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Abstract: The propagation dynamics of two-dimensional (2D) ring-Airy beams is studied in the
framework of the fractional Schrödinger equation, which includes saturable or cubic self-focusing
or defocusing nonlinearity and Lévy index ((LI) alias for the fractionality) taking values 1 ≤ α ≤ 2.
The model applies to light propagation in a chain of optical cavities emulating fractional diffraction.
Management is included by making the diffraction and/or nonlinearity coefficients periodic functions
of the propagation distance, ζ. The management format with the nonlinearity coefficient decaying
as 1/ζ is considered too. These management schemes maintain stable propagation of the ring-Airy
beams, which maintain their axial symmetry, in contrast to the symmetry-breaking splitting instability
of ring-shaped patterns in 2D Kerr media. The instability driven by supercritical collapse at all values
α < 2 in the presence of the self-focusing cubic term is eliminated, too, by the means of management.

Keywords: axisymmetric airy beams; stabilization; diffraction and nonlinearity management; frac-
tional nonlinear Schrödinger equation

1. Introduction

The nonspreading solution of the Schrödinger equation in the form of the Airy function
was found by Berry and Balazs in the context of quantum mechanics in 1979 [1]. This
solution follows a curved parabolic trajectory, similar to a projectile moving under the
action of gravity. The prediction has been realized experimentally in the form of Airy-
shaped electron beams [2]. Following the commonly known principle that the propagation
of classical optical beams in linear media and the dynamics of a quantum particle are
governed by essentially the same Schrödinger equation, nonspreading/nondiffracting
packets, including Airy waves, have been investigated in detail in linear optics [3] and
plasmonics [4]. Bessel beams are also commonly known examples of diffraction-free waves,
and were predicted and experimentally demonstrated by Durnin et al. in 1987 [5,6]. Other
classes of nondiffracting wave modes, including Mathieu and parabolic beams, have also
been investigated [7,8]; see, also, review [9].

Airy beams have been created in optics by dint of inputs with properly shaped
intensity and phase [10,11]. Those works demonstrated, in particular, self-healing of
perturbed beams. Cylindrically symmetric ring-Airy beams are able to abruptly autofocus
in the linear regime, thus delivering high-energy pulses into transparent samples, as
predicted theoretically [12] and demonstrated experimentally [13,14]. By engineering
the phase profile in the Fourier space, classes of abruptly autofocusing Airy beams that
follow different trajectories have also been proposed [15,16]. Propagation dynamics of
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ring-Airy beams with embedded optical vorticity (angular momentum) have also been
investigated theoretically and experimentally [17–19]. Applications of Airy beams range
from optical filamentation [20–22], imaging [23–25], transportation and manipulation of
particles [26–28], and to driving surface plasmon polaritons [29–31].

The propagation of self-interacting high-power Airy beams has been studied in the
framework of Schrödinger equations with various nonlinearities. Accelerating self-trapped
beams were thus predicted in Kerr, saturable, and nonlocal nonlinear media [32,33]. For
strong Kerr nonlinearity, soliton shedding by Airy beams was analyzed in [34]. The latter
phenomenon was also predicted in nonlocal nonlinear media [35]. Trajectories of Airy
beams and pulses have been studied experimentally in nonlinear photorefractive and Kerr
media [36,37]. Comparison of self-accelerating linear Airy beams and solitons, which may
feature similar dynamics in specific two-component systems, was presented in a recent
review [38].

The propagation of two-component Airy waves in second-harmonic-generating media
with quadratic nonlinearities was observed in [39]. In this setting, it was further predicted
that linear Airy beams launched in the one- or two-dimensional (1D or 2D) second-harmonic
component generate sets of solitons through parametric instability [40,41]. An extension of
the analysis was also developed for 1D and 2D three-wave systems [42,43].

A non-Hermitian parity–time symmetric potential can modify the trajectory of an Airy
beam without affecting its ability for diffraction-free propagation [44]. Specifically, Airy
beams in a parity–time symmetric Gaussian potential feature diffraction-free propagation
over long parabolic trajectories [45].

Kinetic equations with fractional partial derivatives have been used to describe anoma-
lous diffusion and relaxation phenomena, including Hamiltonian chaos, disordered media,
underground water pollution, reactions in complex systems, and fractional diffusion in
inhomogeneous media [46–48]. The concept of fractional derivatives also appears in di-
verse areas of physical phenomenology, such as the quantum Hall effect and the fractional
Josephson effect [49,50]. Further, the fractional Schrödinger equation (FSE) generalizes the
classical Schrödinger equation, which is a canonical model for various physical phenomena,
such as nonlinear optics, hydrodynamics, and the Bose–Einstein condensates [51–53].

A vast research area in optics and related areas deals with the FSE. It was introduced by
Laskin [54–56], who considered, by means of the Feynman-integral technique, the evolution
of the wave function of quantum particles moving by Lévy flights (random jumps). The
aforementioned similarity between the quantum–mechanical linear Schrödinger equation
and the equation for the paraxial diffraction of light beams suggests schemes for the
realization of FSE in optics, as first proposed by Longhi [57]. That work elaborated a scheme
based on the so-called 4f configuration in an optical cavity. The beam is transformed by a
lens from the coordinate space into the Fourier domain, in which a phase-shift emulating
the fractional diffraction is introduced by means of an appropriate phase plate. Then,
the second lens casts the optical field back into the spatial form, which carries the phase
structure corresponding to the fractional diffraction. Experimentally, this scheme was
recently realized in the temporal domain [58].

The propagation of beams with various shapes under the action of fractional paraxial
diffraction has been addressed in the framework of FSE. In particular, Airy beams have
been studied in this context [59–63]. Furthermore, the self-interaction and propagation
dynamics of Airy beams have been investigated in the framework of the fractional nonlinear
Schrödinger equation (NLSE), which adds the Kerr term to the optical FSE [64,65]; see, also,
review [66].

The above-mentioned possibility to implement fractional diffraction implies that it is
possible to build a system with an array of 4f setups with different parameters. This option,
in turn, suggests one to consider an FSE including a management scheme [67] that makes
the effective diffraction coefficient a function of the propagation distance, z. Moreover, the
fact that the diffraction-emulating phase shifts are introduced by the phase plates inserted
into the optical cavities makes it possible to emulate not only positive but also negative
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diffraction. The latter possibility allows one to define management patterns in the form
of periodic alternation of artificial diffraction between positive and negative strengths;
see Equation (8) below. Such diffraction management schemes are akin to ones that have
been previously realized for normal (non-fractional) diffraction by beam propagation in
waveguiding arrays with periodically varying orientation of the guiding cores [68].

The subject of the present work is the dynamics of axially symmetric ring-Airy beams
governed by the 2D fractional NLSE with the aforementioned z-dependent local diffraction
and/or nonlinearity coefficients. The paper is organized as follows. The model is intro-
duced in Section 2, which is followed by a detailed analysis of the dynamics of ring-Airy
beams in Section 3. In particular, it is found that a saturable self-focusing nonlinearity
does not break the axial symmetry of the ring-shaped beams through azimuthal insta-
bility. This is an essential result, as similarly shaped modes are often vulnerable to that
instability [69,70]. The paper is concluded in Section 4.

A more sophisticated management scheme may apply to the fractionality degree (i.e.,
the Lévy index (LI))in linear or nonlinear FSE, making LI a function of z; cf. [71]. Such a
scheme will be considered elsewhere.

2. The Model

As outlined above, we consider beam propagation along the z-axis in a 2D nonlinear
isotropic medium with saturable nonlinear correction to the refractive index, which can be
described by the fractional NLSE:

i
∂A
∂z

=

[
1

2k0n0
d(z)

(
−∇2

⊥

)α/2
− k0nNL

]
A, (1)

where A(x, y, z) is the amplitude of the optical field, and k0 = 2πn0/λ is the wavenumber
corresponding to carrier wavelength λ and linear refractive index n0. The fractional-
diffraction operator in Equation (1), with LI, α, belonging to interval 1 ≤ α ≤ 2 and variable
diffraction coefficient d(z), is defined as the 2D version of the Riesz derivative [72,73]:(

−∇2
⊥

)α/2
A(x, y) = F−1

[(
k2

x + k2
y

)α/2
FA(x, y)

]
, (2)

where F and F−1 are 2D operators of the direct and inverse Fourier transform, and kx,y
are wavenumbers conjugate to transverse coordinates (x, y). The nonlinear correction to
the refractive index is represented by the term

nNL = n2|A|2/(1 + s|A|2), (3)

which features saturation with strength s > 0. The saturable nonlinearity is well-known
to occur, in particular, in semiconductor-doped glasses and photorefractive media [74,75].
The saturation in this model is a crucially important factor because, as is well known, cubic
(unsaturated) self-focusing in the 2D fractional NLSE leads to the supercritical collapse
at all values α < 2 [66] (and to the usual critical collapse in the case of non-fractional
diffraction, α = 2); hence, the solitons are unstable in the absence of the saturation. Note
that, in the absence of the saturation and management (s = 0, d(z) = const), the collapse is
driven by the symmetry (invariance) of Equation (1) with respect to the scaling transform:

z = z0z̃, (x, y) = x0(x̃, ỹ), A = A0 Ã, z0 = xα
0 = A−2

0 . (4)

The saturation stabilizes the model against collapse by breaking the scaling symmetry.
Following the pattern of Equation (4) but in the presence of the saturation and diffrac-

tion management, the variables in Equation (1) can be normalized by means of rescaling:

ψ(ξ, η, ζ) =
√

sA(x, y, z), (ξ, η) = (x, y)/ρ0, ζ = z/L, (5)
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where ρ0 is the characteristic width of the input beam, and L = k0n0d−1
0 ρα

0 is the respective
diffraction (Rayleigh) length corresponding to a characteristic value d0 of the diffraction
coefficient. The accordingly scaled form of Equation (1) is

i
∂ψ

∂ζ
− 1

2
D(ζ)

(
−∇2

⊥

)α/2
ψ +

σ0|ψ|2ψ

1 + |ψ|2
= 0, (6)

where D(ζ) ≡ d(z)/d0 is the normalized diffraction-modulation coefficient, and

σ0 ≡
k2

0n0n2ρα
0

sd0
(7)

with positive or negative values corresponds, respectively, to the self-focusing or defocusing
nonlinearity.

In particular, it is relevant to consider the case of the periodic management correspond-
ing to

D(ζ) = D0 cos(Ωζ) (8)

in Equation (6). As suggested by previous works on dispersion and diffraction manage-
ment [67], a more general form of this format may be taken as D(ζ) = D̄ + D0 cos(Ωζ),
including the path-average term, D̄, which may be negative or positive. Actually, simu-
lations demonstrate that the latter term readily becomes a dominant one in the ensuing
evolution, making it similar to the standard model, with D = const; therefore, here we
concentrate on the format (8), which produces most interesting findings. By means of addi-
tional rescaling admitted by Equation (6), we fix the modulation amplitude in Equation (8)
as D0 = 1.

To investigate the propagation characteristics of beams under the action of different
management formats, we also address decaying diffraction-coefficient modulation:

D(ζ) = 1/ζ. (9)

A similar modulation format has been considered in the case of dispersion management in
nonlinear fiber optics [76].

Note that the substitution of

Z(ζ) =
∫

D(ζ)dζ (10)

transforms Equation (6) into a fractional NLSE with nonlinearity management:

i
∂ψ

∂Z −
1
2

(
−∇2

⊥

)α/2
ψ +

σ(Z)|ψ|2ψ

1 + |ψ|2
= 0, (11)

σ(Z) ≡ σ0

D(ζ(Z)) , (12)

where ζ(Z) is a function inverse to Z(ζ). In particular, it is seen that the management is
eliminated by substitution (10) in the linear version of Equation (6), with σ0 = 0. The model
with nonlinearity management is considered below too, neglecting the saturation (dropping
the denominator in the nonlinear term) in Equation (11). The aim is to check the possibility
of stabilization of the 2D solitons by means of nonlinearity management against the above-
mentioned supercritical collapse driven by the unsaturated nonlinearity. This possibility
is suggested by the previously discovered mechanism of the stabilization of fundamental
solitons (rather than Airy beams) by nonlinearity management against the onset of the
critical collapse in the case of α = 2 (the usual non-fractional diffraction) [77–80].

As mentioned above, another version of the management, which is specific to the
fractional setting, can be introduced by periodic modulation of LI: α = α(z). Unlike what is
considered above, this form of the management (that will be addressed elsewhere) cannot
be eliminated from the linearized equation.



Symmetry 2022, 14, 2664 5 of 14

3. Numerical Results
3.1. The Model with Diffraction Management

In this section, we address the propagation of the ring-Airy beam governed by Equa-
tion (6) with input

ψ(ξ, η) = Ψ0Ai
(

r0 − r
w0

)
exp

[
a
(

r0 − r
w0

)]
, (13)

where Ai is the Airy function, Ψ0 is the input’s amplitude, r =
√

ξ2 + η2 is the radial
coordinate, r0 and w0 determine the initial radius and width, respectively, of the ring-Airy
beam, and a > 0 is the exponential truncation factor that is necessary to secure convergence
of the integral power,

P =
∫ ∫
|ψ(ξ, η)|2dξdη, (14)

cf. [11].
Characteristic results can be presented using input (13) with

A0 = 1, r0 = 10, w0 = 1, a = 0.1. (15)

They are displayed in Figures 1 and 2 for the self-focusing and self-defocusing nonlinearity,
respectively.

Figure 1. The propagation dynamics of the ring-Airy beams under the combined action of the
self-focusing saturable nonlinearity, defined by Equation (3) with values of σ0 indicated in the top
panels, and the periodic modulation of the diffraction coefficient, defined by Equation (8) with D0 = 1
and Ω = 2, in the framework of Equation (6) with α = 1.5. The propagation is initiated by input
(13) with parameters (15). (a1,b1,c1): Side views (i.e., the cross-section drawn through η = 0) of the
propagating ring-Airy beams for different values of nonlinearity parameter σ0 as indicated in the
panels. Panels (a2,b2,c2) show the amplitude of the optical field as the function of the propagation
distance. Panels (a3,b3,c3) present power spectra of the amplitude from (a2,b2,c2): kζ is the respective
wavenumber of the Fourier transform applied to the functions of ζ.
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Figure 2. The same as Figure 1 but for the case of self-defocusing saturable nonlinearity defined by
Equation (6) with negative values σ0 indicated in the panels.(a1,b1,c1): Side views (i.e., the cross-
section drawn through η = 0) of the propagating ring-Airy beams for different values of nonlinearity
parameter σ0 as indicated in the panels. Panels (a2,b2,c2) show the amplitude of the optical field as
the function of the propagation distance. Panels (a3,b3,c3) present power spectra of the amplitude
from (a2,b2,c2): kζ is the respective wavenumber of the Fourier transform applied to the functions
of ζ.

Figure 1(a1,b1,c1) present the propagation dynamics with different values of the self-
focusing nonlinearity strength σ0 in Equation (3) and a fixed value of the modulation
frequency, Ω = 2 in Equation (8) (recall D0 ≡ 1 is fixed by rescaling). In Figure 1(a1), the
main lobe of the ring-Airy beam exhibits nearly periodic oscillations in the presence of
the weak nonlinearity. It is seen in Figure 1(b1,c1) that the oscillations gradually extend to
side lobes of the beam as the strength σ0 of the self-focusing nonlinearity increases. The
oscillation amplitude also gradually grows and exhibits a trend towards chaotization with
the increase of σ0; see Figure 1(a2,b2,c2). The respective power spectra of the variable
amplitude of the beam are displayed in Figure 1(a3,b3,c3). It is seen that the dominant
spectral components, located at kζ = ±2, are obviously determined by the aforementioned
management frequency (Ω = 2), while the apparent chaotization is produced, with the
growth of the nonlinearity strength, by the appearance of long-wave spectral components
around kζ = 0.

The results for the self-defocusing nonlinearity, which are displayed in Figure 2, are
generally similar. However, at stronger nonlinearity, |σ0| = 1, the long-wave component of
the spectrum, which accounts for the chaotization, is, quite naturally, broader (hence, more
conspicuous) for the self-focusing sign; cf. Figures 1(c3) and 2(c3).

Next, we address the propagation dynamics of the nonlinear beams under the action of
the decaying modulation format, defined as per Equation (9). Figure 3(a1,b1,c1) show that,
in this case, the ring-Airy beams naturally shrink, while their amplitude increases under
the action of self-focusing, following the decay of the diffraction strength. In the cases of
α = 1.0 and α = 1.4 (Figure 3(a2,b2)), the increase in the amplitude is arrested and then it
falls to a somewhat lower, nearly constant value, which is conspicuously larger than the
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initial one, due to the saturable character of the nonlinearity in Equation (11). The situation
is different in the case of α = 1.6, shown in Figure 3(c2), where the amplitude initially
attains a higher value in the course of the shrinkage, but then, due to a stronger effect of
the saturation, it falls back to a quasi-constant level, which is close to the initial value.

Figure 3. The propagation dynamics of ring-Airy beams under the action of the modulation format
(9), as produced by simulations of Equation (6). Panels (a1,b1,c1) display, in the cross-section η = 0,
the evolution of the propagating beams with the self-focusing nonlinearity, σ0 = +1, and LI values
α = 1.0, α = 1.4, and α = 1.6, as indicated in the panels. The respective evolution of the amplitude of
the optical field is displayed in panels (a2,b2,c2).

In the case of the combination of the modulation format (9) and self-defocusing,
corresponding to σ0 = −1 in Equation (6), Figure 4(a1,b1,c1) show that the main lobe
of the ring-Airy beams tends to autofocus at a certain point, while the sidelobes do not
significantly shrink. In the cases of α = 1.0, relatively weak autofocusing occurs at ζ ≈ 210,
as seen in Figure 4(a1,a2). As the Lévy index increases, stronger autofocusing occurs
at shorter transmission distances in the cases of α = 1.4 and α = 1.6 (Figure 3(b1,c1),
respectively).
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Figure 4. The same as in Figure 3 but for the case of the self-defocusing nonlinearity, with σ0 = −1 in
Equation (6).

3.2. The Model with Nonlinearity Management

Next, we consider the possibility of stabilization of ring-Airy beams by means of
nonlinearity management, modeled by the following fractional NLSE:

i
∂ψ

∂ζ
− 1

2
D(ζ)

(
−∇2

⊥

)α/2
ψ + σ(ζ)|ψ|2ψ = 0, (16)

cf. Equation (11). Here, following [77–80], the spatially periodic management format is
considered, with wavenumber k, viz.:

σ(ζ) = σ0 − σ1 sin
(
Ω̃ζ
)
, (17)

cf. Equation (8), where the coefficient in front of sin
(
Ω̃ζ
)

is set equal so that σ1 = 1 by
means of rescaling.

The propagation dynamics of the ring-Airy beams is summarized in Figure 5 for a
fixed modulation wavenumber Ω̃ = 4 under the combined action of the periodic diffraction
management, defined as per Equation (8), with Ω = 2, and nonlinearity management. In
Figure 5(a,b1,c1,a2,b2,c2), the ring-Airy beams with α = 1.5 are stabilized as the absolute
value of constant term σ0 in Equation (17) decreases in the cases of the self-focusing (σ0 > 0)
and defocusing (σ0 < 0) nonlinearity. It is seen that stabilization of the beam against the
above-mentioned supercritical collapse can be achieved when the average value |σ0| in
the modulation profile (17) is smaller than the modulation amplitude (which is equal to
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1 in Equation (17)). Because the supercritical collapse is driven by the constant term σ0,
while the effective stabilization is provided by the oscillatory one, the stabilization is clearly
seen to be most efficient at σ0 = 0 for different values of α in Figure 5(a3,b3,c3), carrying
over into an apparently chaotic regime (but still not a collapsing one) with the increase of
σ0. Fully clean stabilization at σ0 = 0 and different values of LI α is clearly observed in
Figure 5(a3,b3,c3).

As an additional test of the stabilization of the ring-Airy beams by the nonlinearity
management, the transmission of the beams was tested under the combined effect of the
fast management with Ω̃ = 20 and σ0 = +1 or −1, as shown with multiple examples in
Figures 6 and 7. It is observed that for different values of LI, the ring-Airy beams autofocus
after passing a certain distance, which is followed by quasi-stabilization, with the amplitude
converging to nearly constant values.

Figure 5. The simulated propagation of the ring-Airy beams under the action of diffraction man-
agement with modulation format (8), where Ω = 2 is set again in combination with nonlinearity
management (17) with Ω̃ = 4, as produced by simulations of Equation (16). Panels (a1,b1,c1) and
(a2,b2,c2) display, in the cross-section η = 0, the propagation dynamics of the propagating beams
with a fixed value of α = 1.5 for different values of the self-focusing and defocusing nonlinearity
parameter σ0, as indicated in the panels. Panels (a3,b3,c3) display the results for fixed σ0 = 0 and
different values of the LI: α = 1.0, α = 1.5, and α = 1.9, respectively.
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Figure 6. The propagation dynamics of the ring-Airy beams under the combined action of the
decaying diffraction-modulation format (9) and nonlinearity management (17) with σ0 = 1 and
Ω̃ = 20, as produced by simulations of Equation (16). Panels (a1,b1,c1) display, in cross-section η = 0,
the evolution of the beams with fixed values of α, as indicated in the panels. Panels (a2,b2,c2) show
the corresponding evolution of the amplitude of the optical field.
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Figure 7. The same as in Figure 6, but for σ0 = −1.

4. Conclusions

We have numerically investigated the propagation dynamics of 2D ring-Airy beams
with axial symmetry, governed by the fractional NLSE with the saturable or cubic nonlinear
term and variable diffraction and nonlinearity coefficients. These equations, which belong
to the general class of management systems, model optical waveguides composed as an
array of elements emulating the fractional diffraction and carrying the Kerr (saturable or
non-saturable) nonlinearity. Adjusting the LI (Lévy index) α and the modulation format of
the fractional-diffraction coefficient provides efficient means to maintain stable propagation
of the ring-Airy beams, keeping their symmetry unbroken. These findings are essential, as
normally 2D ring-shaped patterns in Kerr media are unstable against symmetry-breaking
azimuthal perturbations that split the ring, and, moreover, all localized states are destroyed
by the supercritical or critical collapse at α < 2 or α = 2, respectively (the latter value
corresponds to the usual non-fractal diffraction). We have considered the spatially periodic
modulation profiles of the diffraction and nonlinearity coefficients, as well as the diffraction-
management profile decaying inversely proportional to the propagation distance, in the case
of the saturable nonlinearity. The main lobe of the ring-Airy beam exhibits nearly periodic
oscillations under the action of periodic modulation of the diffraction in the presence of the
weak nonlinearity. The oscillation amplitude gradually grows and exhibits a trend towards
chaotization with the growth of the nonlinearity strength. The ring-Airy beams naturally
shrink, while their amplitude increases under the action of the decaying modulation format
and self-focusing nonlinearity; then their amplitudes fall to a somewhat lower, nearly
quasi-constant value. In the case of the combination of the decaying modulation and self-
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defocusing, the main lobe of the ring-Airy beams tends to autofocus at a certain point, while
the sidelobes do not significantly shrink. Generally, the ring-Airy beams are stabilized by
means of nonlinearity management both for the periodic and decaying modulation formats
of diffraction. The management schemes introduced in this work offer new possibilities
for manipulating and controlling the ring-shaped optical beams that would be unstable
otherwise. As an extension of the work, it is relevant to address the propagation of the ring
beams carrying angular momentum (vorticity).
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