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Abstract: A strong pump-power dependence of the four-wave mixing (FWM) signal for an aqueous
solution of Malachite green is reported. The characteristics of the pump-power dependence of
the nonlinear signal are reproduced by a theoretical model based on the coupling between pump-
probe, considering signal fields and propagation effects. The effect of the intramolecular coupling
on the nonlinear intensity of the FWM signal is studied using a model molecule consisting of
two-coupled harmonic curves of electronic energies with minima displaced in energy and nuclear
positions. Two-vibrational states are considered while including non-adiabatic effects for the two-
state model. Moreover, the coupling among the field components, as well as the propagation effects,
are studied by considering a constant pump-intensity. Our calculation scheme, considering both the
intramolecular coupling effects in the description of the molecular structure and the effects produced
by the propagation of the FWM signal along the optical length, allows the exponential dependence of
the latter, as the intensity of the pumping beam increases. Our treatments do not require the inclusion
of other non-resonant processes outside the RWA approximation, due to the consideration of an
adiabatic basis.
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1. Introduction

Multiphoton processes of intense electromagnetic fields interacting with molecular
systems are phenomena of interest with a great variety of applications [1–6] in non-linear
optics. With respect to these, Fong and Shen refer to cases characterized by a strong
coupling between light and matter, where the usual prescription derived from perturbation
methods are no longer valid [7]. In 1989, Burnett and Hutchinson dedicated a special
issue to multiphoton interactions in intense laser fields [8]. In 2013, Zhang et al. [9]
studied the deviation of the absorption feature in the resonance-enhanced multiphoton
ionization (REMPI) process as a function of resonance detuning. One of the most interesting
spectroscopic techniques corresponds to four-wave mixing, both in the degenerate and
nondegenerate cases, given its multiple applications in the characterization of molecular
systems, particularly in polymers [10], biological molecules [11], nanometric semiconductor
clusters [12], and excitons [13]. More recently, Al-Saidi and Abdulkareen [14] reported
changes in the optical responses of chemical solutions in terms of the concentration of the
analyzed organic dye, where the system response to the variation of the concentration
is produced by the induced high nonlinear saturable absorption, an issue of importance
for the development of optical limiters. The effect of propagation on pulsed four-wave
mixing [15], counter-propagating spontaneous four-wave mixing [16], and the theory of
propagation effects in time-resolved four-wave mixing [17], highlights the relevance of
knowing how these beams behave once they penetrate an optical length, where absorption
and scattering processes play an important role for the understanding of propagation, as
well as being able to correctly decipher some symmetry properties inherent to both incident
and emergent fields. Studies using FWM techniques have derived general formalisms,
which include the Stark effect applied to the understanding of the instabilities occurring in
electromagnetic fields through absorption media [18]. Many phenomena associated with
radiation-matter interaction are observed when electromagnetic fields pass through an
optical path [19]. Some authors have focused on developments of methodologies based on
Wei–Norman algebra applied to field propagation through homogeneous systems, with
analogies between the evolution operator and optical propagation matrices. Other studies
on the effect of electromagnetic field propagation in a homogeneous spectral distribution
of the FWM signal have employed models where the intensity of the pumping beam is
constant along its optical path [20,21]. Normally, the study of the optical propagation
of FWM signals is based on modeling, considering the molecule as a two-level system;
therefore, disregarding the molecular structure that embodies the active subsystem that
interacts with the radiation.

In the present study, we present the propagation of the dynamic fields associated
with the FWM signal, where it is necessary to consider the implicit effects of absorption
and scattering along the optical length. The theoretical development of nonlinear optical
properties allows us to establish the relationship between the characteristics of the material
(e.g., molecular structure, chemical composition, etc.) and the nature of the radiative
perturbation [22,23]. The nonlinear absorption coefficient and refractive index depend on
the system susceptibility, which depends on the electric dipole moment [24]. This plays
an essential role in dye production processes and the design of new materials. Despite its
importance, several authors [25–27] have estimated values of nonlinear optical responses
based on constant electric dipole moments; however, the electric dipole moments are
strongly influenced by phenomena such as intramolecular coupling [28–33], which defines
the interaction between nuclear motion and electronic motion in a polyatomic system, and
which produces a displacement of the energy levels of the electronic states of the material,
affecting its electronic distribution [34–36].

Vibronic coupling is required to correct a system’s Born–Oppenheimer wave functions
by altering the electric dipole moment. Analysis of intramolecular coupling provides
relevant information about the phenomena which relate to the appearance of “symmetry-
forbidden” electronic transitions in absorption spectra [29] or the molecular instability of
systems with configurations in electronically degenerate states through the Jahn–Teller ef-
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fect [34]. At the same time, insights concerning the interpretation of tunnelling microscopy
images of Fullerene anions [33], tunnelling spectroscopy of inelastic electrons [37], the
relationship with the chemical potential and how it enhances intermolecular charge trans-
fer [38], as well as the design of high spin molecules [39], can be obtained by the application
of these models. Our analysis in the present paper aims to examine the propagation of the
nondegenerate four-wave mixing signal along a defined optical length, which is subject to
the saturative effects of the intense pump field and the details of the molecular structure in
terms of vibronic coupling. In this analysis, we note from the results obtained the correla-
tion between the optical responses and the molecular structure, as well as the exponential
dependence of the FWM signal intensity on the pump intensity, in terms of a parametric
amplification tunable to the organic dye. Similar treatments in a two-level system, without
considering the details of vibronic coupling, where higher order effects of the pumping
beam on this same organic Malachite green dye are studied using Rayleigh-type optical mix-
ing RTOM techniques in an absorbing medium, show that it is more sensitive to saturation
than to the effects that can be expected from saturation-absorption arguments [40].

The article is organized as follows: Section 2 dedicated to the model. Section 2.1 con-
siders the molecular model and is dedicated to constructing the permanent and transition
dipole moments in the adiabatic representation, i.e., using both the new wave functions
generated from the crossing of harmonic states. The product of the variational resolution of
the problem provides the new energies of the system and, with it, the Bohr frequency of the
new adiabatic states. In Section 2.2, relating to the radiation-matter interaction model, we
solve the optical Bloch equations (OBE) in the frequency domain for the electromagnetic
fields considered in the FWM signal and, with them, the corresponding induced nonlinear
macroscopic polarization and propagation effects are discussed in Section 2.3. Here, we
consider the resolution of the amplitude variations of the incident and generated beams in
the optical path as they pass through a defined optical length. Section 3 is dedicated to the
results and discussion, and, in Section 4, the final comments and conclusions are provided.

2. Models

The study object of this work corresponds to the analysis of the behavior of the four-
wave mixing signal in the optical transit, considering intensities and angular arrangements
of the incident fields, molecular structure effects, optical path length, among others. This
involves modeling how to represent the system of states in diabatic and adiabatic config-
urations, interaction of radiation with matter in dipole-electric approximations, system
responses in terms of susceptibility, induced polarizations, and changes in the intensities of
the various fields, according to the optical path.

2.1. Molecular Model of a Two-Level System with Intramolecular Coupling

The intramolecular coupling is associated with the crossing of two or more potential
energy curves that results from the interplay between the electronic and nuclear motions in
molecules. The resulting effects have been envisaged as linear or quadratic terms describing
the dynamics of the nuclei. To solve the problems involving more than one potential
surface, one can resort to the Born–Oppenheimer separation of the Schrödinger equation,
which results in a set of differentials coupled equations describing the nuclei dynamics
within the adiabatic approximation. Moreover, the effect of intramolecular coupling on
the system response can be represented by considering two electronic states ϕ1(r; R) and
ϕ2(r; R), where r and R, are the collective electronic coordinates and the nuclear position,
respectively. This model can be employed for describing diatomic molecules and can also
be extended to an optically active model of polyatomic molecules. As depicted in Figure 1,
the electronic states are represented by two one-dimensional crossed harmonic potential
curves which have a minimal horizontal displacement along the nuclear coordinate, R0,
and a vertical displacement in energy V0. Finally, each electronic state is characterized
by its own fundamental vibrational state, represented by the wave functions φ10(R) and
φ20(R), with energy values E10 and E20.
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Figure 1. Representation diabatic of the harmonic potentials displaced in nuclear coordinates (R0) and
in energy (V0); E10, E20 are the energies of the fundamental vibrational states at each electronic level.

It is of paramount importance to recognize that the validity of a model that considers
only two vibrational states depends on the separation of the energy existing between the
minima of the electronic curves. The latter implies that the coupling parameters between
the two states are small in comparison to the vibrational energy of both oscillators. In
the same context, the two potential curves are considered to possess different frequency
constantsωHO

0 and ω̃HO
0 , which are related as δ = ω̃HO

0 /ωHO
0 . From the above electronic

states, a trial wave function is defined as follows:

Ψ(r, R) = C10φ10(R)ϕ1(r; R) + C20φ20(R)ϕ2(r; R) (1)

where the coefficients C10 and C20 are to be obtained by means variationally. The molecular
Hamiltonian is: H(r, R) = T+V(r, R)+ H̃(r), where T is the kinetic energy operator, V(r, R)
is the potential energy operator arising from the electrostatic interactions between electrons
and nuclei, and H̃(r) is a residual electronic interaction, which is coupled to the two
considered vibronic states represented by the Born–Oppenheimer product of its electronic
function ϕm(r; R) and its vibrational function φmn(R) with m = 1, 2. Finally, “ν” in Figure 1
is the intramolecular coupling parameter and “S” is the energy at which the crossing occurs.
The residual perturbation H̃(r) can be readily computed as the following integral:

〈φ10ϕ1|H̃(r)|φ20ϕ2〉 = ν〈φ10|φ20〉 = Γ00 (2)

where ν is defined as: 〈ϕ1|H̃(r)|ϕ2〉 = ν. The diagonal elements of the secular determinant
associated to (2) are the energy of the harmonic oscillator with angular frequency ωHO

0 and
displacement in energy V0. In this context, ν is the coupling between the diabatic electronic
states, and the overlap 〈φ10|φ20〉 between the vibrational functions. The latter overlap can
be obtained by means of Pekarian’s formula [35], where different force constants can be
introduced. Pekarian’s formula is defined as follows:

〈φ10|φ20〉 =
(4δ)1/4

(1 + δ)1/2 exp
[
−S

2

(
1− (1 + δ)−1

)]
(3)
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where S = (mω0/h)R2
0 corresponds to the energy height at which the coupling occurs, m

is the reduced mass associated with the vibrational mode R0 and frequency ω0. By solving
(1), the coupled eigenstates of the system are obtained as:

ΨP(r, R) =
|Γ00|2√

|Γ00|2 + (E10 − EJ)
2

{
ϕ1(r; R)φ1j(R)±

(E10 − EP)

Γ00
ϕ2(r; R)φ2k(R)

}
(4)

where the energies are given by:

EP =
1
2
(E10 + E20)±

1
2

[
(E10 − E20)

2 + 4|Γ00|2
]1/2

(5)

with E10 = 0.5 and E20 = 0.5δ+ V0. Furthermore, p = A for (−) sign and B for (+) sign.
Upon the inclusion of H̃(r) in the Hamiltonian system, the two-potential energy curves,

as well as the wavefunctions of Figure 1, result in separation as a result of the changes in
E10 and E20 (Figure 2), where

H(r, R)|ΨA〉 = EA|ΨA〉 (6)

H(r, R)|ΨB〉 = EB|ΨB〉 (7)

Figure 2. Representation adiabatic of the harmonic potentials displaced in nuclear coordinates (R0)
and in energy (V0) when the residual Hamiltonian H̃(r) is included. The energies for the vibrational
levels are EA and EB.

Here, the fundamental and excited state wavefunctions EA and EB are defined by
their respective energies. The wavefunctions |ΨA〉 and |ΨB〉 in the Born–Oppenheimer
approximation are defined as: |ΨA〉 =

∣∣∣φ1jϕ1

〉
and |ΨB〉 = |φ2kϕ2〉. The eigenvectors

corresponding to the eigenvalues EA and EB are:

|ΨB〉 = CB
jk

(
φ1jϕ1 −DB

jkφ2kϕ2

)
and |ΨA〉 = CA

jk

(
φ1jϕ1 −DA

jkφ2kϕ2

)
(8)

Cq
jk =

1√
1 +

(
Dq

jk

)2
and Dq

jk =

(
E1j − Eq

)
Γ00

, q = A, B. (9)
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Because of its construction, our model considers a marked influence of the magnitudes
of both the permanent and transition dipole moments in the FWM signal response. The
following integral gives these expressions:

mp,k(R) =
∞∫
−∞

ϕ∗p(r; R)
_
mϕk(r; R)d3r (10)

where m̂ is the operator associated with the total electronic dipole moment. A new
set of dipole moments can be obtained based on the coupled states, being different to
the set belonging to the solution of the uncoupled case. Moreover, it has been shown
elsewhere [28,29,31] that null dipole moments in the uncoupled basis do not necessarily
imply the nullity of the dipole moments in the new generated basis. The expressions
describing these quantities are written as follows:

µAA =

{
1

2|Γ00|2 + (E10 − EA)ε12

}{[
(E10 − EA)ε12 + |Γ00|2m22 −m11|Γ00|2

]
− 2(E10 − EA)m12|Γ00|2

ν

}
(11)

µBB =

{
1

2|Γ00|2 + (E10 − EB)ε12

}{[
(E10 − EB)ε12 + |Γ00|2m22 −m11|Γ00|2

]
− 2(E10 − EB)m12|Γ00|2

ν

}
(12)

µAB =

(
|Γ00|2

4|Γ00|2 + ε2
12

)1/2{
(m11 −m22)−

m12ε12

ν

}
(13)

where the quantities mii and mij are the permanent and transition dipole moments between
the uncoupled states; ε12 = E10 − E20. It is important to note that µaa and µAB are the
critical quantities for our analysis since they replace the conventional dipole moments
of the adiabatic representation in the formulation or radiation-matter interactions. These
new dipoles can be nonzero, even though the molecule may have a permanent net dipole
moment equal to zero; m12(−R0) is the dipole moment associated with the transition
between diabatic states, while m11(−R0) and m22(0) are the permanent dipole moments
in the diabatic states. It is important to point out that for m11 = m22 = 0 in Equation (10),
the coupling induces a nonzero moment in the coupled states provided by m12 6= 0. When
the m11, m22 values are not zero, the contributions from m11 and m22 to µaa(a = A, B)
may differ substantially due to both the coupling and the Franck–Condon factors, while
the only means for the permanent dipole moments to contribute to µAB is through the
m11 −m22 difference. With respect to µAB, it is clear that it may vanish as an effect of
the intramolecular coupling regardless of when m12 6= 0. Indeed, by considering that
ν = −m12

(
E1j − E2k

)
/(m22 −m11), the conditions for the mentioned effect are two-fold:

(i) the two states mixed by the intramolecular coupling must be nondegenerate, and (ii) the
signs of m12

(
E1j − E2k

)
and m22 −m11 must be opposite. Finally, for the degenerated case

E1j = E2k, µAB and µaa(a = A, B) become

µAB =
1
2
[m11(−R0)−m22(0)] (14)

µAA =
1
2
[m11(−R0) + m22(0)]−

[〈
φ1j

∣∣∣φ2k〉m12(−R0)
]

(15)

µBB =
1
2
[m11(−R0) + m22(0)] +

[〈
φ1j

∣∣∣φ2k〉m12(−R0)
]

(16)

Equations (14)–(16) represent the transition and permanent dipole moments in the
adiabatic states as a function of the dipole moments of the diabatic base initially con-
sidered. It is important to note that the nondiagonal elements of the dipole moment in
the adiabatic basis only depend on the permanent dipoles in the diabatic basis, unlike
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the permanent dipole moments in the |A〉 and |B〉 states which show dependence on
both diabatic dipole moments.

2.2. Radiation-Matter Interaction Model

The aim of the present investigation is to comprehensively study the nondegener-
ate FWM spectroscopy of two incident beams of light on condensed phases. The first
is a relatively strong light beam (pump beam) of optical frequency ω1 and spatial prop-

agation direction
→
k 1; whereas the second is a weaker light beam (probe beam) which

has the propagation’s optical frequency ω2 and spatial direction
→
k 2. By considering the

latter, the generated nonlinear signal is characterized by the frequency ω3 = ω1 + ∆,
where the detuning frequency is ∆ = ω1 −ω2 and the propagation vector is defined as
→
k 3 ≈ 2

→
k 1 −

→
k 2. To describe the temporal evolution of the system, we start with the

Liouville-von Newmann equation [41]:

ih∂tρ(t) = [H, ρ(t)] (17)

where ρ(t) is the density matrix and H is the total Hamiltonian of the complete system. In
this paper, we have defined the Hamiltonian of the following form:
H = HS + HS−F + HS−TR + HF−TR, where HS corresponds to the Hamiltonian that de-
scribes the isolated system, given in this work by HS = H0(r, R) + H̃(r), where H0(r, R)
corresponds to the unperturbed system and H̃(r) represents the residual perturbation
related to the intramolecular coupling. The terms HS−F, HS−TR and HF−TR represent the
interaction between a molecular system and a field (F) (dipolar approximation), an interac-
tion between the system and a thermal reservoir, and finally, an interaction between the
field and thermal reservoir, respectively. However, this last term will not be considered
in this model, because the solvent will be transparent to a frequency of the incident field.
In view of the above considerations, the optical conventional Bloch equations (OCBE) for
the system defined in terms of the uncoupled basis (considering only the intramolecular
coupling) are [42–46]:

∂tρBA +

(
1

T̃2
+ iωAB

0

)
ρBA = − i

h
HBAρD (18)

∂tρD +
1

T1

(
ρ̃D − ρ

(0)
D

)
= −2i

h
HABρBA +

2i
h
ρABĤBA (19)

∂tρAB = ∂tρ
∗
BA (20)

where

HBA =

(
ν2e−S/2

4ν2e−S/2 + V0

)[
(m11 −m22) +

V0m12

ν

]
E(t) (21)

1
T̃2

=
1

T2
+

i
h

V0(m11 −m22)− 4νe−S/2m22√
4ν2e−S/2 + V2

0

E(t) (22)

In our model T̃2 is the effective transversal relaxation time with dependence on the
parameters that distinguish vibronic coupling; ρ̃D ≡ ρAA − ρBB and ρ̃(0)D is the difference at
equilibrium (adiabatic representation). Here, T1 represent the longitudinal relaxation time
and T2 the transversal relaxation times, within the diabatic regime of the states |1〉, |2〉. The

total field is defined as:
→
E(t) =

→
E(ω)e−iωt +

→
E
∗
(−ω)eiωt for the three-fields considered.

By introducing a perturbative treatment for the reduced density matrix, relationships for
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the Fourier components of the induced nondiagonal elements (ρBA(ωk)), and population
difference (ρ̃D(k∆)) in the adiabatic states |A〉, |B〉 are obtained, where k is an integer.

L2n+1ρBA(ω1 + n∆) = iΩ̃2ρ̃D[(n + 1)∆] + iΩ̃3ρ̃D[(n− 1)∆] + iΩ̃1ρ̃D(n∆)+ (23)

Γn(n∆)ρ̃D(n∆) = −2iΩ̃1ρAB[−(ω1 − n∆)] + 2iΩ̃
∗
1ρBA(ω1 + n∆)

−2iΩ̃2ρAB{−[ω1 − (n + 1)∆]}+ 2iΩ̃
∗
2ρBA[ω1 + (n− 1)∆]

−2iΩ̃3ρAB{−[ω1 − (n− 1)∆]}+ 2iΩ̃
∗
3ρBA[ω1 + (n + 1)∆] + δn,0ρ̃

(0)
D /T1

(24)

where Γn(n∆) = T−1
1 − in∆ (n = 1, 2, 3); L2n+1 = T̃

−1
2 + i

[
ωAB

0 − (ω1 + n∆)
]
, where n = 0

(pump), n = 1 (FWM signal), and n = −1 (probe), whereby L−1 ≡ L2. Finally, in this case,

for the |A〉 and |B〉 states, the Rabi frequency is denoted as Ω̃j =
→
µBA·

→
E j(ωj)/h.

In the first approximation of our model, we have considered the permanent dipole
moments in both adiabatic states to be equal, this is µAA ≈ µBB, without implying that the
permanent dipole moments in the diabatic basis |1〉, |2〉 are equal to each other or equal to
zero. We have solved Equations (23) and (24) using perturbation theory, where the pump
beam, given its high intensity, is treated to all orders, the incident probe beam (of lower
intensity), to second order, while the beam generated from FWM, being of much smaller
intensity, to first order. In this case, the following simplified expression for the Fourier
components is possible:

ρBA(ωn) =
{

iΩ̃n + iλ
[
Ω̃1δn,3 + Ω̃2δn,1

]
+ iλ∗

[
Ω̃1δn,2 + Ω̃3δn,1

]} ρ̃dc
D

Ln
(25)

with (n = 1, 2, 3) and λ given by: λ = − 2
|J2|2
(

Ω̃1Ω̃
∗
2J1 + Ω̃

∗
1Ω̃3q3,−1J2 − Ω̃1Ω̃

∗
3J3

)
where we

have defined:
J1 = Γ∗1(∆) + 2

∣∣∣Ω̃1

∣∣∣2q1,−2q2,−3 (26)

J2 = Γ∗1(∆) + 2
∣∣∣Ω̃1

∣∣∣2q2,−3 +
2
∣∣∣Ω̃2

∣∣∣2
L∗1

(27)

J3 = 2
∣∣∣Ω̃2

∣∣∣2q1,−1q1,−3 (28)

with qn,−m =
[
2T̃
−2
2 + i∆n,m

]
(LnL∗m)−1; ∆n,m = ωn −ωm. The zero frequency Fourier

component is given by:

ρ̃dc
D =

ρ̃
(0)
D

(1− f) + 4S1

T̃
2
2|L1|2

(29)

where S1 is defined as the saturation parameter, given by S1 =
∣∣∣Ω̃1

∣∣∣2T1T̃2. The f-function
es given by:

f = 4T1

[∣∣∣Ω̃1

∣∣∣2∣∣∣Ω̃2

∣∣∣2(q1,−2q1,−2

J∗2
+

q2,−1q2,−1

J2

)
+
(

Ω̃
∗
1

)2
Ω̃2Ω̃3

(q2,−1

L1J2
+

q3,−1q1,−2

J2

)]
(30)

For the following calculations, it is possible to consider T2 instead of T̃2 because the
approximation is valid: 4ν2e−S/2

(
4e−S/2m2

21 − 1
)
� V2

0, for the case where m11 ≈ m22.
By solving Equation (25), the nondiagonal elements associated with the pump (ω1), probe
(ω2) and FWM signal (ω3) frequencies can be written as follows:

ρBA(ω1) =
[
gincoh(ω1) + gcoh(ω1)

]
Ω̃1 + gcoup(ω1)Ω̃2Ω̃3Ω̃

∗
1 (31)
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ρBA(ω2) =
[
gincoh(ω2) + gcoh(ω2)

]
Ω̃2 + gcoup(ω2)Ω̃1Ω̃1Ω̃

∗
3 (32)

ρBA(ω3) =
[
gincoh(ω3) + gcoh(ω3)

]
Ω̃3 + gcoup(ω3)Ω̃1Ω̃1Ω̃

∗
2 (33)

where the coherent (coh) functions gcoh(ωk) and the coupling (coup) functions gcoup(ωk),
(k = 1, 2, 3), are given by:

gcoh(ω1) =

−2i
∣∣∣Ω̃2

∣∣∣2
L1J

q1,−2

ρ̃dc
D ; gcoup(ω1) = −

2i
L1

(q3,−1

J
+

q2,−1

J∗

)
ρ̃dc

D (34)

gcoh(ω2) =

−2i
∣∣∣Ω̃1

∣∣∣2
L2J∗

q2,−1

ρ̃dc
D ; gcoup(ω2) =

− 2i
L2J∗

q1,−3 +
4i
∣∣∣Ω̃2

∣∣∣2
L1JJ∗

q1,−1q1,−2

ρ̃dc
D (35)

gcoh(ω3) =

−2i
∣∣∣Ω̃1

∣∣∣2
L3J

q3,−1 +
4i
∣∣∣Ω̃1

∣∣∣2∣∣∣Ω̃2

∣∣∣2
L3JJ∗

q1,−1q2,−1

ρ̃dc
D ; gcoup(ω3) =

(
− 2i

L3J
q1,−2

)
ρ̃dc

D (36)

Lastly, the incoherent function is:

gincoh(ωk) =
i

Lk
ρ̃dc

D (k = 1, 2, 3) (37)

It is important to note that the terms of the form:
∣∣∣Ω̃2

∣∣∣2Ω̃2Ω̃
∗
1Ω̃3 have been neglected

in the present formulation. The zero-frequency component ρ̃dc
D for the adiabatic states is:

ρ̃dc
D =

T2
2|L1|2|L2|2ρ̃

(0)
D

T2
2|L1|2|L2|2

(
1− T1

3
∑

i=1
Υi

)
+ 4S̃1 + 4S̃2

(38)

where we have defined:

Υ1 = 4
∣∣∣Ω̃2

∣∣∣2∣∣∣Ω̃1

∣∣∣2(q1,−2q1,−2

J
+

q2,−1q2,−1

J∗

)
(39)

Υ2 = 4Ω̃
2
2Ω̃
∗
2Ω̃
∗
3

(q1,−3q2,−1

J∗
+

q1,−2

L∗1J

)
(40)

Υ3 = 4
(

Ω̃
∗
1

)2
Ω̃2Ω̃3

(q3,−1q1,−2

J∗
+

q2,−1

L1J∗

)
(41)

J = Γ1(∆) + 2
∣∣∣Ω̃1

∣∣∣2q3,−2 +
2
∣∣∣Ω̃2

∣∣∣2
L1

(42)

Here, S̃1 =
∣∣∣Ω̃1

∣∣∣2T1T2|L2|2 and S̃2 =
∣∣∣Ω̃2

∣∣∣2T1T2|L1|2. Here, the Υj functions with j ≥ 4
are zero. With the solution of ρBA(ωk) at different frequencies, it is possible to evaluate
the nonlinear induced complex polarization components. Of singular importance, it is
necessary to point out that the fact of not considering the permanent dipole moments in
this model, or making them equal in each adiabatic state, allows the development of the
Fourier components considering only the terms close to the resonance, maintaining the
rotating wave approximation (RWA) [47]. In the same way, the separability of orders for the
different electromagnetic fields also obeys an experimental fact, especially when comparing
the intensity of the incident and generated beams, probe and FWM signal, respectively.
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2.3. Nonlinear Induced Polarization and Propagation Effects

The Fourier component of the total macroscopic polarization can be calculated as
follows [24]:

→
P(ωk) = N

〈
ρBA(ωk, ω̃0)

→
µAB

〉
θ

(43)

where N is the active solute chemical concentration, whereas the external bracket is the
average of all the molecule orientations. In this case, we have considered the transition
dipole moment in the adiabatic states. In the steady-state and the scalar approximations,
the polarizations in tensorial form are expressed as:

P(ω1) = χSV(ω1)E1(ω1) +
[
χ
(1,inoch)
eff (ω1) + χ

(3,coh)
eff (ω1)

]
E1(ω1) + χ

(3,coup)
eff (ω1)E3(ω3)E∗1(−ω1)E2(ω2) (44)

P(ω2) = χSV(ω2)E2(ω2) +
[
χ
(1,inoch)
eff (ω2) + χ

(3,coh)
eff (ω2)

]
E2(ω2) + χ

(3,coup)
eff (ω2)E1(ω1)E∗3(−ω3)E1(ω1) (45)

P(ω3) = χSV(ω3)E3(ω3) +
[
χ
(1,inoch)
eff (ω3) + χ

(3,coh)
eff (ω3)

]
E3(ω3) + χ

(3,coup)
eff (ω3)E1(ω1)E∗2(−ω2)E1(ω1) (46)

The coherent optical susceptibility χ
(3,coh)
eff (ωk) and coupling optical susceptibility

χ
(3,coup)
eff (ωk), are given by:

χ
(3,coh)
eff (ω1) =

−2i|µBA|4N
h3

ρ̃dc
D

L1J
q1,−2E2(ω2)E∗2(−ω2) (47)

χ
(3,coh)
eff (ω2) =

−2i|µBA|4N
h3

ρ̃dc
D

L2J∗
q2,−1E1(ω1)E∗1(−ω1) (48)

χ
(3,coh)
eff (ω3) =

−2i|µBA|4N
h3

ρ̃dc
D

L3J
q3,−1E1(ω1)E∗1(−ω1)+

4i|µBA|6N
h5

ρ̃dc
D

L3JJ∗
q1,−1q2,−1E1(ω1)E∗1(−ω1)E2(ω2)E∗2(−ω2) (49)

χ
(3,coup)
eff (ω1) =

−2i|µBA|4N
h3

ρ̃dc
D

L1

(q3,−1

J
+

q2,−1

J∗

)
(50)

χ
(3,coup)
eff (ω2) =

−2i|µBA|4N
h3

ρ̃dc
D

L2J∗
q1,−3 +

4i|µBA|6N
h5

ρ̃dc
D

L2JJ∗
q1,−1q1,−2E2(ω2)E∗2(−ω2) (51)

χ
(3,coup)
ef3 (ω1) =

−2i|µBA|4N
h3

ρ̃dc
D

L3J
q1,−2 (52)

Finally, the optical incoherent susceptibility at frequencyωk (k = 1, 2, 3) is given by:

χ
(1,incoh)
ef3 (ωk) =

i|µBA|2N
h3

ρ̃dc
D

Lk
(53)

Here, we have defined χSV(ωk) as the solvent electric susceptibility at frequency
ωk; χ(1,incoh)

eff (ωk) and χ(3,coh)
eff (ωk) represents the susceptibility components associated

with the incoherent and coherent contributions to both the beam absorption and beam

dispersion, respectively; χ(3,coup)
eff (ωk) is the effective scalar complex susceptibility at a

frequencyωk which refers to the coupling process. The superscripts m in χ(m,...)
eff (ωk) are

the minimum order required for this contribution to be non-negligible. The incoherent
part considers the reduction in the relative population due to the saturative effects of the
incident fields (pump and probe), and the presence of the coherent component, which
involves interference between the weak (probe and FWM signals) and strong fields (pump),
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is due to population oscillations at the detuning frequency ∆ between the incident fields.
From Maxwell’s equation, we have:

∇2
→
E − (1/c2)∂2

t
→
E =

(
4π/c2

)
∂2

t
→
P (54)

Taking into account the slowly varying envelope approximation and Equations (44)–(46)
for the nonlinear induced macroscopic polarization at the different frequencies, we obtain:

dẼ1

dz
= −α̃1(ω1)Ẽ1 + Ψ̃

(2,3)
1 (ω1, z)Ẽ

∗
1 exp(i∆kzz) (55)

dẼ2

dz
= −α̃2(ω2)Ẽ2 + Ψ̃

(1,1)
2 (ω2, z)Ẽ

∗
3 exp(i∆kzz) (56)

dẼ3

dz
= −α̃3(ω3)Ẽ3 + Ψ̃

(1,1)
3 (ω3, z)Ẽ

∗
2 exp(i∆kzz) (57)

where Ẽj = (E0j/2) exp(iϑj) represents the electromagnetic fields envelope, and ϑj is the
phase angle; α̃j(ωj) is the nonlinear absorption coefficient of the material medium at
frequencyωj (j = 1, 2, 3) in presence of the vibronic coupling, given by:

α̃j(ωj, z) =
2πωj

η̃jc
Imχeff(ωj, z) (58)

and where η̃j(ωj) is the refraction index in presence of the vibronic coupling, given by:

η̃j(ωj, z) =
[
1 + 4πRe

(
χSV(ωj) + χeff(ωj, z)

)]1/2
(59)

In Equations (55)–(57), the functions Ψ̃
(p,q)
k (ωk, z) are defined as the homogenous

coupling parameters between different beams:

Ψ̃
(p,q)
j (ωj, z) =

2πiωj

ηjc
χ
(coup)
eff (ωj, z)Ẽa(ωa, z)Ẽb(ωb, z) (60)

In Equations (55)–(57), the propagation symmetry along the optical length z of any
of the three beams is remarkable. This symmetry is due to the perturbative treatment of

the probe beam as second order. The term Ψ̃
(2,3)
1 (ω1, z) is responsible for the generation

of photons at frequencyω1 by scattering of the pump beam with the population grating
generated between the probe and signal beams. Studying the propagation of the FWM
signal beam, as a fundamental part of this investigation, is made difficult by the way
these three equations are coupled. For the case where the intensity of the probe beam

is very small, and can be treated perturbatively to first order, the term Ψ̃
(2,3)
1 (ω1, z) is

zero, thus allowing the pump beam to be absorbed only along the z-axis and no coupling
process regenerates its intensity. Based on this approximation and the symmetry breaking,
the solution problem of Equations (55)–(57) persists given the z-dependence of both the
absorption coefficients α̃2(ω2, z) and α̃3(ω3, z), this is: α̃j(ωj, z) = α̃j(ωj, Ẽ1(z))(j = 2, 3),

as well as the coupling function Ψ̃
(1,1)
2 (ω2, z) and Ψ̃

(1,1)
3 (ω3, z) through the z-variation of

the strong intensity beam, this is, Ψ̃
(1,1)
j (ωj, z) = Ψ̃

(1,1)
j (ωj, Ẽ1(z))(j = 2, 3).

By considering the pump-wave amplitude to be a constant in the optical length (z-
direction), the following is obtained:

dẼ3

dz
= −α̃3(ω3)Ẽ3 + ξ3Ẽ

∗
2 exp(i∆kzz) (61)
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dẼ
∗
2

dz
= −α̃2(ω2)Ẽ

∗
2 + ξ

∗
2Ẽ
∗
3 exp(−i∆kzz) (62)

where α̃j(ωj) =
2πωj
ηjc

Imχ(1)(ωj); ξj =
2πiωj
ηjc

χ(3)(ωj)Ẽ
2
1 and ηj = 1 + 4πReχ(1)(ωk).

In the latter, ∆kz is the z-component of the propagation vector mismatch defined as:

∆kz ≈
ω

c
[2η1 − (η2 + η3) cosσ] (63)

where σ is the angle between
→
k 1 and

→
k 2. The coefficient α̃k(ωk) is the absorption coef-

ficient at the frequency ωk for the adiabatic states |A〉, |B〉. The coefficient ξ2 and ξ3 are
the coupling parameters between the weak beams. From the definition of χ(1)(ωk) and
χ(3)(ωk), it is clear both parameters are proportional to the linear absorption coefficient α̃0,
where [48]:

α̃0 =
2π
λ

|µBA|2N
hT2

(64)

In this case, the reduced form for the optical susceptibility χ(1)(ωk) and χ(3)(ωk) are
given by:

χ(1)(ωk) =
|µBA|2N

h
Bk and χ(3)(ωi) =

N|µBA|2

hẼ
2
1

κi, (65)

B3 =
iρ̃dc

D
2L3


Γ1(∆) + 2

∣∣∣Ω̃1

∣∣∣2( 1
L∗2

+ 1
L∗1

)
Γ1(∆) + 2

∣∣∣Ω̃1

∣∣∣2( 1
L∗2

+ 1
L3

)
; B∗2 =

−iρ̃dc
D

2L∗2


Γ1(∆)− 2

∣∣∣Ω̃1

∣∣∣2( 1
L1
− 1

L3

)
Γ1(∆) + 2

∣∣∣Ω̃1

∣∣∣2( 1
L∗2

+ 1
L3

)


κ3 =
−iΩ̃

2
1ρ̃

dc
D

L3


(

1
L1

+ 1
L∗2

)
Γ1(∆) + 2

∣∣∣Ω̃1

∣∣∣2( 1
L∗1

+ 1
L3

)
; κ∗2 =

iΩ̃
2
1ρ̃

dc
D

L∗2


(

1
L∗1

+ 1
L3

)
Γ1(∆) + 2

∣∣∣Ω̃1

∣∣∣2( 1
L∗2

+ 1
L3

)


B1 =
iρ̃dc

D
2L1

It is important to note that the coefficients Bj and κj carry the vibronic coupling
information through the effective Rabi frequency Ω̃1, when considering the µ̃BA transition
dipole moments of the adiabatic states. Solving the coupled Equations (61) and (62), we get:

Ẽ3(z) =
ξ3

(
Ẽ
(0)
2

)∗
2Keff

[exp(G+z)− exp(G−z)] exp(i∆kz/2) (66)

Ẽ
∗
2(z) =

(
Ẽ
(0)
2

)∗
2Keff

{(
i∆kz

2
− α2

)
[exp(G+z)− exp(G−z)]−G− exp(G+z) + G+ exp(G−z)

}
exp(−i∆kz/2) (67)

where
Keff =

1
2

[
(α2 − α3 + i∆kz)

2 + 4ξ3ξ
∗
2

]1/2
(68)

and the gain coefficient for the FWM process in the presence of the intramolecular coupling is:

G± = ±Keff −
1
2
(α2 + α3) (69)

Ẽ3(0) = 0 and Ẽ2(0) = Ẽ
(0)
2 boundary conditions were used in the derivation of

these results. Finally, the nd-FWM signal intensity is given by I = (4π/c)
∣∣∣Ẽ3(z)

∣∣∣2, where
the essential features of parametric amplification for the signal and the role of saturation,
are illustrated with this model even though an approximation has been made where the
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pump beam has a constant intensity as it passes through the optical length. It is also
important to note that the parametric and gain effects in the FWM process are mediated by
the intramolecular coupling, taken as a source at the Rabi frequencies. From eq. (66) it is
possible to obtain:∣∣∣∣∣ Ẽ3(z)

Ẽ
∗
2(z)

∣∣∣∣∣
2

= |ξ3(0)|2z2e−Ref(z)z sin2(θ)/θ2 with θ = ∆kz/2 (70)

and where f(z) = α2 + α3 − i∆k. Here, we have considered that the absorption coefficients
of the weak beams are very similar, and where 4ξ3ξ

∗
2 � (∆k)2 is satisfied.

3. Results and Discussions

The calculation was performed at the center of the nd-FWM spectrum, considering an
inhomogeneous Gaussian distribution of linewidth 800 cm−1 half width at half maximum
(HWHM), with T1 = 2.5× 10−12 s and T2 = 0.5× 10−12 s [49]. These parameters are
in good agreement with picosecond recovery dynamics and saturation measurements in
organic dye Malachite green solutions. Equation (70) represents our object of study—to
understand what happens to the intensity of the FWM signal once it crosses the optical
length. Represented in it are, not only the length, but also: (i) the intensities of the incident
beams that have generated the signal of interest, (ii) the chemical concentration of the
Malachite green solution, (iii) the very characteristics of the organic dye itself, represented
in terms of its possible intramolecular effects and the parameters that define it; (iv) angles
of incidence of the pump and probe beams, (v) how the intensity of the emerging signal
compares with the intensity of the test beam at the cell entry position and when it has
traveled a length z and mixes with the pump beam to form a grid of oscillations. Our
research purpose is to study the FWM signal propagation along the optical length and to
see how the effects of vibronic coupling affect it. We have defined the dipole moment of
the coupled states in the adiabatic basis as one of the important quantities in this analysis.

We observe in Figure 3 that the dipole moment in the adiabatic basis has hyperbolic
characteristics with clear divergences for zero values of the coupling parameter. However,
it is necessary to point out that this transition dipole makes physical sense by incorporating
intramolecular effects. According to the coupling parameter, the behavior is not very
sensitive to the cases of nullity of the permanent dipoles or equality between them.

Figure 3. Dipole moment in the adiabatic base as a function of the coupling parameter for different
cases of permanent and transition dipole moments in the diabatic base.
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We note in Figure 4a, that at weak pumping beam perturbations, expressed in terms
of the Rabi saturation frequency Ω1, the intensity of the emerging beam of the FWM signal
varies little concerning the coupling parameter. However, when the pumping intensity is
raised to the value 1 (a.u), not only does the emerging signal intensity increase considerably,
but the inversely increasing sensitivity with the value of the coupling parameter is distin-
guished in it. From Equation (70), we observe that the FWM signal intensity, normalized
with respect to the intensity value of the test beam, has explicit dependence both on the
optical length and with the ∆kz detuning, while it maintains an implicit dependence with
the structure details governed by the coupling parameter. In Equation (70) it is observed
that, as the absorption of the FWM beam as it passes through the optical length becomes
smaller, the signal intensity increases. The latter refers to the crossing of curves and the
weakening of the transition intensity due to its diagonal character between the adiabatic
states, unlike what could occur in a system of two diabatic states, where the transition
occurs vertically without changes in the nuclear coordinate. It is important to note that in
Equation (70), it is possible to show that the intensity of the coupling process |ξ3(0)|2 is less
than the square of the detuning ∆kz ≈ 2k1z − k2z − k3z (see Equation (63)). In Figure 4b,
we extend the result to observe the topological behavior of the FWM signal concerning
different values of coupling and saturation of part of the pumping beam. We note that the
intensity of the emerging signal along the optical path becomes higher only at low values
of the intramolecular coupling and high intensity of the pump beam. In the latter, the
saturation effect, in interaction with the molecular system, causes networks of populations,
and the pump beam itself is dispersed.

Figure 4. (a) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of the squared Rabi frequency

Ω2
1 of the pump beam, for different values of intramolecular coupling ν considering an angle of

incidence between the pump and probe beams of σ = 3◦ and a fixed value for the optical length

z (b) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of both, the squared Rabi frequency Ω2
1

of the pump beam, and the intramolecular coupling parameter ν; considering an angle of incidence
between the pump and probe beams of σ = 3◦ and a fixed value for the optical length z.

It should be noted that the Rabi frequency of the pumping beam has an implicit
dependence on the coupling parameter, since the transition dipole moment chosen for the
radiation-matter interaction is calculated on the adiabatic representation associated with
the |A〉 and |B〉 states. It is also important to note that the terms related to the pump-probe
coupling processes given by |ξ3(0)|2 are taken at the optical propagation origin because
their change in optical length is very low. We selected an internal angle between the pump
and probe incident beams, of the order of of σ = 3◦ (0.0523599 radians), given the very
fast decay of the FWM signal intensity as the optical length increases, and according to
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the sin functions, such as the J-Bessell functions. We observe from Figure 4a,b, that the
dependence of the intensity of the emerging FWM signal on the intensity of the pumping
beam is greater than the linearity, which leads us to suppose that there is a slight parametric
amplification at these values of optical length and vibronic coupling, tunable with the
organic dye Malachite green chloride used in our calculations [48].

In Figure 5a, we can observe that the FWM signal intensity, as it progresses in optical
length, has a periodic pattern whose minima and maxima maintain a localized separation
at z. We observe the decrease of intensity within the period as we increase the vibronic
coupling parameter. This pattern of behavior can be demonstrated from Equation (70). In
Figure 5b, we extend the study for other vibronic coupling parameter values and different
optical length values. We observe the generalized behavior of decreasing signal intensity
as the vibronic coupling parameter increases because of reducing effective absorption of
the pumping and probe beams.

Figure 5. (a) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of the optical propagation
length z at different values of the coupling parameter ν considering an angle of incidence between the
pump and probe beams of σ = 3◦ and a fixed value of the squared Rabi frequency Ω2

1 of the pump

beam. (b) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of both the optical propagation
length z, and the coupling parameter; considering an angle of incidence between the pump and probe
beams of σ = 3◦ and a fixed value of the squared Rabi frequency Ω2

1 of the pump beam.

Here, in Figure 6a, we observe that the emerging FWM signal increases in intensity
as more energy increases in the pump-test coupling process. It is important to note that
the pattern of decreasing signal intensity is repeated in each cycle of this periodic system.
We extend the analysis through Figure 6b for longer optical length and pumping beam
intensity behaviors. The analysis is carried out keeping the incident angle value at this
optimum value and vibronic coupling parameter equal to 0.6. We choose this small value
of ν to specify that the behavior of the FWM signal maintains the periodic behavior
established in Equation (70).

In the above equation, the square module of the ratio of electric field amplitudes is
given. This ratio depends upon many factors; in particular, it depends on z. When the ratio
of these amplitudes is plotted against z, for different coupling factors, as shown in Figure 4
and, for different Rabi frequencies, as shown in Figure 5, it gives an oscillatory behavior. In
these graphics, we see that the frequency of this oscillatory behavior is independent of the
values of ν and Ω2

1. Furthermore, we set to zero the derivative of Equation (70) concerning
z and found an analytical condition for extremes. Indeed, the ratio of amplitudes has an
extreme value whenever requirement (66) is fulfilled.

z = n
π

1000|1− cosσ| (71)
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where n is an integer. If n is odd, there is a maximum, and if it is even, there is a minimum.
The condition shown in Equation (71) depends only on the angle, σ, between the wave vec-

tors
→
k 1 and

→
k 2. There is no dependence upon ν nor Ω2

1, as expected from Figures 4 and 5.
For instance, when σ = 3◦ maximums are found at z = 2.29, 6.88, 11.46, etc., and minimums
are found at z = 0.4, 4.58, 9.17, etc. In other words, through Equation (70) it is possible to es-
tablish the periodic pattern shown by the FWM signal along the optical length as a function
of both the intensity of the incident pump and in terms of the intramolecular coupling.

Figure 6. (a) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of the optical propagation

length z at different values for the squared Rabi frequency Ω2
1 of the pump beam considering

an angle of incidence between the pump and probe beams of σ = 3◦ and a fixed value of the

coupling parameter, ν. (b) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of both the

optical propagation length z, and the squared Rabi frequency Ω2
1 of the pump beam; considering

an angle of incidence between the pump and probe beams of σ = 3◦ and a fixed value of the
coupling parameter, ν.

In this curve, we appreciate that the FWM signal intensity has less than 0.6 radians
higher values as the optical length is greater. This is seen when we keep within a stable
cycle. For the selected values, and compared with Figure 5a, at values of ν = 0.6 the signal
grows in intensity. However, when we propagate the signal along the optical length, we
observe a decay as the pump-probe incidence angle becomes larger, demonstrating that the
∆kz detuning becomes smaller as the angle becomes smaller. The continuous bouncing is a
consequence of the dependence of the FWM signal intensity on this detuning through the
θ = ∆kzz/2 magnitude defined above.

In Figure 7, we extend our results of normalized FWM signal behavior as a function of
optical length and incidence angles between the pumping and probe beams. We observe
that at sigma values close to the optimal value of∼ 0.0524 radians, the FWM signal intensity
has a maximum for the selected value of z. We select a saturation value of (0.25)2 and a
fixed value of the intramolecular coupling parameter. We note, however, that the maximum
intensity value is reached for spatial ∆kz detuning values close to zero. Experimentally,
being in this near-zero detuning regime prevents separation of the generated FWM signal
from the incident beams correctly. Moreover, locating the signal of very low intensity,
compared to the strong intensity of the pumping, both penetrating almost in the same
region, would make the experiment very complicated to perform.
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Figure 7. (a) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of σ, the angle of incidence
between the pump and probe beams for different values of optical length z considering a fixed
value, for both the coupling parameter ν and the squared Rabi frequency Ω2

1 of the pump beam.

(b) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of both σ, the angle of incidence between
the pump and probe beams, and the optical length, z; considering a fixed value, for both the coupling
parameter ν and the squared Rabi frequency Ω2

1 of the pump beam.

We observe how the bounce of the FWM signal as the angle of incidence persists,
regardless of whether we vary the coupling parameter (Figure 8a) or the value of the
saturation intensity of the pumping beam (Figure 8b). This assertion is possible according
to Equation (70) where we can see that the decay pattern is very similar to the J-Bessell
function, and where we can see that for incidence angles greater than 1, the signal practically
disappears. However, it is convenient to point out the convenience of working with very
low coupling parameters and very high pumping intensities for a higher resolution of the
FWM signal.

Figure 8. (a) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of σ, the angle of incidence
between the pump and probe beams for different values of the coupling parameter ν; considering
a fixed value, for both the squared Rabi frequency Ω2

1 of the pump beam and the optical length, z.

(b) Normalized ratio of FWM intensities,
∣∣∣ E3

E∗2

∣∣∣2, as a function of σ, the angle of incidence between the

pump and probe beams for different values of the squared Rabi frequency Ω2
1 of the pump beam;

considering a fixed value, for both the coupling parameter ν, and the optical length z.
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4. Conclusions

In this investigation, we have developed a radiation-matter interaction model consid-
ering a two-state system and a model molecule which consists of two coupled harmonic
curves of electron energy shifted in both the energy and the nuclear coordinates. We have
also considered two vibrational states, and we have included non-adiabatic effects for this
two-state model. By developing a semi-classical model and making use of conventional
optical Bloch equations for the density matrix of the subsystem under study, we calculated
the nonlinear macroscopic polarizations corresponding to each of the representative fields
of the nondegenerate FWM signal. We studied the signal propagation effects under the
influence of the saturation effects of the incident pumping field and in the presence of
intramolecular effects. We have derived an effective transverse relaxation time T̃2 instead of
T2, to include the effect of intramolecular coupling in the model. It is important to point out
that the use of this new adiabatic basis, generated by the effects of the residual spin-orbit
Hamiltonian, allows us to define new dipole moments, considered as critical quantities in
our analysis. Finally, propagation studies indicated that, within the optical length of study,
the FWM signal shows a periodic structure in its behavior, with localized maxima and
minima, coinciding with known experimental results or with models proposed by other
authors [40,49]. The reported amplification shows that the process is tunable through the
organic dye used as a subsystem of study.
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