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Abstract: Reduced activation ferritic martensitic (RAFM) 9Cr steels, which are candidate materials
for the test blanket module (TBM) of nuclear fusion reactors, are considered to be air hardenable.
However, alloy composition and the processing conditions play a significant role during the transfor-
mation of austenite to martensite/ferrite on cooling. The presence of retained austenite is known to
influence the mechanical properties of the steel. Identifying very low amounts of retained austenite
is very challenging though conventional microscopy. This paper aims at identifying a low amount
of retained austenite in normalized 9Cr-1.4W-0.06Ta-0.12C RAFM steel using synchrotron X-ray
diffraction and Mossbauer spectroscopy and confirmed by advanced automated crystal orientation
mapping in transmission electron microscopy. Homogeneity of austenite has been understood to
influence the microstructure of the normalized steel, which is discussed in detail.

Keywords: reduced activation ferritic martensitic steel; microstructure; martensite; retained austenite;
automated crystal orientation mapping-transmission electron microscopy; Mossbauer spectroscopy

1. Introduction

Reduced activation ferritic martensitic (RAFM) 9Cr steels are considered to be can-
didate materials for test blanket module (TBM) for nuclear fusion reactors, due to their
excellent mechanical properties [1–3]. They are also a very good structural materials for
steam generator circuits [4,5] as they exhibit good thermal conductivity and low thermal
expansion coefficient [6,7].

The 9Cr ferritic/martensitic steels are reported to be air hardenable [8], after normaliza-
tion above Ac3 temperature. These steels with a low carbon content (<0.15%) are known to
form a lath martensitic structure with a dislocation substructure [9,10]. Though martensite
gives good strength to the steel, due to limited ductility, these steels are not recommended
to be used in normalized condition [11,12]. Therefore, the steels are generally used in the
normalized and tempered condition with a tempered martensitic structure possessing good
mechanical properties. However, preceding the tempering treatment, normalizing the steel
in the single austenite phase is also an essential step for the transformation to a complete
martensitic structure [11–13]. The decomposition of austenite is known to be influenced by
the rate of cooling (Q) from the austenitizing temperature and the alloy chemistry [11,12].
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Continuous cooling transformation (CCT) and time temperature transformation (TTT)
of 9 Cr steels have been already studied [10,14]. As per the existing literature, CCT or
TTT diagrams explain the presence of martensite/ferrite and carbides depending on the
cooling rates adopted, but not the presence of retained austenite in 9Cr ferritic steels [9–12].
Martensitic transformation of austenite is well known to be accompanied by strain dictated
by the composition of the steel and the cooling rates and hence the transformation induced
strain can induce the mechanical stabilization of the austenite, and the mechanical stability
of retained austenite is important in obtaining good toughness [15]. In fact, residual stress
introduced unintentionally in weldments during fabrication can augment the transfor-
mation strain that could impede complete martensitic transformation of austenite. It is
reported that mechanical stabilization might play an even greater role for retained austenite
in the weldments of modified 9Cr–1Mo steel, which exhibits higher creep strength than
most low alloy steels [15]. Santella et al. [16] report an incomplete austenite transformation
in the weld metal of modified 9Cr-1Mo steel during initial cooling from an austenitizing
treatment and the transformation of retained austenite to martensite during tempering,
and attributed to the effects of microsegregation. The presence of retained austenite can be
undesirable in the steel, if it is metastable, and can lead to the formation of untempered
martensite or inhomogeneity after tempering [17]. Inhomogeneity in such steel compo-
nents can have a significant negative impact on the mechanical properties, reducing the
service life. During tempering, decomposition of retained austenite to different carbides is
influenced by tempering temperature and time, which in turn, are responsible for temper
embrittlement of the steel [18,19]. Therefore, it is pertinent to identify the reasons for
the presence of retained austenite in such steels and also characterize using appropriate
techniques, since the amount of retained austenite could be very low. Hence, in this study, a
detailed microstructural characterization of RAFM steel in normalized as well as tempered
condition has been taken up, to understand the decomposition mode of high temperature
austenite.

2. Materials and Methods

The steel used in the present study is designated at INRAFM steel and the chemical
composition of the steel is given in Table 1. The steel was subjected to austenisation at
1253 K for 30 min and subjected to air cooling (normalizing). The normalized steel was also
tempered at 1033 K for 1 h.

Table 1. Chemical composition of INRAFM steel (wt%).

Element Concentration Element Concentration

Cr 9.03 Ta 0.06
C 0.126 N 0.03

Mn 0.56 O 0.002
V 0.24 P <0.002
W 1.38 S <0.001

Preliminary microstructural analysis was carried out in scanning electron microscope
(Philips XL30, F.E.I. Company: Hillsboro, OR, USA). Angle dispersive X-ray diffraction
(ADXRD) experiments were carried out using beam line (BL-12) at an Indian synchrotron
source (Indus 2), at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, since
the high brilliance of synchrotron source compared to conventional source would enable
the identification of phases of volume fraction less than 1%. A monochromatic X-ray beam
(λ/∆λ = 8000 at ~8 keV) of photon energy 13.081 KeV (λ = 0.9478 A◦) or 16 keV and beam
size 300 × 300 µm2 was used. NIST LaB6 powder was used for calibration of wavelength
in transmission mode. Synchrotron XRD experiments were carried out on thin foils of the
steels (~100 µm thick) in the transmission mode using MAR Research image plate (MAR
345 DTB). Image plate data was converted to I vs. 2 θ plot using FIT2D software. Mossbauer
spectroscopy was carried out on thin foils (~100 µm thick) of the steels, with Co57 source
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dispersed in Rh matrix as the probe with a Wiesel spectrometer in transmission geometry.
Thin foil specimens for TEM were prepared by conventional mechanical thinning followed
by electrolytic polishing with a Struers jet thinning apparatus (Tenupol-5) with appropriate
electrolyte, while carbon extraction replica specimens were prepared by picking up the
thin film of carbon deposited on the steel surface immersed in Villela’s reagent followed
by rinsing in methanol transmission electron microscopy observations were carried out
with Philips CM200 analytical transmission electron microscopy (ATEM) at an acceleration
voltage of 200 kV. EDX analysis was carried out with the Oxford EDS system attached to the
ATEM. Orientation imaging in TEM was carried out with an automated crystal orientation
mapping (ACOM) system from M/s. Nanomegas SPRL, Brussels, Belgium.

3. Results

Secondary electron (SE) and back scattered electron (BSE) images of the normalized
steel are shown in Figure 1a,b. It is observed that the structure is martensitic in the normal-
ized steel. Presence of undissolved primary carbides is also observed in the normalized
steel from Figure 1b. Detailed selected area diffraction (SAD) and energy dispersive X-ray
(EDX) analysis of the precipitates seen in TEM micrograph in Figure 1c confirmed that the
precipitates are Cr, W rich M23C6 and Ta, V rich MX as shown in Figure 1d. In addition, the
presence of fine, acicular carbides has been noted in a few wide laths of the normalized
steel (Figure 2a), which were identified to be Fe rich M3C carbides as shown in Figure 2b,c.
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(c) typical EDS spectrum of these carbides from carbon extraction replica of the same sample, showing
Fe enrichment.

Microstructural features of the normalized and tempered steel are shown in Figure 3a–d.
It is observed that the microstructure is tempered martensite with the presence of higher
amounts of Cr rich M23C6 at the boundaries of prior austenite grains and martensitic laths
and intralath MX precipitates enriched with Ta, V, which is in agreement with results
available in literature on these steels [14]. However, contrary to the presence of Fe rich M3C
in the normalized steel, no signature for M3C could be found in the tempered steel. This
suggests the metastable nature of M3C.

Conventional laboratory XRD spectra of the normalized as well as normalized and
tempered steels showed the presence only α-bcc peaks, corresponding to the marten-
site/ferrite matrix, due to the low amounts of precipitates in the tempered steel. Methods
such as electrolytic phase extraction can enable the identification of low amounts secondary
phases with the matrix interference even by laboratory X-ray sources [20] or alternatively,
synchrotron XRD is well known to be suitable for phase identification with low detection
limits [21]. ADXRD spectra of the normalized as well as the tempered steels are presented
in Figure 4a. Since the carbon concentration of the steel used in the present study is low,
it is assumed that the lattice parameter of martensite is not significantly different from
BCC α-Fe. Apart from the major phase α-Fe, peaks corresponding to the secondary phases
M23C6 and MX precipitates could also be indexed. However, the intensity ratio of the
peaks did not follow the JCPDS data, due to certain experimental difficulties such as static
nature of the sample, intensity saturation of the image plate, etc. In the ADXRD spectrum
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of the normalized steel, (Figure 4b), the (110)α peak of highest intensity is asymmetrical
and could be resolved into two peaks, the one with a lower intensity identified as (111)
peak of austenite. The other peaks of austenite could not be unambiguously indexed, since
they were overlapping with that of the undissolved M23C6 and MX precipitates. On the
other hand, in the normalized and tempered steel, such a deconvolution of (110)α peak was
not possible, which clearly indicates the absence of austenite after tempering.
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Figure 5a,b shows the Mossbauer spectra of normalized as well as normalized and
tempered steels. It is observed that the steel in both the conditions exhibit a six-line pattern,
which could be further resolved into three six-line patterns. Such resolved components are
due to a complex interplay of the alloying elements, which is beyond the scope of this study.
The presence of a six-line pattern is mainly attributed to the predominant ferro magnetic bcc
ferrite. Interestingly, in the normalized steel, in addition to the six-line patterns, spectrum
could be deconvoluted to show the presence of a single line pattern of low intensity (arrow
marked in Figure 5a). Such a singlet clearly suggests the presence of a non-magnetic cubic
phase, which could be retained austenite or the undissolved M23C6 and MX precipitates,
since all these phases are known to possess a fcc structure and also paramagnetic. However,
no such singlet was observed in the normalized and tempered steel, where the amount
of M23C6 and MX precipitates, is higher than in the normalized steel. Hence, the singlet
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observed in the normalized steel should correspond to retained austenite of a low volume
fraction [9,22] rather than due to the presence of undissolved carbides.
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Conventional TEM observations could not unambiguously confirm the presence of
retained austenite in the normalized steel. Hence a newly emerging technique automated
crystal orientation mapping in TEM (ACOM-TEM), was employed. Crystallographic data



Symmetry 2022, 14, 196 7 of 10

for α ferrite, γ austenite and M23C6 were given as input for analysis. Figure 6a,b shows
the resultant index and reliability maps of the normalized steel, while Figure 6c shows the
orientation map from the same region. Multiple orientation of martensite is quite evident
from Figure 6c, which can be attributed to a fast-cooling rate adopted during normalizing.
The phase map presented in Figure 6d showed the presence of ~2% retained austenite.
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4. Discussion

Formation of martensite in 9Cr ferritic/martensitic steels air cooled at the rate of
~2 K/min is well reported [23]. Transformation of Fe from FCC to BCC is known to
follow the Bain, Kurdjumov–Sachs (K-S), Nishiyama–Wassermann (N-W) or Greninger–
Troiano (G-T) orientation relationship (OR) [24]. K-S and N-W OR are more frequently
reported in low C steels. However, the more common factors, which can influence on
OR are thermo-mechanical processing and chemical composition [24,25]. In low carbon
ferritic/martensitic steels, γ→ α′ transformation reportedly follows K-S OR [26,27],which
can result in 24 crystallographic variants of α from a given γ orientation. Hence in this
study also, it is expected that martensite forms obeying the K-S OR.

From Figure 6c, it is clearly observed that several orientations of the packets of marten-
site nucleated from the 4 {111} planes of γ as indicated by the legend in Figure 6c, the
standard stereographic triangle of a cubic system. The observation of many orientations
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within each austenite grain suggests that there is no variant selection, which is due to a
relatively fast cooling rate adopted.

Retained austenite in modified 9Cr-1Mo weldments is reported to obey both K-S and
N-W orientation relationship [15]. However, Duanjun Sun et al. [28] observe that even
when the amount of retained austenite is less, there can be a deviation in the orientation of
austenite above Ms, which may be inevitable as a result of strain associated with marten-
sitic transformation. It is reported that thin films of retained austenite between laths of
low alloy martensite are mechanically stabilized at the austenite-martensite interface by
transformation induced accommodation defects [15]. However, a high degree of mutual
accommodation of transformation strains between adjacent variants of martensite with a
K-S orientation relationship such as in twin related martensite can suppress the retention of
inter-lath austenite [29]. Hence, the observation of retained austenite along with martensite
in the normalized steel without any variant selection of martensite in this study could be
attributed to its mechanical stabilization associated with the transformation strain.

It is known that γ to α′ transformation is significantly influenced by factors such
as (a) cooling rate, (b) alloying additions, and (c) homogeneity of austenite. An earlier
study of differential scanning calorimetry analysis of this steel austenitized and cooled at
different rates clearly showed that at cooling rates less than 40 K/min, there is a cooling rate
dependence of the Ms and Mf temperatures [30], with Ms and Mf temperatures decreasing
with increase in cooling rate. In addition, it is known both Ms and Mf temperatures decrease
with the addition of ferrite stabilizers W and Ta, which are also strong carbide formers [6].
The dissolution temperature of M23C6 and MX precipitates in this steel was determined
to be higher than 1342 and 1570 K respectively [30]. Hence, in this steel with 1.4% W, it
can be inferred that normalizing at 1253 K is insufficient for complete dissolution of these
carbides as shown in Figure 1. Such incomplete dissolution of the primary carbides can
lead to the inhomogeneity of the austenite, which would increase with W or Ta content of
the steel [12]. Further detailed analysis of martensitic lath structure in TEM showed two
different types of lath structure [12]. Such a precipitation of Fe rich M3C was shown to
occur in a few wide laths, while the laths with narrow width showed no precipitation. This
had been understood to be due to the inhomogeneous austenite around the undissolved
carbides—one lean w.r.t carbon and the other enriched with carbon, since it is known that
carbon migration is possible even at lower temperatures also [31]. Carbon lean austenite
has a relatively higher Ms and Mf temperatures leading to the partial transformation of γ to
α + carbides (similar to bainite) above Ms, [12,32] as shown in Figure 2. Variation in lath size
and the carbide precipitation indicates that the stability of the inhomogeneous austenite is
influenced by the cooling rate. The observation of the austenite in the normalized steel has
been unambiguously confirmed by various experimental techniques, which could be due
to an incomplete martensitic transformation of the carbon enriched austenite. Presence of
retained austenite as thin films at martensitic lath boundaries in the weldments of this class
of steels has been reported in literature [33]. Hence the transformation sequence of the steel
during normalizing can be summarized as

Austenite + undissolved carbides→ martensite (α′) + α + carbides + traces of retained austenite (γr)

Absence of Fe rich carbides in the tempered steel proves that the M3C present after
normalization is unstable. It is well reported that the stable carbides in these steels after
tempering in the temperature range of 750–780 ◦C are M23C6 and MX [18,34]. In addition,
no signature of austenite could be found in the tempered steel. Hence, it can be inferred that
the observed microstructure containing martensite + α + carbides + γr is due to the complex
interplay of micro chemical variation/inhomogeneity in the alloy even after normalizing at
1253 K for 30 min. This is also attributed to the sluggish diffusion of heavy elements such
as W and Ta [35] in the steel. Further to support the fact of sluggish kinetics, it is reported
in an earlier work that the number density of carbides in the steel increases with increase in
W content [36].
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5. Conclusions

Microstructural investigation on 9Cr-1.4W-0.12C Ferritic martensitic steel was per-
formed in the present work. The salient results of the study are as follows:

• Conventional TEM analysis of normalized steel shows a martensitic structure with
few wide laths containing Fe rich M3C carbides;

• Detailed analysis of ADXRD, orientation imaging in TEM and Mossbauer studies
proved the presence of retained austenite in normalised steel;

• The presence of M3C and retained austenite in the normalized steel with a marten-
sitic microstructure is understood to be due to the inhomogeneity of austenite with
incomplete dissolution of primary carbides during normalizing treatment;

• Absence of retained austenite and M3C in the tempered steel suggested their metastable
nature, which could have transformed to stable M23C6 and MX precipitates on tem-
pering.
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