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Abstract: Here, a chaotic quadratic oscillator with only squared terms is proposed, which shows
various dynamics. The oscillator has eight equilibrium points, and none of them is stable. Various bi-
furcation diagrams of the oscillator are investigated, and its Lyapunov exponents (LEs) are discussed.
The multistability of the oscillator is discussed by plotting bifurcation diagrams with various initiation
methods. The basin of attraction of the oscillator is discussed in two planes. Impulsive control is
applied to the oscillator to control its chaotic dynamics. Additionally, the circuit is implemented to
reveal its feasibility.

Keywords: quadratic oscillator; bifurcation; multistability; impulsive control; chaotic circuit

1. Introduction

Chaotic flows have attracted lots of attention recently [1,2]. Many systems with various
features have been proposed to study the chaotic dynamics [3,4]. Some of the proposed
oscillators are discussed from the viewpoint of their quadratic or cubic terms [5,6]. Some
other studies have focused on the equilibrium points [7]. Oscillators with no equilibria [8],
with stable equilibria [9], with curves of equilibria [10], and with a peanut-shaped equilib-
rium curve [11] are some examples. A hyperjerk oscillator has been investigated in [12].
A multi-dimensional chaotic system was discussed in [13]. In [14], a multi-scroll chaotic
circuit was analyzed. Various dynamics of the Sprott B system were studied in [15]. The
dynamics of coupled neurons were investigated in [16]. Chaotic dynamics have many
applications, such as encryption [17–19]. In [20,21], a discrete chaotic dynamic was used in
image encryption. A chaotic encryption method and its application in the internet of things
were studied in [22]. A plain-text-related image encryption method using Chen oscillator
was proposed in [23].

Multistability is an exciting feature of dynamical systems [24–26]. Multistable oscil-
lators have various applications [27]. A multistable oscillator with various attractors was
discussed in [28]. In [29,30], the multistability of the series hybrid electric vehicle was
investigated. Extreme multistability is a particular case of multistability [31]. In [32], the
extreme multistability of a fractional-order oscillator was studied. The multistability of a
Chua system was discussed in [33]. Memristive chaotic oscillators are very interesting [34].
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A memristive neural system was studied in [35]. A memristive Chua system was dis-
cussed in [36]. In [37], a memristive oscillator with a unique attractor was investigated.
A memristive oscillator with a fractional-order difference was studied in [38]. In [39], the
multistability of a five-value memristive oscillator was investigated.

Control and synchronization of dynamical systems have been a hot topic [40–42].
Many algorithms have been proposed to control chaotic oscillators [43]. Control of the
Chen oscillator was investigated in [44]. A fuzzy-based controller was studied in [45].
In [46], control of a piecewise linear oscillator was discussed. Adaptive control of a
chaotic oscillator was discussed in [47]. Delayed feedback control of chaotic oscillators
was investigated in [48]. Impulsive control is a valuable method for this purpose [49].
Event-triggered impulsive control was studied in [50–52]. Synchronization of the Chen
oscillator was discussed in [53]. Impulsive control for synchronization of a chaotic network
was investigated in [54].

Chaotic circuits show the feasibility of these dynamics [55,56]. Implementing circuits
for chaotic oscillators has been an exciting topic [57]. A memristive circuit was studied
in [1]. Various dynamics of the system were discussed. A jerk circuit with the arcsinh
function was proposed in [58], and its behaviors were investigated. The application of
a chaotic circuit on image encryption was discussed in [59]. The circuit design of a 5D
hyperchaotic oscillator was studied in [60], and its multistability was discussed. In [61], the
circuit design of a 3D system was studied.

Here, a quadratic oscillator with only squared terms is presented. The comparison of
the proposed system with some previous important literature is presented in Table 1 to
highlight the distribution of this paper. The proposed system is a simple quadratic system
with only squared terms, and some important properties of the system are investigated.
The chaotic behavior of the oscillator is discussed in Section 2. Additionally, its equilibrium
points and their stabilities are investigated. In Section 3, various oscillator dynamics are
discussed by changing its three parameters. 1D and 2D bifurcation diagrams are used to
investigate the dynamics of the oscillator. Lyapunov exponents (LEs) help to investigate
the type of dynamics in various parameters. Then by plotting bifurcation diagrams with
various initial conditions, the multistability of the oscillator is investigated. The basin of
attraction for the oscillator shows the variation of dynamics by changing the initial values
of its three variables. In Section 4, the impulsive control of the oscillator is designed, and its
results are discussed. Then, the circuit of the oscillator is designed in Section 5. In Section 6,
the conclusion of the paper is discussed.

Table 1. Comparison of the proposed system with the previous ones.

Ref. Dimension Type of Terms Number of
Terms

Number of
Equilibrium

Points
Multistability Circuit

[62] 4 Cubic 9 Infinite 3 3

[63] 3 Cubic & tanh(.) 7 5 3 3

[64] 4 Quadratic 9 0 3 3

[16] 3 Linear & Tanh 10 3–7 3 3

This work 3 Quadratic with only
squared terms 9 8 3 3

2. The Proposed Oscillator

A quadratic oscillator is presented as:

.
x = −y2 + z2 + C2x2 + C1.

y = −z2 + x2 + 2
.
z = z2 + C3x2

(1)
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To propose the system, a parametric quadratic system with only squared terms and
constants in each variable is designed. Then a computer search is applied to compute
the value of parameters and initial values for chaotic solutions. The oscillator only has
squared terms and not a multiplication of two variables. It is important to investigate if
this system is symmetric or has offset boosting properties. Offset boosting and symmetry
experiments are significant features of chaotic systems [65,66]. We examine the existence of
offset boosting and symmetry by adding a constant excitation force to all the right-hand
sides of equations one by one. However, there was no offset boosting. The system shows
chaotic dynamics in C1 = −0.6, C2 = −0.7, C3 = −2 and initial conditions (0, 0, 0). Figure 1
presents the time series of chaotic dynamics in part (a), the 3D chaotic attractor in part (b),
and its three 2D projections in X−Y, Y− Z, and X− Z planes with gray color.
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Figure 1. Chaotic dynamics of the presented oscillator in C1 = −0.6, C2 = −0.7, C3 = −2 and initial
conditions (0, 0, 0); (a) time series; (b) phase space.

The equilibrium points of the system are calculated by setting zeros on the right-hand
side of Equation (1). The system has eight equilibrium points, as shown in Table 1. To
investigate the stability of equilibrium points, the characteristic equation and eigenvalues
should be computed for each of them. The corresponding eigenvalues of the equilibrium
points are presented in Table 2. All of the equilibrium points have at least one positive real
part of the eigenvalue, so they are unstable.

Table 2. Equilibrium points and eigenvalues of Oscillator (1).

# Equilibrium Eigenvalues

E1
(√

2,
√

2, 2
)

λ1 = −1.2036, λ2,3 = 1.6118± 4.8979i

E2
(
−
√

2,
√

2, 2
)

λ1 = 8.9257, λ2,3 = −1.4729± 1.1899i

E3
(√

2,−
√

2, 2
)

λ1 = 3.1356, λ2,3 = −0.5577± 3.1455i

E4
(
−
√

2,−
√

2, 2
)

λ1 = 6.2323, λ2 = −2.3957, λ3 = 2.1432

E5
(√

2,
√

2,−2
)

λ1 = −6.2323, λ2 = 2.3957, λ3 = −2.1432

E6
(
−
√

2,
√

2,−2
)

λ1 = −3.1356, λ2,3 = 0.5577± 3.1455i

E7
(√

2,−
√

2,−2
)

λ1 = −8.9257, λ2,3 = 1.4729± 1.1899i

E8
(
−
√

2,−
√

2,−2
)

λ1 = 1.2036, λ2,3 = −1.6118± 4.8979i

3. Dynamical Properties

The oscillator has three crucial parameters that significantly affect its dynamics. The
first studied parameter is C1. Figure 2 presents the bifurcation diagram of Oscillator (1) by
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varying C1. The other parameters are kept constant as C2 = −0.7, C3 = −2. The maximum
values of three variables of the oscillator with the forward continuation method are plotted
in parts (a–c). The oscillator shows a period-doubling route to chaos. Part (d) of the
Figure 2d shows the oscillator’s LEs by changing C1. A positive LE can prove the existence
of chaos. Additionally, one LE approaches zero by approaching bifurcation points.
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Figure 2. Bifurcation diagram by varying C1 with forwarding continuation method; The first initial
conditions are (0, 0, 0); (a) peak values of x variable; (b) peak values of y variable; (c) peak values of z
variable; (d) LEs.

The bifurcation diagram is discussed by changing C2 in Figure 3. The diagram is
plotted using a forward continuation method in constant parameters C1 = −0.6, C3 = −2.
A period-doubling route to chaos can be seen by changing the parameter. LEs of the
oscillator confirm the chaotic dynamics in small C2.

To better investigate various dynamics of the oscillator, the 2D bifurcation diagrams
are discussed by changing parameters C1 and C2 in Figure 4. A classic bifurcation diagram
presents the dynamics by changing one parameter. The 2D bifurcation diagram is helpful
since it shows the variations by changing two parameters. The bifurcation diagram by
changing C1 is plotted for nine values of parameter C2. The diagram helps to investigate
various dynamics by changing these two parameters. The results show that in the studied
interval of C1, increasing C2 causes a decrease in the complexity of dynamics.
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The multistability of the oscillator can be revealed by plotting a bifurcation diagram
with different initial conditions. In Figure 5, various bifurcations are plotted using different
colors in parameters C1 = −0.6 and C2 = −0.7. The magenta color shows a bifurcation
diagram in C3 ∈ [−2,−1.953]. It is plotted by the forward continuation method and the
first initial conditions at the origin. The blue one is the forward continuation bifurcation
diagram with origin as the first initial conditions. The green color is the forward bifurcation
in C3 ∈ [−1.9836,−1.983] and the first initial conditions as (0, 0, 0). Comparison of the
magenta color diagram with blue and green ones reveals the coexisting attractors in various
intervals of C3.
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Figure 5. Forward bifurcation diagram with origin as the first initial conditions; the blue diagram in
C3 ∈ [−1.974,−1.965], the magenta diagram in the interval C3 ∈ [−2,−1.953], and the green diagram
in C3 ∈ [−1.9836,−1.983]; (a) peak values of x variable; (b) peak values of y variable; (c) peak values
of z variable;.

The basin of attraction of the oscillator in C1 = −0.6, C2 = −0.7, C3 = −1.9722 is
discussed to investigate the initial conditions that result in chaotic and periodic dynamics
as presented in Figure 5. In Figure 6, the basin of attractions is plotted in two planes as
z0 = 0 and z0 = 1. The pink color shows chaotic regions, and the white one presents the
periodic regions. The gray color depicts unbounded regions. In each plane, the dynamics
in the intervals x0 ∈ [−3, 7], y0 ∈ [−4, 4] are computed for constant z0. So the variations of
dynamics by changing x0 and y0 can be seen in each plane. The effect of z0 can be seen by
comparing the two planes. Four sets of initial conditions are selected from the two planes
to show the coexisting chaotic and periodic attractors (Figure 7).
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4. Impulsive Control

In this section, impulsive control [67,68] is applied to stabilize the proposed oscillator.
As was discussed in Table 2, the system does not have an equilibrium point in origin. So in
the first step, the change of variables xnew = xold −

√
2, ynew = yold −

√
2, znew = zold − 2

is used to move the equilibrium point (x∗, y∗, z∗) =
(√

2,
√

2, 2
)

to the origin. So the
transformed oscillator is as follows:

.
x = −(y + y∗)2 + (z + z∗)2 − 0.7(x + x∗)2 − 0.6

.
y = −(z + z∗)2 + (x + x∗)2 + 2

.
z = (z + z∗)2 − 2(x + x∗)2

(2)

where xnew, ynew, znew are called x, y, z in Equation (2). Then Oscillator (2) can be rewrit-
ten as: .

P = A× P + φ(P) (3)

where P is the vector of variables [x, y, z]T , A× P is the linear term of Equation (2), and
φ(P) is the nonlinear term. From Equation (2), we have:

A =

 −1.4× x∗ −2× y∗ 2× z∗

2× x∗ 0 −2× z∗

−4× x∗ 0 2× z∗

 , φ(P) =

 −y2 + z2 − 0.7x2

−z2 + x2

z2 − 2x2

 (4)

Now the controlled oscillator can be written as:
.
P = g(t, P) = A× P + φ(P) t 6= τi

P(t+)− P(t−) = B× P t = τi, i = 1, 2, . . .
(5)

So B, τi should be calculated for this control method.

Definition 1. If VV : R+ × Rn → R+, then VV belong to the class VV0, if:
(1) VV iscontinuousin (τi−1, τi]×Rn andforeach P ∈ Rn, i = 1, 2, . . . , (t, Y) →

(
τ+

i , P
)

lim VV(t, Y) = VV
(
τ+

i , P
)

exists;
(2) VV is locally Lipschitzian in P.

Definition 2. For (t, P) ∈ (τi−1, τi]× Rn, we have,

D+VV(t, P) , h→ 0 + lim sup
1
h
[VV(t + h, P + hg(t, P)−VV(t, P)]

Definition 3. Comparison system: VV ∈ VV0 and consider:

D+VV(t, X) ≤ a(t, VV(t, P)), t 6= τi; and VV(t, P + UU(i, P)) ≤ Ψi(VV(t, P)), t = τi,

where a : R+ × R+ → R is continuous and Ψi : R+ → R+ is non-decreasing. Then the
following system is the comparison system:

ωω = a(t, ω), t 6= τi
ωω
(
τ+

i
)
= Ψi(ωω(τi))

ωω
(
τ+

0
)
= ωω0 ≥ 0

(6)

Theorem 1. The following conditions are considered:
(1) VV : R n × R n → R+, VV ∈ VV0, KK(t)D+VV(t, P) + D+KK(t)VV(t, P) ≤

a(t, KK(t)VV(t, P)), t , li , when a is continuous in (τi−1, τi]× R n for each P ∈ Rn,
i = 1, 2, . . . , (t, y)→

(
τ+

i , P
)
lima(t, y) = a

(
τ+

i , P
)

exists. KK(t) ≥ mm > 0, t →



Symmetry 2022, 14, 259 9 of 14

τ+
i limKK(t) = KK(τi), t → τ+

i limKK(t) exists, i = 1, 2, . . . , D+KK(t) = h → 0+

limsup
(

1
h

)
[KK(t + h)– KK(t)];

(2) KK(τi + 0)VV(τi + 0, P + UU(kk, P)) ≤ Ψi(KK(τi)VV(τi, P)), i = 1, 2, . . . ;
(3) VV(t, 0) = 0 and α(||P||) ≤ VV(t, P) on R+ × R n, when α(·) ∈ ℵ (continuous

strictly increasing function class α : R+ → R+ so that α(0) = 0) are satisfied. The global
asymptotic stability for the solution ωω = 0 of the comparison system implies global
asymptotic stability of impulsive system trivial solution.

Theorem 2. Consider a(t, ωω) =
.
λ(t)ωω, Ψi(ωω) = diωω, di ≥ 0 for all i ≥ 1. Conse-

quently, the system origin is global asymptotically stable if Theorem 1 conditions and the following
conditions are kept:

(1) λ(t) is non-decreasing, t → τ+
i lim λ(t) = λ(τi), t→ τ+

i lim λ(t) = λ
(
τ+

i
)

exists,
for all = 1, 2, . . .;

(2) supi [di exp(λ(τi+1)− λ(τi
+ ))] = εε0 < ∞;

(3) There is a r > 1 such that λ(τ2i+3) + λ(τ2i+2) + ln(rd2i+2 + d2i+1) ≤ λ(τ2i+2
+) +

λ(τ2i+2
+) is held for all d2i+2d2i+1 6= 0, i = 1, 2, . . ., or there is a r > 1 so that λ(τi+1) +

ln(rdi) ≤ λ(τi
+) for all i;

(4) VV(t, 0) = 0, and we have α(·) in class N such that α(||P||) ≤ VV(t, P).

Theorem 3. The origin is an asymptotically stable equilibrium for the proposed oscillator if there is
a ξ > 1 and a differentiable at t 6= τi and non-increasing function KK(t) which satisfies:

−
.

KK(t)
KK(t) ≤ q + r ≤ 1

(1+εε)∆2
ln
(

KK(τ+2i )KK(τ+2i−1)
KK(τ2i+1)KK(τ2i)ξd2

)
or

−
.

KK(t)
KK(t) ≤ q + r ≤ 1

max(∆1,∆2)
ln
(

KK(τ+i )
KK(τi+1)ξd

)
r =

{
0, i f K = I

2M
√

λ2
λ1

i f K 6= I

(7)

where q is defined as the largest eigenvalue of
(

A + K−1 ATK
)
, K is a positive definite matrix, and

λ1 > 0 and λ2 > 0 are the smallest and the largest eigenvalues of K, respectively. ρ(V) is the
spectral radius of V and d = ρ2(I + B). M is considered as

∣∣∣x(t)∣∣∣ < M,
∣∣∣y(t)∣∣∣ < M,

∣∣∣z(t)∣∣∣ < M.
KK(t) is as in Theorem 1, τi : i = 1, 2, . . . should satisfy:

∆1 = sup1≤i<∞ (T 2i+1 − T 2i) < ∞
∆2 = sup1≤i<∞ (T 2i − T2i−1) < ∞

(8)

For a constant ε, we have:

T2i+1 − T2i ≤ ε(T2i − T2i−1), ∀i ∈ 1, 2, . . . , ∞ (9)

The theorem’s proof can be seen in [67].

Remark 1. Theorem 3 estimates the upper bound ∆1max and ∆2max of impulsive intervals.

∆1 = 1
(1+εε)(q+2|aα|) ln

(
KK(τ+2i )KK(τ+2i−1)

KK(τ2i+1)KK(τ2i)ξd2

)
∆2 = εε∆1

(10)
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For controlling the proposed oscillator, the matrix B is considered as:

B =

 −1.1 0 0
0 −1 0
0 0 −1

 (11)

Here, q is defined as the largest eigenvalue of
(

A + K−1 ATK
)
, where K is a positive

definite matrix. By considering K = I, q is calculated as the maximum eigenvalue of(
A + AT). For the Oscillator (2), q = 9.8272.

Another parameter in this control method is d which is defined as:

d = ρ2(I + B) (12)

where ρ(V) is the spectral radius of V. So, we have d = (−1.1 + 1)2 = 0.01. Then the
intervals of applying the controller are computed as:

T2j+1 − T2j = T2j − T2j−1 = ∆ < (∆1 = ∆2)

∆1 = ∆2 = − ln(ξd)
q

(13)

where ξ is considered 1.1; we have ∆1 = 0.4589. So ∆ is considered 0.45. Figure 8 presents
the results of applying the discussed controller. Part (a) of the figure shows the controlled
system (2), while in part (b), the original time series of the oscillator for various variables
are plotted in the same time interval. So the controller makes all variables approach zero.
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5. Circuit Design

Here the circuit of the oscillator is investigated in C1 = −0.6, C2 = −0.7, C3 = −2, as
its schematic is shown in Figure 9. The circuit is implemented with OrCAD-Pspice. The
values of resistors are considered as Res1 = Res2 = Res5 = Res6 = Res8 = 70 kΩ, Res3 =
100 kΩ, Res4 = 17500 kΩ, Res7 = 5250 kΩ, Res9 = 35 kΩ, Res10 = Res11 = Res12 =
Res13 = Res14 = Res15 = 100 kΩ. The capacitors are selected as Cap1 = Cap2 = Cap3 =
10 nF. Here, AD633 was used as a multiplier, and OPA404 was used as the operational
amplifier. The positive voltage source is set to 15 V. The initial values of voltage in
capacitors are considered as (0, 0, 0). Figure 10 presents the results of the designed circuit
for the Oscillator (1). Part (a) of the figure shows the time series of the chaotic circuit, while
the other parts show the projection of its dynamics in three different planes. The results
are wholly matched with the dynamics of Figure 1. In other words, the chaotic oscillator
was completely implemented without any issue, and its feasibility was realized. So the
oscillator with only squared terms is physically realizable.
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6. Conclusions

A novel quadratic chaotic oscillator was proposed here. The attractors of the oscillator
were studied. Investigating the oscillator has shown the existence of eight equilibrium
points, and none of them are stable; 1D and 2D bifurcation diagrams were studied to
investigate the various dynamics of the oscillator. The results have shown the rich dynamics
of the oscillator. LEs have revealed the types of dynamics. Studying bifurcation diagrams of
the system by different initial values has shown coexisting attractors in different parameter
regions. The basin of attractions was discussed in two planes. In addition, some of the
multistable attractors were shown. Impulsive control was applied to the oscillator to force
the chaotic dynamics approaches to the origin. The results have shown the high potential of
this controller. Then the circuit of the oscillator was designed, which presents the feasibility
of the chaotic dynamics. The complex dynamics of the oscillator make it a proper choice
for random number generators and encryption applications.
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