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Abstract: The main purpose of this article is to introduce the new subclass of analytic functions whose
coefficients are Borel distributions in the Janowski domain. Further, we investigate some useful
number of properties such as Fekete–Szeg ö inequality, necessary and sufficient condition, growth and
distortion approximations, convex linear combination, arithmetic mean, radii of close-to-convexity
and starlikeness and partial sums, followed by some extremal functions for this defined class. The
symmetry properties and other properties of the subclass of functions introduced in this paper can be
studied as future research directions.
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1. Introduction and Motivation

Let A0 represent the collections of analytic functions f inside open unit disc D =
{ξ ∈ C : |ξ| < 1} with normalized form

f (ξ) = ξ +
∞

∑
n=2

anξn, ξ ∈ D. (1)

Moreover, as indicated by S , a subclass ofA0 consists of all functions that are univalent
inside open unit disc D. A set Λ ⊂ C is called starlike with respect to origin if, for any point
in set Λ, the line segment joining origin to that point lies inside Λ.

A function f ∈ A0 and maps D to a starlike region is called starlike functions and the
class of such functions is denoted by S∗. Analytically, a function f ∈ A0 is called starlike
function if

<
(

ξ f ′(ξ)
f (ξ)

)
> 0, (ξ ∈ D).

A set Λ ⊂ C is called convex if, for any two points, ξ1 and ξ2 in set Λ if the line
segment joining these two points lies inside Λ. A function f ∈ A0 and maps D to a convex
shaped domain is called a convex function and the class of such functions is denoted by C.
Analytically, a function f ∈ A0 is called a convex function if

<
(

1 +
ξ f ′′(ξ)

f ′(ξ)

)
> 0, (ξ ∈ D).

Since the early twentieth century, many mathematicians have been interested in
different problems involving the coefficients of functions f in a given subclass of A0.
The most important and inspiring problem, known as the Bieberbach conjecture, which
was solved by de Branges in 1984, 70 years after its formulation. Over the years, many
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interesting tasks connected with these coefficients appeared. The Fekete–Szegö functional∣∣a3 − a2
2

∣∣ is also one an important finding for the coefficients of the functions f . This
functional is further generalized as

∣∣a3 − µa2
2

∣∣ for some µ real as well as complex. Fekete
and Szegö gave sharp estimates of

∣∣a3 − µa2
2

∣∣ for a real µ and f ∈ S , the class of univalent
functions.

In Geometric Function Theory, the elementary distributions such as the Pascal, Poisson,
logarithmic, binomial and beta negative binomial, have been partially studied from a
theoretical point of view. For a detailed study, we refer the readers to [1–5].
Wanas and Khuttar [6], recently introduced the power series whose coefficients are proba-
bilities of the Borel distribution:

S(r, ξ) = ξ +
∞

∑
n=2

(r(n− 1))n−2e−r(n−1)

(n− 1)!
ξn, (ξ ∈ D; 0 < r ≤ 1).

From a well-known ratio test, the above series is convergent with the domain of
convergence of the entire complex plane.

Utilizing the above, the authors in [6] defined the linear operator Qr : A0→ A0 as:

Qr f (ξ) = f (ξ) ∗ S(r, ξ)

= ξ +
∞

∑
n=2

(r(n− 1))n−2e−r(n−1)

(n− 1)!
anξn, (2)

where the symbol ∗ specifies the Hadamard product (convolution) of two series.
Moreover, for two functions f and g analytic in D, we say that the function f is

subordinate to the function g and write this as

f ≺ g or f (ξ) ≺ g(ξ),

if there a Schwarz function w exists, which is analytic in D with

w(0) = 0 and |w(ξ)| < 1,

such that
f (ξ) = g(w(ξ)).

Furthermore, if the function g is univalent in D, then it follows that:

f (ξ) ≺ g(ξ) (ξ ∈ D)⇒ f (0) = g(0) and f (D) ⊂ g(D).

The study of operators plays an important role in Geometric Function Theory. Many
differential and integral operators can be written in terms of the convolution of certain ana-
lytic functions. It is observed that this formalism makes further mathematical exploration
easier, and also improves the understanding of the geometric and symmetric properties of
such operators. The importance of convolution in the theory of operators may easily be
understood from the work in [7–10]. Furthermore, probability is not just about flipping
coins and counting cards in a disc; it is used in a wide range of real-life areas, from insurance
to meteorology and politics to economics forecasting. For more applications, we refer the
reader to [11–15].

Motivated from all the above discussions and work from Khan et al. [16], in which
they introduced a class of analytic functions with Mittag–Leffler type Poisson distribution
in the Janowski domain, analytic functions with Mittag–Leffler type Borel distribution [17],
and the work in the articles [18,19], we now introduce a new class of analytic functions
with the help of operator (2), as follows:

S∗B(A, B) =
{

f ∈ A0 :
ξQ′r f (ξ)
Qr f (ξ)

≺ 1 + Aξ

1 + Bξ

}
(ξ ∈ D), (3)
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where −1 ≤ B < A ≤ 1.
To find the Fekete–Szegö problem, we need the following Lemma.

Lemma 1. In [20,21] Let
h(ξ) = 1 + p1ξ + p2ξ2 + . . .

is in the class P of functions of the positive real part in D, then

|pn| ≤ 1, n ≥ 1, (4)

and, for any complex number υ∣∣∣p2 − υp2
1

∣∣∣ ≤ 2 max{1, |1− 2υ|}. (5)

In particular, if υ is a real parameter, then

∣∣∣p2 − υp2
1

∣∣∣ ≤

−4υ + 2 (υ ≤ 0)

2 (0 ≤ υ ≤ 1)

4υ− 2 (υ ≥ 1).

(6)

When υ < 0 or υ > 1, equality holds true in (6) if and only if

h(ξ) =
1 + ξ

1− ξ

or one of its rotations. If 0 < υ < 1, then equality holds true in (6) if and only if

h(ξ) =
1 + ξ2

1− ξ2

or one of its rotations. If υ = 0, equality holds true in (6) if and only if

h(ξ) =
(

1 + ρ

2

)
1 + ξ

1− ξ
+

(
1− ρ

2

)
1− ξ

1 + ξ
(0 ≤ ρ ≤ 1)

or one of its rotations. If υ = 1, then the equality in (6) holds true if h(ξ) is a reciprocal of one of
the functions, such that the equality holds true in the case when υ = 0.

2. Main Results

In the present paper, we evaluate Fekete–Szegö inequality, necessary and sufficient
conditions, growth and distortion bounds, radii of starlikeness and convexity, radii of
close-to-convexity and partial sums results for the newly defined class.

Theorem 1. Let f ∈ A0 be assigned to the class S∗B(A, B). Then,

|a2| ≤
A− B

Λ2
, (7)

|a3| ≤
A− B

Λ3
max{1, |2B− A|}. (8)

Additionally, for a complex number λ,∣∣∣a3 − µa2
2

∣∣∣ ≤ A− B
Λ3

max{1, |Ψ(λ, A, B)− 1|}, (9)
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where
Ψ(λ, A, B) =

Λ3

Λ2
2

[
2Λ2

2(1 + 2B− A) + λ(A− B)
]
,

and
Λn = (r(n− 1))n−2e−r(n−1).

Furthermore, for a real parameter λ,

∣∣∣a3 − λa2
2

∣∣∣ ≤


A−B
Λ3

(1−Ψ(λ, A, B)) (λ < σ1)

A−B
Λ3

(σ1 ≤ λ ≤ σ2)

A−B
Λ3

(Ψ(λ, A, B)− 1) (λ > σ2),

(10)

where
Ψ(λ, A, B) =

Λ3

Λ2
2

[
2Λ2

2(1 + 2B− A) + λ(A− B)
]
, (11)

σ1 = −
2Λ2

2(1 + 2B− A)

(A− B)

and

σ2 =
2Λ2

2(1−Λ3(1 + 2B− A))

Λ3(A− B)
.

Proof. We begin by showing that the inequalities (7)–(10) hold true for f ∈ S∗B(A, B).
Since f ∈ S∗B(A, B), therefore, we have the following subordination:

ξQ′r f (ξ)
Qr f (ξ)

≺ 1 + Aξ

1 + Bξ
(12)

The above subordination can also be written as:

ξQ′r f (ξ)
Qr f (ξ)

=
1 + Aw(ξ)

1 + Bw(ξ)
= G(w(ξ)), (−1 ≤ B < A ≤ 1).

Now, w(ξ) can be written as follows:

w(ξ) =
1− h(ξ)
1 + h(ξ)

=
p1ξ + p2ξ2 + p3ξ3 + · · ·

2 + p1ξ + p2ξ2 + p3ξ3 + · · · .

Now,

G(w(ξ)) = 1 +
1
2
(A− B)p1ξ +

1
4

(
2(A− B)p2 − (1 + B)p2

1

)
ξ2 + · · · . (13)

Additionally,

ξQ′r f (ξ)
Qr f (ξ)

= 1 + Λ2a2ξ +
(

Λ3a3 −Λ2
2a2

2

)
ξ2 + ... (14)

After comparing (13) and (14), we obtain

a2 =
A− B
2Λ2

p1, (15)

a3 =
A− B
2Λ3

(
p2 −

1 + 2B− A
2

p2
1

)
. (16)
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applying (4) to (15) and (5) to (16), we obtain

|a2| ≤
A− B

Λ2
, (17)

|a3| ≤
A− B

Λ3
max{1, |2B− A|}. (18)

Additionally, from (15) and (16), we obtain∣∣∣a3 − λa2
2

∣∣∣ = A− B
2Λ3

∣∣∣p2 −Ψ(λ, A, B)p2
1

∣∣∣, (19)

where Ψ(λ, A, B) is defined in (11). Applying (5) to above (19) we obtain the required re-
sults. Additionally, for real λ applying (6) to above (19), we obtain the required results.

Theorem 2. Let f ∈ A0 is assigned to the class S∗B(A, B) if fulfils the inequlity

∞

∑
n=2

(
(1− B)n + (A− 1)

(n− 1)!

)
Λn|an| ≤ A− B, (20)

where
Λn = (r(n− 1))n−2e−r(n−1). (21)

Proof. Let f ∈ S∗B(A, B). Then, one can put (3) in the form of Schwarz function w(ξ), as

ξQ′r f (ξ)
Qr f (ξ)

=
1 + Aw(ξ)

1 + Bw(ξ)
(ξ ∈ D). (22)

Alternately, and equivalently,∣∣∣∣ ξQ′r f (ξ)−Qr f (ξ)
AQr f (ξ)− BξQ′r f (ξ)

∣∣∣∣ < 1.

Consider the following, and put |ξ| = t∣∣∣∣ ξQ′r f (ξ)−Qr f (ξ)
AQr f (ξ)− BξQ′r f (ξ)

∣∣∣∣
=

∣∣∣∣∣∣ ∑∞
n=2

(n−1)
(n−1)! (r(n− 1))n−2e−r(n−1)anξn

(A− B)ξ + ∑∞
n=2

(A−Bn)
(n−1)! (r(n− 1))n−2e−r(n−1)anξn

∣∣∣∣∣∣
≤

∑∞
n=2

(n−1)
(n−1)! (r(n− 1))n−2e−r(n−1)|an|tn−1

(A− B)−∑∞
n=2

(A−Bn)
(n−1)! (r(n− 1))n−2e−r(n−1)|an|tn−1

< 1,

By letting t → 1 and performing a simple computation, we obtain the desired in-
equlity (20).

Example 1. For the function

f (ξ) = ξ +
∞

∑
n=2

(n− 1)!(A− B)
[(1− B)n + (A− 1)]Λn

tnξn, ξ ∈ D,
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such that ∑∞
n=2 tn = 1, we have

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an|

=
∞

∑
n=2

[(1− B)n + (A− 1)]Λn

(n− 1)!

(
(n− 1)!(A− B)

[(1− B)n + (A− 1)]Λn
tn

)
= (A− B)

∞

∑
n=2

tn = (A− B).

Thus, f (ξ) ∈ S∗B(A, B), and the approximation (20) is sharp.

Corollary 1. Let f ∈ S∗B(A, B) and be of the form (1). Then,

|an| ≤
(n− 1)!(A− B)

[(1− B)n + (A− 1)]Λn
, for n ≥ 2, (23)

where Λn is defined in (21). In addition, the approximation is sharp for function

f (ξ) = ξ − (n− 1)!(A− B)
[(1− B)n + (A− 1)]Λn

ξn, for n ≥ 2. (24)

Proof. The proof is quite straightforward, and left for the reader.

Theorem 3. A function f ∈ A0 assigned to the class S∗B(A, B). Then

r− (A− B)
(1 + 2B− A)Λ2

r2 ≤ | f (ξ)| ≤ r +
(A− B)

(1 + 2B− A)Λ2
r2. (25)

The approximation is sharp for functions defined as follows:

f (ξ) = ξ − (A− B)
(1 + 2B− A)Λ2

ξ2. (26)

Proof. Consider

| f (ξ)| =

∣∣∣∣∣ξ + ∞

∑
n=2

anξn

∣∣∣∣∣
≤ |ξ|+

∞

∑
n=2

an|ξ|n

= r +
∞

∑
n=2

an|r|n,

since, for |ξ| = r < 1, we have rn < r2 for n ≥ 2 and

| f (ξ)| ≤ r + r2
∞

∑
n=2
|an|. (27)

Comparably,

| f (ξ)| ≥ r− r2
∞

∑
n=2
|an|. (28)

Now, from (20), implying that

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an| ≤ A− B.
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However,

∞

∑
n=2

(1 + 2B− A)Λ2|an|

≤
∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an| ≤ A− B,

which gives
∞

∑
n=2

an ≤
(A− B)

(1 + 2B− A)Λ2
.

Applying this inequality to the above inequalities (27) and (28), we obtain the
desired result.

Theorem 4. A function f ∈ A0 assigned to the class S∗B(A, B). Then,

1− 2(A− B)
(1 + 2B− A)Λ2

r ≤
∣∣ f ′(ξ)∣∣ ≤ 1 +

2(A− B)
(1 + 2B− A)Λ2

r. (29)

The result is sharp for the extreme function defined in (26).

Proof. The proof is quite similar to Theorem 3, and therefore it was omitted.

Theorem 5. Let fi ∈ S∗B(A, B) and have of the from

fi(ξ) = ξ +
∞

∑
n=2

ai,nξn, for i = 1, 2, 3, ..., k. (30)

Then, H ∈ S∗B(A, B), where

H(ξ) =
k

∑
i=1

ci fi(ξ) with
k

∑
i=1

ci = 1. (31)

Proof. In light of Theorem 2, we can write

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an| ≤ A− B.

Additionally,

H(ξ) =
k

∑
i=1

ci

(
ξ +

∞

∑
n=2

ai,nξn

)

= ξ +
∞

∑
n=2

(
k

∑
i=1

ciai,n

)
ξn,

therefore,

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn

∣∣∣∣∣ k

∑
i=1

ciai,n

∣∣∣∣∣
=

k

∑
i=1

[
∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|ai,n|
]

ci

≤
k

∑
i=1

(A− B)ci = (A− B)
k

∑
i=1

ci = A− B,



Symmetry 2022, 14, 322 8 of 13

thus H(ξ) ∈ S∗B(A, B).

Theorem 6. Let fi ∈ S∗B(A, B), for i = 1, 2, ..., j. Then, the arithmetic mean G of fi is given by

G(ξ) = 1
j

j

∑
n=1

fi(ξ), (32)

and also belongs to class S∗B(A, B).

Proof. From (32), we can write

G(ξ) =
1
j

j

∑
n=1

fi(ξ)

=
1
j

j

∑
n=1

(
ξ +

∞

∑
n=2

aj,nξn

)

= ξ +
∞

∑
n=2

(
1
j

j

∑
n=1

aj,n

)
ξn,

to show that G(ξ) belongs to S∗B(A, B), it is enough to show that

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn

(
1
j

j

∑
n=1

∣∣aj,n
∣∣) ≤ A− B.

Consider

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn

(
1
j

j

∑
n=1

∣∣aj,n
∣∣)

=
1
j

j

∑
n=1

(
∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn
∣∣aj,n

∣∣)

≤ 1
j

j

∑
n=1

(A− B) = (A− B),

this shows that G(ξ) belongs to S∗B(A, B).

Theorem 7. Let f ∈ S∗B(A, B), then f is in a class of starlike functions of the order β (0 ≤ β < 1)
for |ξ| < r∗, where

r∗ = inf
n≥2

(
(1− β)[(1− B)n + (A− 1)]

(n− 1)!(n− β)
Λn

) 1
n−1

.

The result is sharp for the extreme function defined in (24).

Proof. Let f ∈ S∗B(A, B). To prove f is in a class of starlike functions of the order β, it is
enough to show that ∣∣∣∣ ξ f ′(ξ)

f (ξ)
− 1
∣∣∣∣ < 1− β.

Using routine simplifications, we obtain

∞

∑
n=2

(
n− β

1− β

)
|an||ξ|n−1 < 1. (33)
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Since f ∈ S∗B(A, B), from (20), we have

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an| < 1. (34)

Inequality (33) will hold true if the following holds true:

∞

∑
n=2

(
n− β

1− β

)
|an||ξ|n−1

<
∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an|,

which implies that

|ξ|n−1 <

(
(1− β)[(1− B)n + (A− 1)]

(n− 1)!(n− β)
Λn

)
,

|ξ| <

(
(1− β)[(1− B)n + (A− 1)]

(n− 1)!(n− β)
Λn

) 1
n−1

,

thus, we obtain the required result.

Theorem 8. Let f ∈ S∗B(A, B), then f is in a class of close-to-convex functions of the order β

(0 ≤ β < 1) for |ξ| < r∗1 , where

r∗1 = inf
n≥2

(
(1− β)[(1− B)n + (A− 1)]

n!
Λn

) 1
n−1

.

Proof. Let f ∈ S∗B(A, B). To prove f is in a class of close-to-convex functions of the order
β, it is enough to show that ∣∣ f ′(ξ)− 1

∣∣ < 1− β.

Using routine simplifications, we obtain

∞

∑
n=2

n
1− β

|an||ξ|n−1 < 1. (35)

Since f ∈ S∗B(A, B), from (20), we have

∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an| < 1. (36)

Inequality (33) will hold true if the following holds true:

∞

∑
n=2

n
1− β

|an||ξ|n−1

<
∞

∑
n=2

(1− B)n + (A− 1)
(n− 1)!

Λn|an|,

which implies that

|ξ|n−1 <

(
(1− β)[(1− B)n + (A− 1)]

n!
Λn

)
,

|ξ| <

(
(1− β)[(1− B)n + (A− 1)]

n!
Λn

) 1
n−1

,
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Thus, we obtain the required result.

3. Partial Sums

In 1997, Silverman [22], examined partial sum results for the class of starlike and
convex functions f diven by (1) and established through

f1(ξ) = ξ,

fm(ξ) = ξ +
m

∑
n=2

anξn, = 2, 3, 4, ....

After this, several authors investigated partial sums for different subclasses and, after
some recent investigations, we refer authors to [16,23,24].

Theorem 9. If f of the form (1) satisfies condition (20), then

<
(

f (ξ)
f j(ξ)

)
≥ 1− 1

αj+1
(∀ξ ∈ D) (37)

and

<
( f j(ξ)

f (ξ)

)
≥

αj+1

1 + αj+1
(∀ξ ∈ D), (38)

where

αj =
(1− B)n + (A− 1)
(n− 1)!(A− B)

Λn. (39)

Proof. To prove the approximation (37), we use:

αj+1

[
f (ξ)
f j(ξ)

−
(

1− 1
αj+1

)]
=

1 +
j

∑
n=2

anξn−1 + αj+1
∞
∑

n=j+1
anξn−1

1 +
j

∑
n=2

anξn−1

=
1 + ψ1(ξ)

1 + ψ2(ξ)
.

We now set:
1 + ψ1(ξ)

1 + ψ2(ξ)
=

1 + w(ξ)

1− w(ξ)
.

Then, we find after some worthy simplification, that:

w(ξ) =
ψ1(ξ)− ψ2(ξ)

2 + ψ1(ξ) + ψ2(ξ)
.

Thus, clearly, we find that:

w(ξ) =

αj+1
∞
∑

n=j+1
anξn−1

2 + 2
j

∑
n=2

anξn−1 + αj+1
∞
∑

n=j+1
anξn−1
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By implementation of the triangle inequalities with |ξ| < 1, we reached the following
inequality:

|w(ξ)| ≤
αj+1

∞
∑

n=j+1
|an|

2− 2
j

∑
n=2
|an| − αj+1

∞
∑

n=j+1
|an|

.

We can now see that:
|w(ξ)| ≤ 1

if and only if

2αj+1

∞

∑
n=j+1

|an| ≤ 2− 2
j

∑
n=2
|an|,

which hints that:
j

∑
n=2
|an|+ αj+1

∞

∑
n=j+1

|an| ≤ 1. (40)

Finally, to prove the inequality in (37), it suffices to show that the left-hand side of
(40) is bounded above by the following sum:

∞

∑
n=2

αn|an|,

which is equivalent to

j

∑
n=2

(αn − 1)|an|+
∞

∑
n=j+1

(
αn − αj+1

)
|an| ≥ 0. (41)

In light of (41), this is evidence that the proof of approximation in (37) is now com-
pleted.

Next, in order to prove the inequality (38), we set:

(
1 + αj+1

)( f j(ξ)

f (ξ)
−

αj+1

1 + αj+1

)
=

1 +
j

∑
n=2

anξn−1 − αj+1
∞
∑

n=j+1
anξn−1

1 +
∞
∑

n=2
anξn−1

=
1 + w(ξ)

1− w(ξ)
,

where

|w(ξ)| ≤

(
1 + αj+1

) ∞
∑

n=j+1
|an|

2− 2
j

∑
n=2
|an| −

(
αj+1 − 1

) ∞
∑

n=j+1
|an|
≤ 1. (42)

This last inequality in (42) is equivalent to

j

∑
n=2
|an|+ αj+1

∞

∑
n=j+1

|an| ≤ 1. (43)

Finally, we can see that the left-hand side of the inequality in (43) is bounded above
by the following sum:

∞

∑
n=2

αn|an|,
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so we have completed the proof of the assertion(38). This completes the proof of Theorem 9.

We next turn to ratios involving derivatives.

Theorem 10. If f of the form (1) satisfies condition (20), then

<
(

f ′(ξ)
f ′j (ξ)

)
≥ 1− j + 1

αj+1
(∀ξ ∈ D) (44)

and

<
(

f ′j (ξ)

f ′(ξ)

)
≥

αj+1

αj+1 + j + 1
(∀ξ ∈ D), (45)

where αj is given by (39).

Proof. The proof of Theorem 10 is similar to that of Theorem 9; here, we chose to omit the
analogous details.

4. Conclusions

In this paper, by making use of the well-known Borel distribution series, a new class
of analytic functions was systematically defined. Then, for this newly defined functions
class, we studied a number of well-known results, such as the Fekete–Szegö inequalities,
the necessary and sufficient conditions, the growth and distortion bounds, the radii of
close-to-convexity and starlikeness and partial sums type results. Furthermore, we believe
that this study will motivate a number of researchers to extend this idea to meromorphic
functions, bi-univalent functions, harmonic functions, q-calculus and (p, q)-calculus. One
may also apply this idea to the use sine domain, cosine domain and petal shaped domain
instead of the Janowski domain.
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