

Table 2. Prediction for the benchmark tests (“t/c” means “tension/compression”).

Quantity Uniaxial t/c Biaxial t/c Plane Strain

γ1 (1− 2ν)h (2− 1/ν)h 1−2ν
1−ν h

γ2
2
3 (1 + ν)h 2

3 (1 + 1/ν)h 2√
3

h
γ3 1/−1 −1/1 0
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Table 3. Prediction for the benchmark tests (“t/c” means “tension/compression”).

Quantity Uniaxial t/c Biaxial t/c Plane Strain

W wu(h, κ) we(h, κ) wp(h, κ)

J λ1−2ν λ
2ν−1

ν λ
1−2ν
1−ν

τ fu(h, κ) fe(h, κ) g(h, κ) and ĝ(h, κ)

The stress–stain relationship in the equal-axial case can be determined from Equation (6);
as shown in Xiao et al. [29], we obtain the stress in the loaded direction of the equal-axial
case as follows:

τ = fe(h, κ) = −ν−1

2
fu(−ν−1h, κ) (30)

We may conclude from Table 3 that the new potential can automatically reduce to
Equation (6) in the uniaxial case, Equation (7) in the equal-axial case, and Equations (8) and (9)
in the plane strain case. All the stress–strain relationships in the three benchmark tests
may be determined by Equations (6), (8) and (9), whose explicit formulations will be given
according to the test data in the following sections.

3. Thermodynamic Consistency

Explicit formulations for the Helmholtz free energy and the entropy are given to
ensure that the new model satisfies thermodynamic conditions. We follow the steps in
Xiao et al. [33]. Substituting

ḣ = D (31)

into the thermodynamic laws, we have

ϕ̇ = τ : ḣ− J5 ·q + r (32)

and
η̇ ≥ −J5 q

T
+

r
T

(33)

where, D is the stretching, defined by

D =
1
2
(Ḟ · F−1 + (Ḟ · F−1)T) (34)

Moreover,5 is used to designate the formal differentiation vector with respect to the
current position vector x, namely,

5 =
∂

∂x
(35)

ϕ represents the internal energy per unit, q is the heat flow, r is the heat supply, and η
is the specific entropy. The internal dissipation ℘ is defined by

℘ = Tη̇ − (r− J5 ·q). (36)

The Helmholtz free energy ψ is given by

ψ = ϕ− Tη. (37)

According to Equations (32)–(35), we have

℘ = τ : ḣ− (ψ̇ + ηṪ). (38)

The thermodynamic laws require that

℘ ≥ 0. (39)
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Towards this goal, the explicit formulations for the Helmholtz free energy and the
entropy are given as follows

ψ = ψ0 +
∂W
∂h

: h−W + κ +
∫ κ

0
(− ∂2W

∂h∂κ
: h +

∂W
∂κ

)dκ (40)

η = −ψ′0 +
∂W
∂T

(41)

where the term ψ0 = ψ0(T) characterizes the specific heat capacity of the material. The
demonstration for Equations (40) and (41) fulfil the thermodynamic laws, shown as follows:
Taking the derivative of ψ with respect to time, we obtain

ψ̇ =
∂ψ

∂h
: ḣ +

∂ψ

∂T
Ṫ +

∂ψ

∂κ
κ̇ (42)

The formulations of ∂ψ
∂h , ∂ψ

∂T , and ∂ψ
∂κ can be determined from Equation (40),

∂ψ

∂h
=

∂2W
∂h2 : h (43)

∂ψ

∂T
= ψ′0 +

∂2W
∂h∂T

: h− ∂W
∂T

(44)

and
∂ψ

∂κ
= 1 (45)

Substituting Equations (43)–(45) into Equation (42), we have

ψ̇ =
∂2W
∂h2 : h : ḣ + (ψ′0 +

∂2W
∂h∂T

: h− ∂W
∂T

)Ṫ + κ̇ (46)

Substituting Equations (46) and (41) into Equation (38), and combing Equation (1),
we have

℘ = κ̇ (47)

This is because κ̇ is always greater than or equal to 0, we obtain ℘ ≥ 0. The proof
is completed.

4. Shape Functions with Stress Softening and Thermal Recovery

Towards our goal, the one-dimensional shape functions τ = fu(h, κ), τ = g(h, κ), and
τ = ĝ(h, κ) need to be given based on the test data. Additionally, the dissipation energy
κ is introduced to account for stress softening, and the weight factors βi, i = 1, 2, 3, are
introduced to explain the thermal recovery of the Mullins effect. The shape functions are
given by

fu(h, κ) = β1 f1(h) + (1− β1) f2(h, κ), (48)

g(h, κ) = β2g1(h) + (1− β2)g2(h, κ), (49)

and
ĝ(h, κ) = β3 ĝ1(h) + (1− β3)ĝ2(h, κ). (50)

According to Equations (27) and (48), we have

fe(h, κ) = −ν−1

2
[β1 f1(−ν−1h) + (1− β1) f2(−ν−1h, κ)]. (51)

As shown in Figure 1, when a rubber bar first loads, the stress–strain curve moves
along the black line, which is denoted by f1(h) in the uniaxial case, g1(h) in the loaded
direction in the plane strain case, or ĝ1(h) in the fixed direction in the plane strain case.
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When the stress reaches a certain value, the unloading process begins until the stress reaches
zero. After that, the bar reloads and the stress–strain curve moves along the red line, which
is denoted by f2(h, κ) in the uniaxial case, g2(h, κ) in the loaded direction in the plane strain
case, or ĝ2(h, κ) in the fixed direction in the plane strain case. When the bar reloads again
after the thermal recovery of the Mullins effect, the stress–strain curve moves along the
green line, which lies between the black line and the red line.

Figure 1. Schematic description for tress softening and thermal recovery.

The meanings of the weight factors βi, i = 1, 2, 3 are as follows:

• When βi = 1, i = 1, 2, 3, the shape functions become fu(h, κ) = f1(h), g(h, κ) = g1(h),

ĝ(h, κ) = ĝ1(h), and fe(h, κ) = − ν−1

2 f1(−ν−1h), which means that the stress–strain
curve moves along the black line on the virgin specimen.

• When βi = 0, i = 1, 2, 3, the shape functions become fu(h, κ) = f2(h, κ),

g(h, κ) = g2(h, κ), ĝ(h, κ) = ĝ2(h, κ), and fe(h, κ) = − ν−1

2 f2(−ν−1h, κ), which means
the stress–strain curve moves along the red line for the specimen with stress softening.

• When 0 < βi < 1, i = 1, 2, 3, and the shape functions are represented by (36)–(39), and
they move along the green line for the specimen after the treatment of thermal recovery.

• The weight factors βi = 1, i = 1, 2, 3 in the range from 0 to 1 represent the percentage
of recovery, which means the larger the weight factor, the higher the percentage of
recovery of the Mullins effect.

The expression of κ can be provided by analyzing the experimental results of the
Mullins effect in Mullins [3], Diani et al. [34], and Dorfmann and Ogden [12]. The following
observation results are obtained from the Mullins effect. First, the stress–strain curve is
lower than the primary loading path during the process of unloading, i.e., strain softening.
This phenomenon becomes more obvious in the case of a large unloading stress. Second,
we pay direct attention to one cycle; the area of the hysteresis loop only represents the
energy dissipation, and it will accumulate during the process of the loading–unloading
cycles. Third, the permanent set may be ignored for some specific rubber samples.

Based on the above analysis, the explicit formulation for κ may be given by

κ =
κm

2
[tanh(m(τm − τr)) + 1]. (52)

Here,

κm =
∫ f̄−1(τm)

0
f̄ (h)dh, (53)
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is the work performed by the primary path flow (virgin stress–strain curve). m and τr are
parameters whose values can be determined from test data. τm is the unloading stress. If
τm = τc, we have κ = 1

2 κm. h = f̄−1(τ) is the inverse function of τ = f̄ (h). With τ = τm,
we obtain the value of f̄−1(τm). f̄ (h) becomes f1(h) in the case of uniaxial, and g1(h) in the
case of plane strain.

According to Equation (52), when the unloading stress is small enough, for example,
τm ≈ 0, we obtain κ ≈ 0, and the subsequent path and the primary path almost coincide.
When the unloading stress is large enough, for example, τm >> τr, we obtain κ ≈ κm, and
the materials are extremely softened.

5. Numerical Results

According to the symmetry property of the test data, the explicit formulations for
the shape functions of Equations (48)–(50) may be given by using the method of rational
interpolation. Two kinds of experiments are chosen for model validation, which are three
benchmark tests for one rubber-like sample, as shown in Treloar [35], Jones and Treloar [36],
and Yohsuke et al. [37], and experiments with stress softening and thermal recovery, as
shown in Harwood and Payne [21].

5.1. Explicit Shape Functions via Rational Interpolation

Based on the method of rational interpolation, the explicit formulations of f1(h),
f2(h, κ), g1(h), g2(h, κ), ĝ1(h), and ĝ2(h, κ) in Equations (48)–(50) may be given by:

f1(h) = E0h(
αu0

(1− h
he0

)(1 + h
hc0

)
+ 1− αu0), (54)

f2(h, κ) = E(κ)h[
αu(κ)

(1− h
he(κ)

)(1 + h
hc(κ)

)
+ 1− αu(κ)], (55)

g1(h) =
2
3

E0h(
αp0

1− h2

h2
p0

+ 1− αp0), (56)

g2(h, κ) =
2
3

E(κ)h[
αp(κ)

1− h2

(hp(κ))2

+ 1− αp(κ)], (57)

ĝ1(h) =
1
3

E0h(
α̂p0

1− h2

h2
p0

+ 1− α̂p0), (58)

and

ĝ2(h, κ) =
1
3

E(κ)h[
α̂p(κ)

1− h2

(hp(κ))2

+ 1− α̂p(κ)]. (59)

When the material first loads, βi = 1, i = 1, 2, 3, and the shape functions of
Equations (49)–(52) may separately reduce to f1(h), g1(h), ĝ1(h), and − ν−1

2 f1(−ν−1h),
which can be determined from Equations (54), (56) and (58). Therefore, the parame-
ters of E0, αu0, ν, he0, hc0, αp0, hp0, and α̂p0 in these equations need to be determined.
When the second material loads after stress softening, βi = 0, i = 1, 2, 3, the shape
functions of Equations (49)–(52) may separately reduce to f2(h, κ), g2(h, κ), ĝ2(h, κ), and
− ν−1

2 f2(−ν−1h, κ), which can be determined from Equations (55), (57) and (59). There-
fore, the parameter functions E(κ), αu(κ), he(κ), hc(κ), αp(κ), hp(κ), α̂p(κ) in these equa-
tions need to be provided according to the value of κ, which can be determined from
Equation (52) by choosing the appropriate values of m and τc. When the third material loads
after the thermal recovery, 0 < βi < 1, i = 1, 2, 3, the shape functions in Equations (48)–(52)
need to be determined by choosing the appropriate values of E0, αu0, ν, he0, hc0, αp0, hp0,
and α̂p0 in Equations (54), (56) and (58), suitable formulations of E(κ), αu(κ), he(κ), hc(κ),
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αp(κ), hp(κ), α̂p(κ) in Equations (55), (57) and (59) according to the value of κ, which can
be deduced from Equation (49) using the appropriate parameters of m and τc. Furthermore,
an appropriate value of βi, i = 1, 2, 3 in the range from 0 to 1 is necessary.

5.2. Results for the Benchmark Tests

The values of the parameters E0, αu0, he0, hc0, αp0, hp0, α̂p0 are given in Table 4
to fit the three benchmark test data of Treloar (1975), Jones and Treloar (1975), and
Yohsuke et al. (2011).

Table 4. Parameter value for matching benchmark tests.

Experiment E0/MPa ν he0 hc0 αu0 αp0 α̂p0 hp0

Treloar [35] 1 0.499 2.14 3.66 2 1.5 / 1.95
Jones and Treloar [36] 1.3 0.499 2.4 3.74 3 13 −10 4.7

Yohsuke et al. [37] 2.3× 10−3 0.499 1.92 3.22 2 5 8.5 2.71

Putting h = ln(λ) into the specific functions, the comparisons between the model and
the test data are shown in Figures 2–4.

Figure 2. Comparison between model result and the experimental data in Treloar [35], x axis
represents the stretch ratio λ, and y axis represents the Kirchhoff stress τ.

Figure 3. Comparison between model result and the experimental data in Jones and Treloar [36], x
axis represents the stretch ratio λ, and y axis represents the Kirchhoff stress τ.
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Figure 4. Comparison between model result and experimental data in Yohsuke et al. [37], x axis
represents the stretch ratio λ, and y axis represents the Kirchhoff stress τ.

Here, τp and τ̄p are separately the stress in the loading direction and fixed direction in
the case of plane strain.

5.3. Results for Tests with Stress Softening and Thermal Recovery

In what follows, the experiment of Harwood and Payne [21] with stress softening and
thermal recovery of the Mullins effect is chosen for model validation. The samples include
three type A vulcanizates (polysulfide crosslinks with 4.17% sulfur, 2.5% sulfur, and 1.25%
sulfur), three type B vulcanizates (monosulfide crosslinks with 0.6% sulfur, 0.4% sulfur, and
0.2% sulfur), and two type C vulcanizates (carbon–carbon crosslinks with 3.5% dicumyl
peroxide and 0.5% dicumyl peroxide). The following steps are adopted for each sample:

• The parameters E0, αu0, he0, and hc0, are determined by the first load curve.
• The appropriate parameters of m, and τc in Equation (49) are given to determined the

value of κ using the unloading stress in the test.
• The values for the parameter functions of E(κ), αu(κ), he(κ), and hc(κ) are determined

by the second load curve. Conversely, formulations of these parameter functions can
be deduced by the method of interpolation with the initial values of E0, αu0, he0, and
hc0, respectively.

• The weight factors βi, i = 1, 2, 3 in each sample can be determined by the third load curve.

The parameters E0, αu0, he0, and hc0 are shown in Tables 5–7 for vulcanizates of types
A, B, and C in Harwood and Payne [21].

Table 5. Parameter values for a matching test of type A vulcanizates in Harwood and Payne [21] in
virgin load.

Vulcanizates E0/MPa he0 hc0 αu0

4.17% sulfur 1.83 1.59 10 0.28
2.5% sulfur 1.02 1.75 10 0.45
1.25% sulfur 0.7 1.9 10 0.3
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Table 6. Parameter values for matching test of type B vulcanizates in Harwood and Payne [21] in
virgin load.

Vulcanizates E0/MPa he0 hc0 αu0

0.6% sulfur 1.77 1.6 10 0.13
0.4% sulfur 0.92 1.74 10 0.38
0.2% sulfur 0.66 1.9 10 0.3

Table 7. Parameter values for matching test of type C vulcanizates in Harwood and Payne [21] in
virgin load.

Vulcanizates E0/MPa he0 hc0 αu0

3.5% dicup 1.3 1.64 10 0.18
0.5% dicup 0.28 2.194 10 0.7

τm is the unloading stress and needs to be determined from the experimental data.
Appropriate values of m and τc are chosen to determine the κ1 after stress softening. The
values of the shape functions E(κ1), αu(κ1), he(κ1), and hc(κ1) can be determined from the
test data. Then, the explicit formulations of these functions need to be determined by using
the method of interpolation with the initial values given in Tables 5–7. Finally, β1 can be
determined from the test data after thermal recovery. The values of τm, m, τc, κ1, E(κ1),
αu(κ1), he(κ1), hc(κ1), and β1 are given in Tables 8–10 separately for the vulcanizates of
types A, B, and C.

Table 8. Parameter values for matching test of type A vulcanizates in Harwood and Payne [21] with
stress softening and thermal recovery.

Vulcanizates τm m τc κ1 E(κ1) he(κ1) hc(κ1) αu(κ1) β1

4.17% sulfur 10.26 0.2 11.72 1.188 1.30 1.58 10 0.20 0.25
2.5% sulfur 10.26 0.2 10.53 1.481 0.88 1.75 10 0.18 0.34

1.25% sulfur 10.26 0.2 9.98 1.280 0.20 1.98 10 1.00 0.40

Table 9. Parameter values for matching test of type B vulcanizates in Harwood and Payne [21] with
stress softening and thermal recovery.

Vulcanizates τm m τc κ1 E(κ1) he(κ1) hc(κ1) αu(κ1) β1

0.6% sulfur 9.78 0.2 11.68 0.950 1.20 1.65 10 0.17 0.75
0.4% sulfur 9.78 0.2 11.63 0.835 0.88 1.72 10 0.15 0.55
0.2% sulfur 9.78 0.2 9.85 1.150 0.30 1.93 10 0.50 0.60

Table 10. Parameter values for matching test of type C vulcanizates in Harwood and Payne [21] with
stress softening and thermal recovery.

Vulcanizates τm m τc κ1 E(κ1) he(κ1) hc(κ1) αu(κ1) β1

0.35% dicup 9.84 0.2 12.59 0.66 1.0 1.65 10 0.18 0.67
0.50% dicup 6.12 0.2 5.69 0.96 0.1 2.17 10 0.8 0.60

Comparison between experimental data and model result are shown in Figures 5–7.
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(a)

(b)

(c)

Figure 5. Model calibration of Type A vulcanizate with different amounts of crosslinker in Harwood
and Payne [21]. (a) Vulcanizate with 4.17% sulfur; (b) Vulcanizate with 2.5% sulfur; (c) Vulcanizate
with 1.25% sulfur.
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(a)

(b)

(c)

Figure 6. Model calibration of Type B vulcanizate with different amounts of crosslinker in Harwood
and Payne [21]. (a) Vulcanizate with 0.6% sulfur; (b) Vulcanizate with 0.4% sulfur; (c) Vulcanizate
with 0.2% sulfur.
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(a)

(b)

Figure 7. Model calibration of Type C vulcanizate with different amounts of crosslinker in Harwood
and Payne [21]. (a) Vulcanizate with 3.5% dicumyl peroxide; (b) Vulcanizate with 0.5% dicumyl
peroxide.

6. Concluding Remarks

A compressible, multi-axial potential is proposed to exactly match the three benchmark
tests for rubber-like materials, considering the stress softening and thermal recovery of the
Mullins effect. We conclude the article as follows:

(1) The specific invariant γ1 is introduced to account for the general compressible defor-
mation mode. Actually, the compressible condition can not be ignored under some
deformation modes, such as the hydrostatic pressure. Additionally, the constraint of
incompressibility may also give rise to convergence problems in finite element code,
as shown in Biscoff et al. [38]. Therefore, it is necessary to establish a new model
considering compressible deformation.

(2) The new model is multi-axial and can fit all of the three benchmark tests, i.e., uniaxial,
equal-biaxial, and plane strain, by introducing another two invariants of γ2 and γ3.
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(3) The thermodynamic laws are fulfilled by explicitly providing the appropriate for-
mulations of the Helmholtz free energy in Equation (40) and the specific entropy in
Equation (41).

(4) All of the parameters in the new model are explicitly decided, instead of being
implicitly provided via complex iterative calculation.

(5) Both stress softening and thermal recovery can be accounted for in the new model by
the dissipation energy κ and the weight factors βi, i = 1, 2, 3.
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