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Abstract: Qubit regularization is a procedure to regularize the infinite dimensional local Hilbert
space of bosonic fields to a finite dimensional one, which is a crucial step when trying to simulate
lattice quantum field theories on a quantum computer. When the qubit-regularized lattice quantum
fields preserve important symmetries of the original theory, qubit regularization naturally enforces
certain algebraic structures on these quantum fields. We introduce the concept of qubit embedding
algebras (QEAs) to characterize this algebraic structure associated with a qubit regularization scheme.
We show a systematic procedure to derive QEAs for the O(N) lattice spin models and the SU(N)

lattice gauge theories. While some of the QEAs we find were discovered earlier in the context of the
D-theory approach, our method shows that QEAs are far richer. A more complete understanding of
the QEAs could be helpful in recovering the fixed points of the desired quantum field theories.

Keywords: lattice spin models; lattice gauge theories; quantum computation/simulation; quantum
criticality

1. Introduction

Recent development in quantum technologies is making the dream of quantum com-
puting into a realistic and exciting possibility [1]. This has triggered the hope that we can
overcome the sign problem that plague Monte Carlo calculations of quantum systems [2].
The sign problem arises essentially due to the highly entangled nature of quantum states [3]
and currently limits our ability to understand real-time evolution of quantum systems and
to compute the ground state properties of fermionic matters. Overcoming these challenges
using a quantum computer could help us achieve a much deeper understanding of many
fundamental laws of the nature. Quantum simulations of physical systems using simple
models [4–13] and both abelian [14–17] and non-abelian [18–23] lattice gauge theories [24]
have already been proposed using both analog and digital quantum simulators, such
as ultracold atoms in optical lattices [25–31], trapped ions [32–34], and superconducting
circuits [35–37].

Simulating quantum field theories using a quantum computer creates its own chal-
lenges. Calculations of quantities in quantum field theories are often plagued with infinities
and a regularization procedure is necessary to even define the calculation. The word regu-
larization usually refers to a method that removes the ultraviolet infinities that arise due to
the presence of an infinite number of quantum degrees of freedom in any “small” spatial
region. In the Hamiltonian formulation, a spatial lattice often provides a non-perturbative
regularization of these ultraviolet infinities. A quantum critical point in the lattice theory
provides a way to remove the lattice artifacts and define the continuum quantum field
theory. This is due to the fact that the long distance physics of the model in the vicinity of
the correct quantum critical point are described by the renormalization group (RG) fixed
point that describes the quantum field theory.

In bosonic quantum field theories, there is yet another type of infinity, i.e., the infinite
dimensional Hilbert space at every local lattice site. Local lattice bosonic field φr and its
conjugate field πr on spatial sites r satisfy the canonical commutation relation
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[φr, πr′ ] = iδr,r′ , (1)

which can only be realized with an infinite dimensional local Hilbert space. Although
this infinity does not make calculations singular, it does create challenges for simulating
quantum field theories on a quantum computer, whose local Hilbert space is finite dimen-
sional. The procedure of regularizing this infinite dimensional local Hilbert space to a finite
dimensional one is what we call “qubit regularization”, which has been proposed as a first
step in simulating quantum field theories using a quantum computer [38–42].

Analogous with ultraviolet regularization, qubit regularization can also be accom-
plished in many ways. In fact, all lattice quantum spin models that have been studied
in condensed matter physics over the years can be considered as examples of qubit regu-
larized models due to their finite dimensional local Hilbert space. Lattice gauge theories
were also brought under this framework through the quantum link formulations many
years ago [43–45], and quantum simulation based on the quantum link models has also
been explored recently [46–49]. A different approach based on discretizing the continuous
symmetries has also been proposed [50–53]. Given the limited computational resources in
the NISQ era [54], it is crucial to explore the best qubit regularization schemes that can use
the limited resources in a clever way. Here, we believe that preserving the symmetries of the
original theory should be an important criterion during the regularization procedure, since
it may help in constructing qubit Hamiltonians within the basin of attraction of the correct
RG fixed point with the same symmetry. In addition, it is also desirable to understand
the properties of the regularized Hilbert space and learn if there are interesting hidden
mathematical structures that characterize the regularization scheme.

In the qubit-regularized Hilbert space, the bosonic field operators are also regularized
to new ones which we can denote as φQ

r and πQ
r where Q represents some regularization

scheme. These qubit-regularized fields generate a unique algebraic structure associated
with each qubit regularization scheme, which is referred to as the qubit embedding algebra
(QEA). In particular, we are interested in the regularization schemes that preserve the
symmetry of the original theory. Therefore, the part of the algebra that guarantees this
symmetry cannot change. However, the part of the algebra that is not related to the
symmetry is usually not compatible with finite dimensional Hilbert space, and therefore
is usually changed. Sacrificing the non-symmetry relations does not necessarily create
complications for qubit regularization. From a physical point of view, by preserving the
symmetries during qubit regularization at the lattice level, we are guaranteed that long
distance physics also preserves them. Since continuum quantum fields arise near fixed
points of the RG flow through RG blocking of lattice fields, the continuum operators
naturally act on the direct product of an infinite number of local lattice Hilbert spaces.
Hence, the relations that are sacrificed at the lattice level due to qubit regularization can be
recovered in the continuum limit near the correct quantum critical points.

The idea of QEA was originally developed in the D-theory approach where simple
QEAs for various quantum field theories were constructed by hand [45]. In this paper,
we develop a systematic way to derive the QEAs starting from the Hilbert space of the
traditional theory, which can be viewed as a direct sum of many irreducible representations
(irreps) of the symmetry group [55–58]. We define each qubit regularization scheme as
a projection operator PQ, which projects the original infinite dimensional space to some
finite set of irreps Q. This projection naturally preserves important algebra related to
the symmetries of the original theory. Furthermore, it also naturally defines a QEA that
depends on Q. In this work, we explicitly construct simple QEAs for O(N) lattice spin
models and SU(N) lattice gauge theories. Some of these are the same as the ones discovered
earlier in the D-theory context, but we also find new ones.

Qubit regularization is only the first step in the process of studying quantum field
theories using a quantum computer. The second step is the construction of qubit Hamiltoni-
ans that contain the correct quantum critical point where the desired continuum quantum
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field theory emerges. Finally, one must understand which of the viable Hamiltonians lead
to an efficient implementation of the associated quantum circuits. In this work, we only
focus only on the first step and leave several questions for future research. Can all desirable
quantum field theories be constructed using a fixed finite dimensional local Hilbert space?
The answer to this question is not clear and needs further research. There is strong evidence
that conformal field theories that emerge at Wilson–Fisher fixed points can be recovered
using fixed finite dimensional local Hilbert spaces [39,59,60]. We have also recently dis-
covered that some asymptotically free theories can also be recovered in this way [41]. In
fact, D-theory suggests that one can recover many traditional lattice theories with infinite
dimensional Hilbert spaces within acceptable errors, by using simple qubit regularized
models. In addition, the errors shrink exponentially fast as the size of the local Hilbert
space increases [42,45,61].

Which qubit regularized model leads to the most efficient implementation on a quan-
tum computer? This is an important question to address in the noisy intermediate-scale
quantum (NISQ) era, when large reliable quantum computers will not be available. For
example, in the context of gauge theories, can we reduce the Hilbert space dramatically by
implementing the Gauss law constraint [62,63]? However, before we can compare various
qubit regularized models, we first need to identify which models are worth comparing by
searching for those that contain the correct quantum critical point. If we can solve the qubit
regularized models directly by other methods in some parameter range, we may be able
identify those that have the correct physics. Unfortunately, the method of perturbation
theory that exists with traditional regularization schemes is not easily available for qubit
regularized models. Furthermore, qubit regularized models can suffer from sign problems
even though traditional models are free of them. Hence, classical Monte Carlo methods are
also not easily available to study qubit regularized models. On the other hand, when sign
problems are absent, quantum Monte Carlo methods similar to the ones used to solve tradi-
tional models can also be designed for qubit regularized models. Such a method led to the
discovery of a two-qubit model that reproduces the asymptotically free two-dimensional
O(3) model [41]. Methods based on tensor networks also seem promising and currently
being developed for a variety of lattice field theories [24,64].

Our paper is organized as follows: In Section 2, we develop a systematic approach
to qubit-regularize the O(N) nonlinear sigma model and show how the QEAs arise. We
fully characterize the QEAs of the O(2) model in Section 2.1 and calculate several simple
examples of QEAs for the O(3) model in Section 2.2. In Section 2.3, we extend the analysis
of the O(3) case to O(N) and show the existence of a simple QEA for any N. In Section 3,
we show how to extend our systematic approach to qubit-regularize SU(N) gauge theories.
We derive the QEA in the simplest regularization schemes for the SU(2) lattice gauge
theory in Section 3.1, for the SU(3) lattice gauge theory in Section 3.2, and generalize
these analyses to the SU(N) lattice gauge theory and discuss the physical meaning of each
element in the QEA in Section 3.3. Some other regularization schemes for SU(3) obtained
with a mathematical software package called GAP [65] are also discussed in Section 3.2.
Finally, in Section 4, we discuss the nice features of our simple regularization scheme in
SU(N) gauge theories and present some conjectures about QEAs that could emerge for
any N.

2. Lattice Spin Models

In order to understand the algebraic structure that qubit regularization imposes on
the Hilbert space of lattice field theories, it is instructive to begin with lattice spin models.
Let us consider O(N) invariant nonlinear sigma models in the Hamiltonian formalism on a
lattice. These can be described through O(N) quantum rotor models whose Hamiltonian is
given by

H =
1

2β ∑
r,a

La
r La

r − β ∑
〈r,r′〉,i

φi
rφi

r′ , (2)
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where r labels the spatial lattice sites and 〈·, ·〉 refers to nearest neighbors. Here, La
r ,

a = 1, 2, · · · , N(N− 1)/2 are the generators of the O(N) rotations, while φi
r, i = 1, 2, · · · , N

transform in the fundamental representation of O(N), i.e.,

[La
r , Lb

r′ ] = i f abcLc
rδr,r′ , [La

r , φi
r′ ] = i(Ta)i

j φ
j
r δr,r′ , (3)

where Ta is the fundamental representation of La, and f abc are structure constants of the
O(N) algebra. Since Equation (3) is dictated by the symmetry of the theory and specifies
how the fields transform under the symmetry, we will refer to an algebra of this kind as an
extended symmetry algebra.

In the traditional lattice nonlinear sigma models, φi
r are usually the position operators

on a certain homogeneous target space associated with a site r, La
r generate translations

on this target space and therefore can be viewed as momentum operators (more precisely,
when projected to the tangent spaces of the target space, La

r give the momentum operators),
and the local Hilbert space is the space of square integrable functions on this target space.
In our case, the target space is an N − 1 dimensional sphere SN−1 ∼= O(N)/ O(N − 1),
and the Hilbert spaceH is L2(SN−1). Notice that the position eigenstates simultaneously
diagonalize the φi

r operators, and we have the following relations:

[φi
r, φ

j
r′ ] = 0, ∑

i
φi

rφi
r = 1. (4)

Since the goal here is to recover O(N) invariant QFTs in the continuum limit, the
exact form of the Hamiltonian in Equation (2) is not important as long as it can be tuned
to the correct quantum critical point where the QFT emerges. In order to accomplish
this, it is important to preserve the symmetries of the theory, which in our case is the
O(N) symmetry. Therefore, it is important to preserve the extended symmetry algebras
Equation (3). On the other hand, the relations in Equation (4) are not necessary from the
perspective of symmetry. It turns out that Equations (3) and (4) can only be realized via
an infinite dimensional local Hilbert space. Therefore, Equation (4) has to be sacrificed in
order to have a finite dimensional local Hilbert space. Since QEA is a local concept, it is
independent of the site r. For this reason, in our discussions below, we will suppress this
spatial index r in the operators La

r and φi
r and simply refer to them as La and φi.

One systematic way to “qubit-regularize” the Hilbert space to a finite dimensional
one, while preserving Equation (3) is through working with the “momentum eigen-blocks”
of the Hilbert space L2(SN−1), i.e., decomposing L2(SN−1) into irreps of the symmetry
algebra O(N). From the standard results of harmonic analysis on spheres, we know that

L2(SN−1) =
∞⊕

l=0

Vl , (5)

where Vl is the space of spherical harmonics of degree l which are the momentum eigen-
blocks. Furthermore, each Vl forms an irrep of O(N) with dim Vl = (N+l−1

l )− (N+l−3
l−2 ),

which means the operators La act within each momentum eigenblock. On the other hand,
φi behave like raising and lowering operators and connect different eigen-blocks. Then, we
can choose a finite set of integers denoted by Q, and qubit-regularize the Hilbert space to

HQ :=
⊕
l∈Q

Vl . (6)

We can define a projector to this space by

PQ := ∑
l∈Q

Pl , (7)
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where Pl is a projector to Vl . Then, the operators in the truncated theory is simply defined
to be the original operators projected toHQ, i.e., La

Q := PQLaPQ and φi
Q := PQφiPQ. Since

[La, PQ] = 0, it is easy to verify that

[La
Q, Lb

Q] = i f abcLc
Q, [La

Q, φi
Q] = i(Ta)i

jφ
j
Q, (8)

i.e., the extended symmetry algebra Equation (3) is preserved. Since φi are raising and
lowering operators between different l’s and Q is a finite set, [PQ, φi] 6= 0 and thus [φi

Q, φ
j
Q]

need not vanish. We will show that La
Q, φi

Q generate a QEA that depends on the choice
of Q. To illustrate this idea more concretely, we will work out explicit examples in some
simple cases below and then extend the idea to lattice gauge theories in the next section.

2.1. O(2) Lattice Spin Model

We begin with the simplest example of the O(2) spin model on the lattice which has
been considered earlier in [17,66], but, as far as we can tell, the idea of QEA was not fully
explored. The traditional lattice theory is constructed using three operators, the angular
momentum operator L that generates O(2) transformations and the fields φ1 and φ2. The
extended symmetry algebra that replaces Equation (3) is now given by

[L, φ±] = ±φ±, (9)

where we define φ± = 1√
2
(φ1 ± iφ2). In the nonlinear realization of the traditional lattice

theory, we further impose the relations

[φ1, φ2] = 0, (φ1)2 + (φ2)2 = 1, (10)

which are not required from the symmetry perspective. These extra relations force the
Hilbert space at each lattice site to be infinite dimensional.

The idea of qubit regularization of the O(2) model is to define three new operators
LQ, φ1

Q and φ2
Q, which act on a finite dimensional local Hilbert space, satisfy the extended

symmetry algebra Equation (9), but replace the extra relations Equation (10) with something
else. To accomplish this systematically, we first construct the orthonormal “position” basis
that are eigenstates of the field operators φ1 and φ2. These are given by |θ〉, 0 ≤ θ < 2π
and satisfy

〈θ|θ′〉 = δ(θ − θ′),
∫ 2π

0
dθ |θ〉〈θ| = 1. (11)

In this basis, φ1 and φ2 are diagonal, φ1|θ〉 = cos θ|θ〉, φ2|θ〉 = sin θ|θ〉, but the “angular
momentum” operator L is not. In order to construct the qubit regularized fields LQ, φ1

Q and
φ2

Q, we have to work in the basis that naturally expresses the Hilbert space as a direct sum
of irreps of the O(2) symmetry. These are eigenstates of the angular momentum operator,
given by |k〉, k = 0,±1,±2, · · · . They are related to the position eigenstates |θ〉 through
the relation

〈θ|k〉 =
1√
2π

eikθ , (12)

i.e., |k〉 is related to |θ〉 via Fourier transform. As we will see later, in all the O(N) mod-
els and SU(N) gauge theories we are going to discuss, the relations between “position”
eigenstates and “momentum” eigenblocks can be viewed as certain generalizations of
the Fourier transform. While L is diagonal in the angular momentum basis L|k〉 = k|k〉,
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the field operators φ1 and φ2 are not. In fact, φ± act as raising and lowering operators of
angular momenta

φ±|k〉 = 1√
2
|k± 1〉, (13)

for all values of k.
We can now qubit-regularize our theory by projecting the traditional Hilbert space to

a finite dimensional subspace using the projector

PQ = ∑
k∈Q
|k〉〈k|, (14)

where Q is a set of allowed irreps of the O(2) symmetry. We can then define LQ = PQLPQ,
φ±Q = PQφ±PQ as the qubit regularized fields. One simple choice is Q = {k | kmin ≤
k ≤ kmax}, which is a single block of consecutive integers. This implies φ+

Q |kmax〉 = 0 and
φ−Q |kmin〉 = 0. In this regularization scheme, the original infinite dimensional representation
is replaced by a d = kmax − kmin + 1 dimensional Hilbert space. It is easy to verify that the
operators LQ and φ±Q are now d× d matrices that satisfy the extended symmetry algebra
Equation (9), but not Equation (10). We can construct the operators explicitly by computing
the matrix elements:

(LQ)kk′ = 〈k|L|k′〉 = k δk,k′ , (φ±Q)kk′ = 〈k|φ±|k′〉 =
1√
2

δk,k′±1 (15)

where kmin ≤ k, k′ ≤ kmax. Starting from this matrix representation of LQ and φ±Q , we can
construct linear combinations of nested commutators until no new matrices are generated.
They form a closed Lie algebra, which is what we called the QEA. We note that in the
definition of an algebra of commutators, one usually chooses to work with traceless matrices.
In our case, the only matrix that may not be traceless is LQ. We can always shift LQ by a
proper multiple of identity to make it traceless. As we prove in Appendix A, the QEA for
Q = {k | kmin ≤ k ≤ kmax} is the Lie algebra of the SO(d) or Sp(d/2) when d is odd or
even, respectively.

What is the QEA if we choose Q to be a set of consecutive integer blocks that are
themselves not consecutive, for example, Q = {1, 2, 3, 5, 6, 7, 8}? This question is perhaps
not so interesting since it is unlikely one will choose such a complicated qubit regularization
scheme, but it is a valid mathematical question. Since φ± only connect consecutive integer
blocks, LQ and φ±Q are block diagonal. We already know when projected to each consecutive
integer block in Q, the QEA is either SO(d) or Sp(d/2), but the full QEA is not necessarily
a direct product of SO(d) and Sp(d/2) because the components can be possibly correlated.
From Goursat’s lemma [67], we know that two simple Lie groups cannot be correlated
unless they share the same Lie algebra. In our case, both SO(d) for d odd and Sp(d/2)
for d even are simple Lie groups, and the Lie groups with different d’s have different Lie
algebras, except for the accidental isomorphisms so(3) ∼= sp(1) and so(5) ∼= sp(2), whose
possible correlations can be easily ruled out numerically using a mathematical package
called GAP [65]. Therefore, we conclude that any two blocks cannot be correlated when they
have different dimensions d. What happens when two blocks have the same dimension
d? Actually, in this case, the two blocks are fully correlated because up to a shift by
identity, the generators L and φ± are always identical in the two sectors, and therefore the
commutators are also always identical. Therefore, we know two blocks are independent if
they have different dimensions, and they are fully correlated otherwise. However, can there
be any correlation among multiple blocks, even though they are pairwise independent?
This possibility can be ruled out using Serre’s Lemma [68], which states that pairwise
independence implies full independence for perfect groups, which include SO(d) and
Sp(d/2). In summary, if the distinct dimensions of the consecutive integer blocks in Q
are d1, d2, · · · , dm, where “distinct” means that if two d’s are equal, we only count them
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once, then the QEA is SO(d1)× SO(d2)× · · · × SO(dm) assuming all di’s are odd. If any
one of the di is even, we just replace the corresponding block with Sp(di/2). In the example
Q = {1, 2, 3, 5, 6, 7, 8}, the QEA would be SO(3)× Sp(2). From this example, we see clearly
that the QEA will depend on the choice of the regularization scheme Q.

2.2. O(3) Lattice Spin Model

Let us extend the above analysis to the traditional lattice O(3) spin model and explore
the corresponding QEAs. In this case, the lattice model is constructed with quantum fields
La, a = 1, 2, 3 which are the generators of the O(3) group, and φi, i = 1, 2, 3 which transform
as a vector under O(3). The extended symmetry algebra is now given by

[La, Lb] = iεabcLc, [La, φi] = iεaijφj. (16)

In the traditional lattice model, we impose the extra constraints

[φi, φj] = 0, ∑
i
(φi)2 = 1, (17)

which are not necessary from the symmetry perspective. The local Hilbert space that
realizes these relations is the space of all square integrable functions on a sphere, denoted
by L2(S2), which is infinite dimensional.

In order to qubit-regularize the O(3) model, we will need to construct operators
La

Q and φi
Q that act on a finite dimensional local Hilbert space, satisfying the extended

symmetry algebra Equation (16). To accomplish this, we first construct the orthonormal
“position” basis that are eigenstates of φi. These are given by |θ, ϕ〉, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π,
where θ and ϕ are the spherical coordinates. The position basis states satisfy

〈θ, ϕ|θ′, ϕ′〉 =
1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′),

∫
dΩ |θ, ϕ〉〈θ, ϕ| = 1. (18)

In this basis, φi are diagonal,

φ1|θ, ϕ〉 = sin θ cos ϕ|θ, ϕ〉, φ2|θ, ϕ〉 = sin θ sin ϕ|θ, ϕ〉, φ3|θ, ϕ〉 = cos θ|θ, ϕ〉, (19)

but not the “angular momentum” operators La. In order to construct La
Q and φi

Q, we
work in the basis that expresses the original Hilbert space as a direct sum of irreps of the
O(3) symmetry group. These are the angular momentum eigenstates labeled by |`, m〉,
` = 0, 1, 2, · · · and −` ≤ m ≤ `. They form a complete orthonormal basis,

〈`, m|`′, m′〉 = δ``′δmm′ ,
∞

∑
`=0

`

∑
m=−`

|`, m〉〈`, m| = 1. (20)

and can be related to the position basis through the relation

〈θ, ϕ|`, m〉 = Ym
` (θ, ϕ), (21)

where Ym
` (θ, ϕ) are the usual spherical harmonics. While La are block diagonal in the angu-

lar momentum basis, φi are vector operators that mix ` with `± 1. To understand how, it is
convenient to combine φ1 and φ2 into raising and lowering operators φ± = 1√

2
(φ1 ± iφ2).

Using the Wigner–Eckart theorem, we can show that

∓φ±|`, m〉 = r`+1,`c±1 |`+ 1, m± 1〉+ r`,`c±0 |`, m± 1〉+ r`−1,`c±−1|`− 1, m± 1〉,
φ3|`, m〉 = r`+1,`c3

1|`+ 1, m〉+ r`,`c3
0|`, m〉+ r`−1,`c3

−1|`− 1, m〉, (22)
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where r`,`′ are the reduced matrix elements given by

r`+1,` =

√
`+ 1

2`+ 3
, r`,` = 0, r`−1,` = −

√
`

2`− 1
, (23)

and c±q , c3
q, q = 0,±1 are the Clebsch–Gordan coefficients,

c±1 =

√
(`±m + 1)(`±m + 2)

(2`+ 1)(2`+ 2)
, c3

1 =

√
(`−m + 1)(`+ m + 1)

(2`+ 1)(`+ 1)
,

c±0 = ∓

√
(`∓m)(`±m + 1)

2`(`+ 1)
, c3

0 =
m√

`(`+ 1)
,

c±−1 =

√
(`∓m− 1)(`∓m)

2`(2`+ 1)
, c3

−1 = −

√
(`−m)(`+ m)

(2`+ 1)`
. (24)

Using Equation (22), we can compute all matrix elements of φ± and φ3 between angular
momentum basis states.

Analogous with the O(2) case, we define PQ as a projector into a subspace of allowed
values of `’s,

PQ = ∑
`∈Q

`

∑
m=−`

|`, m〉〈`, m|. (25)

Using PQ, we can define the qubit regularized fields La
Q = PQLaPQ and φi

Q = PQφiPQ.
These fields satisfy the extended symmetry algebra Equation (16), but not Equation (17). We
can construct them explicitly as matrices once we know 〈`′, m′|La|`, m〉 and 〈`′, m′|φi|`, m〉.
The former is simply the spin-` representation of angular momentum operators, and we
just learned how to compute the latter. Let us consider two simple examples below.

As a first example, we choose Q = {0, 1}. Then, in the basis (|1, 1〉, |1, 0〉, |1,−1〉, |0, 0〉)T ,
we have

L1
Q =

1√
2


0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

, L2
Q =

1√
2


0 −i 0 0
i 0 −i 0
0 i 0 0
0 0 0 0

, L3
Q =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

. (26)

and

φ1
Q =

1√
6


0 0 0 −1
0 0 0 0
0 0 0 1
−1 0 1 0

, φ2
Q =

1√
6


0 0 0 i
0 0 0 0
0 0 0 i
−i 0 −i 0

, φ3
Q =

1√
3


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

. (27)

The commutators between the six operators La
Q and φi

Q can be calculated explicitly,

[La
Q, Lb

Q] = iεabcLc
Q, [La

Q, φi
Q] = iεaijφ

j
Q, [φi

Q, φ
j
Q] =

1
3

iεijaLa
Q, (28)

which is a closed Lie algebra. We can define Ja
± = La

Q ±
√

3φa
Q, and then Ja

+ and Ja
− form

the Lie algebra of two commuting SU(2), which is isomorphic to the Lie algebra of SO(4).
Thus, we learn that the QEA is the Lie algebra of SO(4) when Q = {0, 1}.

A simpler qubit regularization scheme to choose would have been Q = {`}, i.e., a
single irrep of O(3). From Equation (23), we notice that r`,` = 0, which means φi

Q = 0 in
this case. Then, the QEA is simply the Lie algebra of SO(3). Qubit models constructed
within this regularization scheme will simply be quantum spin-` models. Some may find it
disturbing that φi has disappeared in this approach and so may feel that we have changed
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the physics in some fundamental way through this regularization scheme. However, in
the continuum limit, these fields can still emerge. To see this, it is important to remember
that we are only discussing the Hilbert space in the ultraviolet and the full Hilbert of the
lattice theory is much richer. By constructing an appropriate qubit Hamiltonian, we can
recover all the relevant fields of the original O(3) quantum field theory at long distances
through renormalization group blocking. It is well known that we can recover the physics
of the Wilson–Fisher fixed point at the order-disorder quantum phase transition using an
appropriate quantum spin-` Hamiltonian [59].

2.3. O(N) Lattice Spin Model

We can extend the analysis of the previous two subsections to general O(N) spin
models, although a complete discussion can become progressively more complex. In
this section, we prove a simple result regarding the QEA that one obtains if we choose
Q = {0, 1} in Equation (6), i.e., the trivial and fundamental representation. From the
previous two subsections, we observe that, when N = 2, 3, for this choice of Q, the QEA is
SO(N + 1). This pattern is actually true for all N ≥ 2. Let us now give a brief argument for
this result.

The traditional Hilbert space of O(N) models is given by square integrable functions
on the (N − 1)-sphere L2(SN−1). The orthonormal “position” basis in this case is labeled
by N − 1 angles |θ1, θ2, · · · , θN−1〉 where 0 ≤ θi ≤ π for 1 ≤ i ≤ N − 2, 0 ≤ θN−1 < 2π.
They are eigenstates of φi, with eigenvalues

φ1|θ1, θ2, · · · , θN−1〉 = cos θ1|θ1, θ2, · · · , θN−1〉
φ2|θ1, θ2, · · · , θN−1〉 = sin θ1 cos θ2|θ1, θ2, · · · , θN−1〉

...

φN−1|θ1, θ2, · · · , θN−1〉 = sin θ1 · · · sin θN−2 cos θN−1|θ1, θ2, · · · , θN−1〉
φN |θ1, θ2, · · · , θN−1〉 = sin θ1 · · · sin θN−2 sin θN−1|θ1, θ2, · · · , θN−1〉. (29)

Generalizing the concept of the solid angle, we have the following uniform measure on
SN−1 parameterized by the N − 1 angles,

dΩN−1 = dθ1dθ2 · · ·dθN−1 sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 (30)

such that

〈θ1, · · · , θN−1|θ′1, · · · , θ′N−1〉 =
1

sinN−2 θ1 · · · sin θN−2
δ(θ1 − θ′1) · · · δ(θN−1 − θ′N−1),∫

dΩN−1 |θ1, θ2, · · · , θN−1〉〈θ1, θ2, · · · , θN−1| = 1. (31)

The surface area of SN−1 is given by ΩN−1 = 2πN/2

Γ(N/2) .
As before, the “angular momentum” basis states are simply the irreps of the O(N)

symmetry, and L2(SN−1) is a direct sum of these irreps given in Equation (5). We know
from the standard results from harmonics analysis on spheres that there is a one-to-one
correspondence between Vl and degree l homogeneous polynomials in RN which are
solutions to the Laplacian operator ∇2. More concretely, V0 is simply the space of constant
functions over the sphere spanned by a single state which we label as |0〉, while V1 is an N
dimensional vector space spanned by the coordinate functions on SN−1. An orthonormal
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basis of V1 can be labeled as |i〉, i = 1, 2, · · · , N, and are related to the “position” eigenstates
through the following relations:

〈θ1, θ2, · · · , θN−1|0〉 =
√

1/ΩN−1

〈θ1, θ2, · · · , θN−1|1〉 =
√

N/ΩN−1 cos θ1

...

〈θ1, θ2, · · · , θN−1|N − 1〉 =
√

N/ΩN−1 sin θ1 · · · sin θN−2 cos θN−1

〈θ1, θ2, · · · , θN−1|N〉 =
√

N/ΩN−1 sin θ1 · · · sin θN−2 sin θN−1. (32)

These are eigenstates of La, but not φi. Using these results, we can show that

〈m|φi|n〉 = 1√
N
(δm,0δn,i + δm,iδn,0). (33)

In the basis of Equation (32), we can also compute the matrix elements of La, and it is
convenient to relabel the 1

2 N(N − 1) indices a in terms of indices ij where 1 ≤ i < j ≤ N,

〈m|Lij|n〉 = −i(δm,iδn,j − δm,jδn,i). (34)

Using Equations (33) and (34), we can compute the QEA,

[Lij, Lkl ] = i(δjl Lik + δikLjl − δjkLil − δil Ljk),

[Lij, φk] = −i(δjkφi − δikφj),

[φi, φj] =
1
N

iLij. (35)

This is the Lie algebra of SO(N + 1). A curious fact of these relations is that, in the large
N limit, this Lie algebra is the same as that of the traditional theory, which can also be
understood through the Wigner–Inönü contraction [69].

3. Lattice Gauge Theories

We now turn our attention to QEAs that arise in pure lattice gauge theories without
matter fields. Consider a theory with a gauge group G, described by the Kogut–Susskind
Hamiltonian [70],

H =
N
β ∑
〈r,r′〉

(
La2

rr′ + Ra2
rr′
)
− β

2N ∑
�

(
U� + U†

�

)
(36)

where the summation is over links 〈r, r′〉 and plaquettes �. Unlike the spin models, now
the quantum degrees of freedom live on links and consist of the electric fields La, Ra,
a = 1, 2, · · · , dim G, and fundamental link operators Uij, i, j = 1, 2, · · · , N, where dim G is
the dimension of the group G, and N is the dimension of the fundamental representation
of G. This choice of Uij is natural if we wish to couple our theory to matter fields in the
fundamental representation at a later stage. As before, we have suppressed the the position
indices since they do not play a role in the qubit regularization procedure or in the QEA
that emerges.

In order to preserve the gauge symmetry, it is important that these gauge field opera-
tors satisfy the following extended symmetry algebra:

[La, Lb] = i f abcLc, [La, Uij] = Ta
ikUkj,

[Ra, Rb] = i f abcRc, [Ra, Uij] = −UikTa
kj, [La, Rb] = 0. (37)

where Ta are the generators of G in the fundamental representation. In traditional lat-
tice gauge theories, the Hilbert space again is the space of square integrable functions
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on the group manifold G, denoted as L2(G). The link operators Uij can be viewed as
“position” operators on G, while La and Ra are “momentum” operators that generate left
and right translation on G. Therefore, we further have the following relations among the
Uij operators,

[Uij, Ukl ] = 0, [Uij, U†
kl ] = 0, U†U = 1, (38)

which are analogous to the relations Equation (4) in the O(N) models. Furthermore, the
traditional Hilbert space naturally implies the relation

∑
a
(La)2 = ∑

a
(Ra)2, (39)

because, when we expand the Hilbert space in terms of irreps of the symmetry group (as
discussed below in Equation (42)), both ∑a(La)2 and ∑a(Ra)2 are the Casimir operators
labeling pairs of dual irreps. Thus, the extra relations in Equations (38) and (39) arise from
the choice of the Hilbert space and are not related to the gauge symmetry of the model. In
addition to these relations, the physical Hilbert space of the problem is much smaller and
is obtained by imposing the Gauss’ law. We will not worry about this issue here because
we are only focusing on the local Hilbert space structure, and Gauss’ law can be imposed
after qubit regularizing the Hilbert space.

Qubit regularization of gauge theories consists of defining field operators La
Q, Ra

Q

and UQ
ij that act on a finite dimensional Hilbert space but preserve the gauge invariance

by satisfying the extended symmetry algebra Equation (37). The additional relations
Equations (38) and (39) of the traditional models can be sacrificed if necessary. To accom-
plish this, let us first understand the Hilbert space structure of the traditional lattice gauge
theory. As in the spin models, we can choose a basis of “position” eigenstates |g〉, where
g ∈ G is an element of the group. They form a complete orthonormal basis of L2(G), i.e.,

〈g|g′〉 = δ(g− g′),
∫

dg|g〉〈g| = 1, (40)

where dg is the Haar measure on the group manifold. In this basis, all the link operators
Uij are diagonal,

Uij|g〉 = D f
ij(g)|g〉, (41)

where D f (g) is an N × N matrix that corresponds to the fundamental representation of g.
In order to qubit-regularize the theory while preserving gauge invariance, we have

to go from the “position” eigenstates to “momentum” eigenstates, where the infinite
dimensional local Hilbert space is decomposed into a direct sum of irreps of the symmetry
group. This can be accomplished using the Peter–Weyl theorem, which states that L2(G)
decomposes into irreps of GL × GR as [71]

L2(G) =
⊕
λ∈Ĝ

Vλ ⊗V∗λ , (42)

where Ĝ denotes the set of irreps of G. Furthermore, the Peter–Weyl theorem also tells us
that the space labeled the irrep λ is spanned by the orthonormal basis |Dλ

ij〉,

〈Dλ
ij |Dλ′

kl 〉 = δλλ′δikδjl , ∑
λ∈Ĝ

∑
i,j
|Dλ

ij〉〈Dλ
ij | = 1, (43)

and are related to the “position” eigenstates by

〈g|Dλ
ij〉 =

√
dλDλ

ij(g), (44)
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where Dλ(g) is the matrix representation of g in the irrep λ, and dλ is the dimension of the
representation λ. For example, the state |0〉 in the trivial representation satisfies 〈g|0〉 = 1.
The operators La and Ra are block diagonal in this basis with matrix elements

〈Dλ
ij |La|Dλ

kl〉 = (Ta
λ)ikδjl , 〈Dλ

ij |Ra|Dλ
kl〉 = −(T

a
λ)l jδik, (45)

where Ta
λ are the corresponding generators of G in the representation λ. On the other hand,

when Uij acts on |Dλ
ij〉, states in other irreps are generated. This can be understood by

noting that

Ukl |Dλ
ij〉 =

∫
dg
√

dλDλ
ij(g)D f

kl(g)|g〉, (46)

where Dλ
ij(g)D f

kl(g) is an element in the tensor product representation λ⊗ f . In the case of
G = SU(N), we know that all irreps can be labeled by the Young diagrams. In particular,
the fundamental representation N is labeled by a single box , and λ⊗ f decomposes into
irreps that correspond to adding a single box to the Young diagram of λ.

In order to qubit-regularize the theory, we will project the full Hilbert space given in
Equation (42) to a finite dimensional one that only contains some of the irreps λ. While
there are many choices, let us focus on a simple regularization scheme by choosing only
the anti-symmetric representations,

Q = {N,
∧2

N, · · · ,
∧N

N ∼= 1}, (47)

where
∧k N is the irrep corresponding to Young diagrams with k boxes arranged in a single

column. All the other representations will be projected out. The action of U on such a
regularized Hilbert space has a simple form and is shown diagrammatically in Figure 1.

...

... N

×
×

Figure 1. A simple qubit regularizarion scheme for the SU(N) gauge theory by keeping only the
anti-symmetric representations. In this scheme, when U acts on an irrep by adding a single box,
only the irrep with a single column is kept, and the other is discarded (shown as a crossed-out
irrep in the figure). Therefore, in this scheme, U acts as a cyclic permutation on the anti-symmetric
representations.

As we can see, U acts cyclically in the space of irreps because the irrep with N boxes
in a column is the trivial irrep and adding a box takes to the trivial irrep takes you back to
the irrep with a single box. This regularization scheme is particularly simple for N = 2, 3
because all matrix elements of U in the regularized space can be written as certain integrals
over SU(N) which can be evaluated simply using the invariance of the Haar measure,
without the need to perform explicit integration over the group. For example, in the case of
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SU(2), there are only two irreps in this simple regularization scheme, the singlet and the
fundamental . Then, there are two non-zero matrix elements given by

〈D f
ij|Ukl |0〉 =

√
2
∫

dgD f
ij(g)∗D f

kl(g) =
1√
2

δikδjl .

〈0|Ukl |D
f
ij〉 =

√
2
∫

dgD f
kl(g)D f

ij(g) =
1√
2

εkiε l j. (48)

In the case of SU(3), there are three irreps, the singlet, the fundamental and anti-

fundamental . In this case, we need three matrix elements:

〈D f
ij|Ukl |0〉 =

√
3
∫

dgD f
ij(g)∗D f

kl(g) =
1√
3

δikδjl ,

〈D f̄
ij|Ukl |D

f
mn〉 = 3

∫
dgD f

ij(g)D f
kl(g)D f

mn(g) =
1
2

εikmε jln,

〈0|Ukl |D
f̄
ij〉 =

√
3
∫

dgD f
kl(g)D f

ij(g)∗ =
1√
3

δkiδl j. (49)

Further details on how to evaluate the above integrals are given in Appendix B. Armed
with these results, we derive the QEAs for our simple regularization scheme in the case of
G = SU(2) and G = SU(3).

3.1. SU(2) Lattice Gauge Theory

Using the fact L2(SU(2)) = L2(S3), we expect the QEA for SU(2) lattice gauge theory
to be the same as that of the O(4) spin model when the two subspaces are regularized in
the same way. In particular, when truncated to the trivial and fundamental representations,
the QEA is expected to be SO(5). Let us derive this again here but from the perspective
of a lattice gauge theory. The local quantum fields of the traditional model are given by
La, Ra, a = 1, 2, 3 and Uij, i, j = 1, 2. Let PQ be a projector into a subspace of the irreps

PQ = ∑
λ∈Q

∑
i,j
|Dλ

ij〉〈Dλ
ij |, (50)

Using PQ, we can define the qubit-regularized fields La
Q, Ra

Q and UQ
ij as

La
Q = PQLaPQ, Ra

Q = PQRaPQ, UQ
ij = PQUijPQ. (51)

For our simple choice of qubit regularization given in Equation (47), we get Q = {2, 1}, i.e.,
the fundamental representation and the trivial representation. We can compute all the matrix
elements of La

Q, Ra
Q using Equation (45), and in the basis (|D f

11〉, |D
f
12〉, |D

f
21〉, |D

f
22〉, |0〉)T , we

get the following 5× 5 matrices:

L1
Q =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

, L2
Q =


0 0 −i 0 0
0 0 0 −i 0
i 0 0 0 0
0 i 0 0 0
0 0 0 0 0

, L3
Q =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0

, (52)

R1
Q =


0 −1 0 0 0
−1 0 0 0 0
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 0

, R2
Q =


0 −i 0 0 0
i 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

, R3
Q =


−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 0

. (53)
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Similarly, UQ
ij can be computed as 5× 5 matrices using Equation (48),

UQ
11 =

1√
2


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

, UQ
12 =

1√
2


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0

,

UQ
21 =

1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 −1 0 0 0

, UQ
22 =

1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 0 0

. (54)

Notice that UQ†
11 = UQ

22 and UQ†
12 = −UQ

21, which means that UQ†
ij are not an independent

operators. These relations arise due to the fact that the fundamental representation of SU(2)
is self-dual. It can be checked directly that La

Q, Ra
Q and the independent Hermitian matrices

constructed using UQ
ij form SO(5) algebra, as we already mentioned at the beginning of

this section. As we will see below, this algebra is different from the more general pattern
followed by SU(N) gauge theories with N ≥ 3 because the fundamental representation of
SU(N ≥ 3) is not self-dual.

3.2. SU(3) Lattice Gauge Theory

We can extend the above calculations to SU(3) lattice gauge theory, which is interesting
from the perspective of QCD and is already being explored on a quantum computer [62].
In this case, PQ is again of the form

PQ = ∑
λ∈Q

∑
i,j
|Dλ

ij〉〈Dλ
ij |, (55)

where, instead of Equation (47), we first choose the simpler case Q = {1, 3}, i.e., the trivial
representation and the fundamental representation. In this case, qubit-regularized Hilbert
space is ten-dimensional with basis states

(|D f
11〉, |D

f
12〉, |D

f
13〉, |D

f
21〉, |D

f
22〉, |D

f
23〉, |D

f
31〉, |D

f
32〉, |D

f
33〉, |0〉)

T . (56)

Again using Equation (45), we can compute all matrix elements of La
Q, Ra

Q in this ten-
dimensional space, which can be written compactly as

La
Q = λa ⊗ 13 ⊕ 0, Ra

Q = −13 ⊗ λ∗a ⊕ 0, (57)

where λa, a = 1, · · · , 8 are Gell–Mann matrices. Similarly, UQ
ij can also be constructed as

10× 10 matrices using Equation (49). Using GAP, we can show that La
Q, Ra

Q, UQ
ij and UQ†

ij
generate the SU(10) algebra. In other words, starting with these 34 matrices, we generate
65 more matrices under commutation relations and obtain the 99 generators of SU(10). We
will prove this more generally for the SU(N) lattice gauge theories in the next section.

We end this section by considering two more regularization schemes. If we choose
Q = {1, 3, 3̄} and input the matrices into GAP, we find the QEA to be SU(19). A nice feature
of this regularization scheme is that UQ

ij is a cyclic raising operator in the representation
space: 1→ N→ N̄→ 1. This could be a desirable property since it is similar to that of the
traditional model. Another simple scheme is obtained if we choose Q = {3, 3̄}, where GAP
tells us that QEA is Sp(9).
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3.3. SU(N) Lattice Gauge Theory

In this section, we will generalize some of the results of SU(3) gauge theory to SU(N)
gauge theories for N ≥ 3. For example, we will show that, if we qubit-regularize an SU(N)
gauge theory with Q = {1, N}, the resulting QEA is SU(N2 + 1). We will also provide a
physical interpretation of all the elements in the Lie algebra of SU(N2 + 1).

In this case, we can label the N2 + 1 orthonormal basis states of the regularized
Hilbert space as |α〉, α = 0, 1, 2, · · · , N2, such that |0〉 denotes the state in the singlet, and
|D f

ij〉 =: |α = N(i− 1) + j〉. We also define UQ
ij =: UQ

α , where 1 ≤ α = N(i− 1) + j ≤ N2.

The result in Appendix B implies that 〈γ|UQ
α |β〉 = 1√

N
δγαδ0β, which gives

UQ
α =

1√
N

eα0, UQ†
α =

1√
N

e0α, (58)

where eαβ is an (N2 + 1)× (N2 + 1) matrix with matrix elements (eαβ)γδ = δαγδβδ. Using
this, we can show the following commutation relations:

[UQ
α , UQ

β ] = [UQ†
α , UQ†

β ] = 0, [UQ
α , UQ†

β ] =
1
N
(eαβ − δαβe00). (59)

Interestingly, we again observe that this algebra is reduced to the traditional one in
Equation (38) when N → ∞. [UQ

α , UQ†
β ] generate N4 operators, each of which is an

(N2 + 1)× (N2 + 1) matrix. The linear combinations of these operators give all trace-
less matrices within the N2 × N2 block that does not contain the singlet. More concretely,
[UQ

α , UQ†
β ] ∝ eαβ for α 6= β give all off diagonal elements in this N2 × N2 block, while

[UQ
α , UQ†

α ] − [UQ
α+1, UQ†

α+1] = eαα − e(α+1)(α+1) for α = 1, · · · , N2 − 1 gives the N2 − 1 in-
dependent traceless diagonal matrices. We denote these N4 − 1 operators which are
represented by traceless matrices within the N2 × N2 block as tαβ such that

tαβ =

{
eαβ when α 6= β,
eαα − e(α+1)(α+1) when α = β 6= N2 (60)

The Hermitian linear combinations of these matrices form the Lie algebra of SU(N2). There
is one more independent operator

EQ :=
N

N2 + 1

N2

∑
α=1

[UQ
α , UQ†

α ] =
1

N2 + 1
− e00, (61)

which is normalized such that UQ
α and UQ†

α have charges ±1 in Equation (62). EQ is
traceless and proportional to the identity in the N2 × N2 block. The 2N2 operators UQ

α and
UQ†

i , along with N4 − 1 operators tαβ and the operator EQ, form the N4 + 2N2 dimensional
Lie algebra of SU(N2 + 1).

The operator EQ is the unique element in the Lie algebra of SU(N2 + 1) that commutes
with all La and Ra, which can be argued as follows. The Hilbert space is a direct sum of the
N2 basis states |D f

ij〉 and the singlet |0〉, which are two irreps of SU(N)L × SU(N)R. Using
Schur’s lemma, we know that any element that commutes with both La and Ra must be
proportional to identity in each of the irreps. Since the generators of SU(N2 + 1) are all
traceless, there is a unique element that commutes with both La and Ra, which is nothing
but the EQ operator. Furthermore, it is easy to verify that EQ also satisfies

[EQ, UQ
ij ] = UQ

ij , [EQ, UQ†
ij ] = −UQ†

ij . (62)
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Therefore, the operator EQ can be viewed as the generator of a U(1) gauge field, and the
link operators UQ

ij and UQ†
ij carry opposite charges under this U(1) gauge field. Thus,

Q = {1, N} could also be used as a qubit regularization of a U(N) gauge theory. This is
reminiscent of the D-theory approach where SU(N) gauge threory was implemented using
the QEA of SU(2N) and again, in that regularization, there was an element similar to EQ

which could be used to construct a U(N) gauge theory also. However, the emergence of
the EQ operator is not a general property. For example, there was no such operator in
the case of the SO(5) scheme in SU(2) lattice gauge theory. We will also see that in the
SU(N2) scheme for SU(N) lattice gauge theory to be discussed below, the operator EQ

does not emerge.
Let us now understand how the N4 − 1 operators tαβ that appear in the Lie algebra of

SU(N2), transform under the SU(N)L × SU(N)R subgroup that is embedded in it. In the
operators tαβ, the index α transforms as NL⊗ N̄R, while the index β transforms as N̄L⊗NR.
Hence, together with E, the operators tαβ transform as

NL ⊗ N̄R ⊗ N̄L ⊗NR ∼= (N⊗ N̄)L ⊗ (N̄⊗N)R
∼= (adj⊕ 1)L ⊗ (adj⊕ 1)R (63)
∼= adjL ⊗ adjR ⊕ adjL ⊕ adjR ⊕ 1.

In this decomposition, adjL and adjR are nothing but La and Ra, while 1 is the EQ operator.

The remaining part adjL ⊗ adjR is exactly the way adjoint link operators Uadj,Q
ij would

transform. Thus, we also get the adjoint links for free.
In summary, we learn that the qubit regularization with the QEA SU(N2 + 1) naturally

contains the electric operators La
Q, Ra

Q and EQ, the fundamental link operators UQ
ij and

(UQ
ij )

†, and the adjoint link operators Uadj,Q
ij that are self-dual. This discussion also moti-

vates to define a qubit regularization of an SU(N) gauge theory with adjoint link operators
using an N2 dimensional Hilbert space, with the QEA of SU(N2).

4. Discussion and Conclusions

Using examples from spin models and gauge theories, in this work, we showed
that qubit regularizations are characterized by an algebraic structure referred to as the
qubit emdedding algebra (QEA). We propose to use QEA along to define the qubit reg-
ularization scheme. For example, we showed how the traditional O(N) spin model can
be qubit-regularized using the SO(N + 1) scheme. We also showed that the traditional
SU(2) gauge theory can be qubit-regularized using a SO(5) scheme, while the SU(N)
gauge theory can be qubit-regularized using a SU(N2 + 1) scheme for N ≥ 3. For N = 3,
we discovered that there are also Sp(9) or SU(19) schemes, using the mathematical soft-
ware package GAP. Based on these numerical results using GAP, we conjecture that, for
Q = {1, N,

∧2 N, · · · ,
∧N−1 N} the QEA is SU

(
(2N

N ) − 1
)
, while for Q = {N, N̄, 1} and

N ≥ 4, the QEA is SO(2N2 + 1). The latter conjecture is based on the result from the SU(3)

gauge theory that, if we choose Q = {3, 3̄, 1} and set the matrix elements 〈D f̄
ij|Ukl |D

f
mn〉 to

be zero, which vanishes for N ≥ 4, then the QEA is SO(19).
The idea of qubit regularization was introduced long ago within the D-theory

approach [43–45], but not within a systematic approach that we have adopted in our
work here. Interestingly, some of the QEAs that were proposed earlier are the same as
the ones we found here. For example, the O(N) spin models were also qubit-regularized
using the QEA of SO(N + 1) in [45]. Even the qubit regularization of the SU(2) gauge
theory using the QEA of SO(5) was known earlier [43]. The representation proposed in
the D-theory approach was a four-dimensional spin representation of SO(5), i.e., Sp(2),
while the one we naturally found here from the traditional model is the five-dimensional
fundamental representation. This is yet another important feature of QEA to keep in
mind—the QEA alone does not fully determine the qubit regularization, we also need to
specify the representation of the QEA that is used to construct the quantum fields.
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In the D-theory approach, SU(N) lattice gauge theories for N ≥ 3 were qubit-
regularized using the QEA of SU(2N) in the fundamental representation. On the other
hand, in our work, we found regularization schemes with QEA of SU(N2 + 1) in the
fundamental representation. Interestingly, in both of these regularization schemes, there
is an additional operator EQ that generates U(1) gauge transformations, which means
that the same QEAs can also be used to regularize a U(N) lattice gauge theory. Since the
QEA is a closed algebra which always contains the sub-algebra of SU(N)L × SU(N)R, all
operators in the QEA form irreps of SU(N)L × SU(N)R. The presence of EQ in the QEA
depends on whether there is an operator in the QEA that transforms as a singlet under
SU(N)L × SU(N)R. We also showed how, in our SU(N2 + 1) regularization scheme, the
adjoint link operators are also generated naturally, and in a gauge theory with only adjoint
link operators, we can simply regularize the theory with the SU(N2) scheme. In this case,
no new operators are generated.

A significant distinction between the regularization schemes discussed in this paper as
compared to earlier schemes [43–45] is that the relation ∑a(La)2 = ∑a(Ra)2 in Equation (39)
is preserved in the former but not in the latter. In traditional lattice gauge theories, this
relation arises from the fact that both ∑a(La)2 and ∑a(Ra)2 are Casimir operators which
label the representations in Equation (42) and they are equal. Our regularization scheme
preserves this structure of the irreps naturally, but not the quantum link model. Further
studies are necessary to understand whether this difference is important to recover the
asymptotically free fixed point.
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Appendix A. Proof of the QEAs for the O(2) Model

Let us formulate the result as the following theorem:

Theorem A1. Let φ+
d and φ−d be the d× d upper shift matrix and lower shift matrix, respectively,

i.e., (φ±d )ij = δi±1,j, where 1 ≤ i, j ≤ d. Let gd be the Lie algebra generated by φ+
d and φ−d over

https://mathoverflow.net/users/26635/paul-levy
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C. Let Jd = (−1)iδi,d+1−i be an anti-diagonal bilinear form. Then, gd is the Lie algebra of d× d
matrices that preserve the bilinear form Jd, i.e.,

g = {x ∈ gl(d,C)|xT Jd + Jdx = 0}. (A1)

In particular, since Jd is symmetric (anti-symmetric) when d is odd (even), we know gd
∼= so(d,C)

(gd
∼= sp(d,C)) when d is odd (even).

Proof. Let us assume that d is odd, and the case of d being even can be proved in a similar
way. It is easy to check that φ±T

d Jd + Jdφ±d = 0. Therefore, gd ⊂ so(d,C). In order to show
gd
∼= so(d,C), we use induction over d. When d = 3, we have

h3 := [φ+
3 , φ−3 ] =

1 0 0
0 0 0
0 0 −1

. (A2)

Clearly, φ+
3 , φ−3 , h3 are independent of each other, and therefore dimC(g3) ≥ 3. Since

dimC(so(3,C)) = 3, we know that g3 ∼= so(3,C).
Now, assuming gd−2

∼= so(d− 2,C), let us consider the case for d. In this case, we have

hd := [φ+
d , φ−d ] =

1 0 0
0 0d−2 0
0 0 −1

 (A3)

and

φ+
d + [φ+

d , hd] =

0 0 0
0 φ+

d−2 0
0 0 0

, (A4)

φ−d − [φ−d , hd] =

0 0 0
0 φ−d−2 0
0 0 0

. (A5)

Therefore, we see that gd ⊃ so(d− 2,C) using the induction hypothesis. We will complete
the proof using the root system of so(d,C). In order to do so, we need to first determine
the Cartan subalgebra of so(d,C), which can be chosen to be

hi
d := eii − ed+1−i,d+1−i, (A6)

where eij is an d× d matrix with 1 at the ij position and zero everywhere else. From this
definition, we can see that h1

d = hd. Then, for an element x ∈ gd which simultaneously
diagonalizes hi

d in the adjoint representation, i.e., [hi
d, x] = αix, the corresponding root

is defined to be ~α. It can be checked that [hd, φ+
d ] simultaneously diagonalizes hi

d with
eigenvalues~α = (1,−1, 0, · · · , 0)T . Together with the simple roots in so(d− 2,C), i.e.,

0
1
−1
0
...
0


,



0
0
1
−1

...
0


, · · · ,



0
...
0
0
1
−1


,



0
...
0
0
0
1


,

they form all the simple roots of so(d,C). Therefore, gd
∼= so(d,C).
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Appendix B. Some Integrals over SU(N)

In this appendix, we evaluate some integrals over SU(N) using the invariance of the
Haar measure rather than actually doing any integration explicitly, which will be useful to
determine the matrix elements of Uij in the main text. Let us again formulate the results in
the following theorem:

Theorem A2. Let D f (g) be an N × N matrix corresponding the fundamental representation of
g ∈ SU(N). Let dg be the Haar measure over the group SU(N). Then, we have the following
identities: ∫

dgD f
ij(g)∗D f

kl(g) =
1
N

δikδjl , (A7)∫
dgD f

ii j1
(g)D f

i2 j2
(g) · · ·D f

iN jN
(g) =

1
N!

εi1i2···iN ε j1 j2···jN . (A8)

Proof. The key observation in the proof is that the permutation matrices are in the group
O(N). In particular, all even permutations are in the group SO(N) and hence SU(N),
while, for odd permutations, upon changing one element from 1 to −1, they are also in
the group SU(N). Therefore, for σ and τ being even permutations, we have D f (σgτ−1) =

D f (σ)D f (g)D f (τ−1), and thus D f
ij(σgτ−1) = D f

σ(i)τ(j)(g).

First, let us focus on the integral Equation (A7). We know that tr D f (g)†D f (g) = N is
a constant function on SU(N). Therefore,

N =
∫

dg tr D f (g)†D f (g) = ∑
ij

∫
dgD f

ji(g)†D f
ij(g) = ∑

ij

∫
dgD f

ij(g)∗D f
ij(g). (A9)

Now, for some fixed i, j, let us choose two even permutations σ and τ that satisfy σ(i) = 1
and τ(j) = 1. Then, by changing the integration variable g 7→ σgτ−1, we have∫

dgD f
ij(g)∗D f

ij(g) =
∫

d(σgτ−1)D f
ij(σgτ−1)∗D f

ij(σgτ−1)

=
∫

d(σgτ−1)D f
σ(i)τ(j)(g)∗D f

σ(i)τ(j)(g) (A10)

=
∫

dgD f
11(g)∗D f

11(g),

where in the last line we replaced dσgτ−1 by dg using the invariance of the Haar measure.
Therefore, we have∫

dgD f
ij(g)∗D f

ij(g) =
1

N2 ∑
ij

∫
dgD f

ij(g)∗D f
ij(g) =

1
N

. (A11)

Since different matrix coefficients are orthogonal with respect to the integration over SU(N),
we arrive at the result Equation (A7).

Now, let us prove Equation (A8). Similarly, we have det D f (g) = 1 as a constant
function on SU(N). Therefore,

1 =
∫

dg det D f (g) = ∑
σ∈SN

∫
dg sgn(σ)D f

1σ(1)(g) · · ·D f
Nσ(N)

(g). (A12)

Again, we use the fact that the group SU(N) includes all even permutations. Let τ be
an even permutation, and change the integration variable g 7→ gτ−1, we have
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∫
dg sgn(σ)D f

1σ(1)(g) · · ·D f
Nσ(N)

(g) =
∫

d(gτ−1) sgn(σ)D f
1σ(1)(gτ−1) · · ·D f

Nσ(N)
(gτ−1)

=
∫

dg sgn(σ)D f
1τ◦σ(1)(g) · · ·D f

Nτ◦σ(N)
(g) (A13)

where again we have used the invariance of the Haar measure. Then, if σ is an even
permutation, we can choose τ ◦ σ = (1), while, if σ is an odd permutation, we can choose
τ ◦ σ = (12), where we have used the cycle notation for permutations. Therefore,∫

dg(D f
11(g)D f

22(g)− D f
12(g)D f

21(g))D f
33(g) · · ·D f

NN(g) =
2

N!
. (A14)

Now, let us consider an element h ∈ SU(N) of the form h = iσ2 ⊕ 1N−2. This element has
the property that D f

i2(gh−1) = D f
i1(g) and D f

i1(gh−1) = −D f
i2(g), while all the other matrix

elements D f
ij(g) are unchanged. Using this relation, we can show that

∫
dgD f

11(g)D f
22(g) · · ·D f

NN(g) = −
∫

dgD f
12(g)D f

21(g) · · ·D f
NN(g) =

1
N!

, (A15)

which implies ∫
dgD f

1σ(1)(g) · · ·D f
Nσ(N)

(g) =
1

N!
sgn(σ). (A16)

Finally, from the weight vectors of the fundamental representation and its dual repre-
sentation of SU(N), we see that the decomposition of D f

ii j1
(g)D f

i2 j2
(g) · · ·D f

iN jN
(g) into

irreducible components contains a trivial representation only if all the i’s are distinct and
all the j’s are distinct. Therefore, we can write the result compactly as Equation (A8).

These formulas can be checked explicitly in the case of SU(2) and SU(3). A parame-
terization of SU(2) is given

D f =

(
cos θ eiφ sin θ eiψ

− sin θ e−iψ cos θ e−iφ

)
, (A17)

where θ ∈ [0, π
2 ], φ ∈ [0, 2π) and ψ ∈ [0, 2π), and the Haar measure on it is 1

2π2 sin 2θdθdφdψ.
The parameterization and Haar measure of SU(3) can be found in [72].

Now, let |D f 〉 be the normalized vector corresponding to D f ; then, schematically, we
have the following matrix elements of U when they are non-zero,

〈D f |U|0〉 = 1√
N

, (A18)

〈D f ∗|UN−2|D f 〉 = ± 1
(N − 1)!

, (A19)

which are what we used in the main text.
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