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Abstract: In the past, because computer programs were restricted to perform only simple functions,
the dependence on software was not large, resulting in relatively small losses after a failure. However,
with the development of the software market, the dependence on software has increased considerably,
and software failures can cause significant social and economic losses. Software reliability studies
were previously conducted under the assumption that software failures occur independently. How-
ever, as software systems become more complex and extremely large, software failures are becoming
frequently interdependent. Therefore, in this study, a software reliability model is developed under
the assumption that software failures occur in a dependent manner. We derive the software reliability
model through the number of software failure and fault detection rate assuming point symmetry.
The proposed model proves good performance compared with 21 previously developed software
reliability models using three datasets and 11 criteria. In addition, to find the optimal release time, a
cost model using the developed software reliability model was presented. To determine this release
time, four parameters constituting the software reliability model were changed by 10%. By comparing
the change in the cost model and the optimal release time, it was found that parameter b had the
greatest influence.

Keywords: non-homogeneous Poisson process; dependence failure; software reliability; software
reliability model; cost model

1. Introduction

Software, one of the main components of a computer, plays an important role in
the operation of physical devices. Software was originally developed with the ability to
perform extremely small or simple functions. Currently, however, embedded systems
that perform multiple functions are being developed. With the rapid development of the
software market, technology has also developed, and software is now being used in all
fields. Recently, the Internet of Things (IoT) based on the combination of various software,
has been commercialized. Furthermore, AIoT (Artificial Intelligence of Things) combined
AI (Artificial Intelligence) with IoT (Intelligence of Things) is developing [1]. It means that
software has become a very important part not only in the industrial field but also in our
daily life.

A software failure is caused by various faults (coding or system errors, etc.). In the past,
software failures caused relatively small losses because the degree of software dependence
was not as large. However, in today’s world, the degree of dependence on software is
extremely high, and thus software failures can cause significant social and economic losses.
Therefore, we measured the software reliability, which indicates the ability of a software
program to avoid failure for a set period of time and refers to how long the software can be
used without such a failure.
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Early research on software reliability was conducted based on the assumption that
software failures occur independently. Goel and Okumoto proposed the GO model, which
is the most basic non-homogeneous Poisson process (NHPP) software reliability growth
model [2]. The Hossain, Dahiya, Goel and Okumoto (HDGO) model further extended the
GO model [3]. Yamada et al., Ohba, and Zhang et al. [4–6] proposed an NHPP S-shaped
curve model in which the cumulative number of software failures increases to the S curve.
In addition, Yamada et al. [7] proposed a new model in which the test effort invested during
phase was reflected in the software reliability model. It is a model that reflects even the
resources consumed for testing in the previously developed model. Furthermore, Yamada
et al. [8] developed a software reliability model with a constant fault detection rate of
b(t) = b, assuming incomplete debugging, in which faults detected during the test phase
were corrected and removed.

The model developed by extending the above approach involved a generalized in-
complete debugging-error detection rate model. Here, the fault detection rate b(t) of the
model is not a constant but rather a different function [9–14]. It started from the software
error causing the failure being immediately eliminated and so a new error can be gen-
erated [9]. It progressed to that during the fault removal process, whether the fault is
removed successfully or not, new faults are generated with a constant probability [13,14].
In addition, because the operating environment of the software is operated differently
for each software program, a comparison is difficult to achieve. Therefore, in [15–17], a
software reliability model was developed considering uncertain factors in the operating
environment. Currently, research using non-parametric methods such as deep learning or
machine learning is also being conducted [18–21].

Recently, finding the most optimal model for reliability prediction is an important
concern. Through combination of analytic hierarchy method (AHP), hesitant fuzzy (HF) sets
and techniques for order of preference by similarity to ideal solution (TOPSIS), Sahu et al.,
Ogundoyin et al., and Rafi et al. [22–24] found the most optimal software reliability model.

However, software failures often occur in a dependent manner because the developed
software is composed of extremely complex structures [25]. Here, the dependent failure
means that one failure affects other failures or increases the failure probability of other
equipment [26,27]. There are two main types of dependent failure. A common cause failure
is when several pieces of software fail simultaneously due to a common cause, and a cas-
cading failure is a case in which a part of the system fails and affects other software as well.
A software reliability model assuming a dependent failure was developed from the number
of software failures and the fault detection rate, which have a dependency relationship in a
software reliability model assuming incomplete debugging [28]. In addition, Lee et al. [29]
presented a model that assumes that if past software failures are not corrected well, they
will continue to have an effect.

In this study, a new software reliability model is developed under the assumption that
software failures occur in a dependent manner. It is suitable for a general environment.
We show the superiority of the newly developed dependent software reliability model
through a comparison under various criteria. In addition, determining the optimal release
time of the developed software is also important. If the test period is long, the software
will be reliable, but the software development cost will increase. If the test period is short,
the reliability of the product may decrease. Therefore, it is important to find a balance
between time to market and minimum cost taking into account the installation costs, test
costs, and error removal costs, etc. We propose a cost model that combines the proposal
software reliability model and the cost coefficient [30–33]. In addition, among the various
parameters of the proposed model, we propose a parameter that has a significant influence
on predicting the number of cumulative failures through a variation in the cost model
for changes in the parameters [34,35]. Section 2 introduces a new dependent software
reliability model and its mathematical derivation. Section 3 introduces the data and criteria,
as well as numerical results. Section 4 describes the optimal release time, and finally, in
Section 5, we present our conclusions
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2. New Dependent Software Reliability Model

Software reliability refers to the probability that the software will not fail a system for
a certain period of time under certain conditions. In other words, it evaluates “how long
the software can be used without failure”. The reliability function used to evaluate this is
as follows:

R(t) = P(T > t) =
∫ ∞

t
f (u)du (1)

This denotes the probability of the software operating without failure over a specific
time t. Here, the probability density function f (t) assumes the software failure time or
lifetime as a random variable T. When measuring reliability function R(t), it is assumed
that it follows an exponential distribution with parameter λ. In addition, it is assumed
that the number of failures occurring in given unit time is a Poisson distribution with
parameter λ. When λ is a constant, it is the most basic form, and is called a homogeneous
Poisson process. Extending this process, many researchers adapt a model where λ is an
intensity function λ(t) that changes with time rather than a single constant by setting λ as a
non-homogeneous Poisson process(NHPP) rather than as a homogeneous Poisson process.

Pr{N(t) = n} = {m(t)}n

n!
e−m(t), n = 0, 1, 2, · · · , t ≥ 0 (2)

In Equation (2), N(t) is the Poisson probability density function with the time de-
pendent parameter m(t). The m(t) is a mean value function which is the integral of λ(t)
from 0 to t in Equation (3). The λ(t) is the intensity function indicating the number of
instantaneous failures at time t.

m(t) = E[N(t)] =
∫ t

0
λ(s)ds (3)

A general class of NHPP software reliability models was proposed by Equation (9) to
summarize the existing NHPP models as follows:

dm(t)
dt

= b(t)[a(t)−m(t)] (4)

where, the m(t) is calculated using the relationship between the number of failures a(t) at
each time point and a fault detection rate b(t) assuming point symmetry in Equation (4).
Various software reliability models have been developed based on the assumption that
software failures occur independently.

However, software failures occur not only independently but also dependently. If the
failure is not completely fixed, it will continue to affect the next failure. In addition, as the
system becomes more complex, the relationship between failure and failure also shows the
dependent relationship because of the dependent combination of several software. There-
fore, in this study, we assume that failure is dependent on other failures. The mean value
function m(t) based on NHPP software reliability model using the differential equation is
as follows:

dm(t)
dt

= b(t)[a(t)−m(t)]m(t) (5)

In Equation (5), the m(t) is multiplied once more to assume that the failure occurring
from 0 to t affects another failure. We assume:

a(t) = a(1 + αt), b(t) =
b

1 + ce−bt (6)

where, a(t) is the number of software failures at each time point and b(t) is the fault
detection rate. Parameter a is the expected number of faults, α is the increasing rate of
the number of faults, b is the shape parameter, and c is the scale parameter. When time
t changes, the change according to the values of parameters b and c in the fault detection
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rate b(t) are as shown in Figure 1. When b is 1, it is blue, and when it is 1.5, it is red. In
addition, when c is 1, it is a dashed line, and when it is 2, it is a dotted line. It can be seen
that the larger b is, the larger the b(t) is.
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When solving the differential equation by substituting a(t) and b(t) for m(t) in
Equations (5) and (6), we obtain Equation (7):

m(t) =

(
c + ebt

)a( c+ebt

c

)aαt
e

aαLi2(
ebt+c

c )
b

∫ (c+ebt)
a( c+ebt

c

)aαt
e

aαLi2(
ebt+c

c )
b bebt

c+ebt dt + C

(7)

where Lis(x) = ∑∞
n=1

xn

ns is a polylogarithm when s = 2. At this time, α = 0 in a(t).

m(t) =
h
(

c + ebt
)a

h
[∫ t

0
(ebx+c)

a
bebx

c+ebx dx
]
+ (1 + c)a

(8)

where h is the number of initial failures. In Equation (8),
∫ t

0
(ebx+c)

a
bebx

c+ebt dx is calculated

through an integration using substitution. When u = c + bebx and du = bebxdx, it is the
same as in Equation (9).

∫ t

0

(
ebx + c

)a
bebx

c + ebt dx =
∫ c+bebt

c+b

ua

u
du =

∫ c+bebt

c+b
ua−1du =

ua

a
=

(
c + ebt

)a

a
(9)

Substituting the result of the substitution integration into Equation (8), the final m(t)
is given by Equation (10).

m(t) =
a

1 + a
h

(
1+c

c+ebt

)a (10)

This can be presented as a general model of a dependent failure occurrence in the
software reliability model. When t = 0, m(t) is m(0) = ah/(a + h). Table 1 shows the value
of m(t) of the existing software reliability model and the model proposed in this study.
From models 19–22, it is assumed that a failure occurs in a dependent manner.
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Table 1. Software reliability models.

No. Model Mean Value Function Note

1 Goel-Okumoto (GO) [2] m(t) = a
(

1− e−bt
)

Concave

2 Hossain-Dahiya (HDGO) [3] m(t) = log

[
(ea−c)(

eae−bt−c
)
]

Concave

3 Yamada et al. (DS) [4] m(t) = a
(

1− (1 + bt)e−bt
)

S-Shape

4 Ohba (IS) [5] m(t) =
a(t1−e−bt)

1+βe−bt
S-Shape

5 Zhang et al. (ZFR) [6] m(t) = a
p−β

[
1−

(
(1+α)e−bt

1+αe−bt

) c
b (p−β)

]
S-Shape

6 Yamada et al. (YE) [7] m(t) = a
(

1− e−γα(1−e−βt)
)

Concave

7 Yamada et al. (YR) [7] m(t) = a
(

1− e−γα(1−e−βt2/2)
)

S-Shape

8 Yamada et al. (YID 1) [8] m(t) = ab
α+b

(
eαt − e−bt

)
Concave

9 Yamada et al. (YID 2) [8] m(t) = a
(

1− e−bt
)(

1− α
b
)
+ αat Concave

10 Pham-Zhang (PZ) [9] m(t) = ((c+a)[1−e−bt]−[ ab
b−α ](e−at−e−bt))

1+βe−bt
Both

11 Pham et al. (PNZ) [10] m(t) =
a(1−e−bt)(1− α

b )+αat
1+βe−bt

Both

12 Teng-Pham (TP) [11] m(t) = a
p−q

[
1−

(
β

β+(p−q) ln
(

c+ebt
c+1

)
)α]

S-Shape

13 Kapur et al. (KSRGM) [12] m(t) = A
1−α

[
1−

((
1 + bt + b2t2

2

)
e−bt

)p(1−α)
]

S-Shape

14 Roy et al. (RMD) [13] m(t) = aα
[
1− e−bt

]
−
[

ab
b−β

(
e−βt − e−bt

)]
Concave

15 Pham (IFD) [14] m(t) = a
(

1− e−bt
)(

1 + (b + d)t + bdt2) Concave

16 Pham (Vtub) [15] m(t) = N
[
1−

(
β

β+abt−1

)α]
S-Shape

17 Chang et al. (TC) [16] m(t) = N
[

1−
(

β

β+(at)b

)α]
Both

18 Song et al. (3P) [17] m(t) = N

[
1−

(
β

β− a
b ln
(

(1+c)e−bt

1+ce−bt

)
)]

S-Shape

19 Pham (DP1) [28] m(t) = α(1 + βt)
(

βt +
(

e−βt − 1
)) Concave,

Dependent

20 Pham (DP2) [28]
m(t) = m0

(
γt+1
γt0+1

)
e−γ(t−t0) +

α(γt + 1)
(

γt− 1 + (1− γt0)e−γ(t−t0)
) Concave,

Dependent

21 Lee et al. (DPF) [29] m(t) = a

1+ a
h

(
b+c

c+bebt

) a
b

S-Shape,
Dependent

22 Proposed Model m(t) = a
1+ a

h

(
1+c

c+ebt

)a
S-Shape,

Dependent

3. Numerical Examples
3.1. Data Information

Datasets 1 and 2 are derived from the online communication system (OCS) of ABC
Software Co. and uses data accumulated over a 12-week period. Datasets 1 and 2 show that
the cumulative number of failures at t = 1, 2, · · · , 12 is 14, 17, · · · , 81, and 11, 17, · · · , 81,
respectively [14]. Dataset 3 is the test data of a medical record system consisting of 188
software titles and data for one of three releases. It shows that the cumulative number
of failures is 90, 107, · · · , 204 for t = 1, 2, · · · , 17, respectively [36]. Table 2 shows
the accumulated failure data for datasets 1, 2, and 3. We compare the fit between the
software reliability models with two failure datasets obtained from OCS and one dataset
from Lee et al. [29], which showed good performance as the dependent models (DPF).
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Table 2. Cumulative number of software failure datasets.

Index
Dataset 1 Dataset 2 Dataset 3

Failures Cumulative
Failures Failures Cumulative

Failures Failures Cumulative
Failures

1 14 14 11 11 90 90
2 3 17 6 17 17 107
3 4 21 0 17 19 126
4 7 28 5 22 19 145
5 7 35 5 27 26 171
6 18 53 25 52 17 188
7 8 61 10 62 1 189
8 4 65 6 68 1 190
9 2 67 2 70 0 190

10 9 76 10 80 0 190
11 1 77 0 80 2 192
12 4 81 1 81 0 192
13 0 192
14 0 192
15 11 203
16 0 203
17 1 204

3.2. Criteria

This study compares various independent and dependent software reliability models
and the proposed model introduced Table 1 using 11 criteria. Based on the difference between
the actual observed value and the estimated value, we would like to find a better model by
comparing it with criteria reflecting the number of parameters used in each model.

First, the mean squared error (MSE) is defined as the sum of squares of the distance be-
tween the estimated value and the actual value when considering the number of parameters
and the number of observations [37].

MSE =
∑n

i=1(m̂(ti)− yi)
2

n−m
(11)

where m̂(ti) is the estimated value of the model m(t), yi is the actual observed value, n is
the number of observations, and m is the number of parameters in each model.

Second, the mean absolute error (MAE) defines the difference between the estimated
number of failures and the actual value considering the number of parameters and the
number of observations as the sum of the absolute values [38].

MAE =
∑n

i=1|m̂(ti)− yi|
n−m

(12)

Third, Adj_R2 is the modified coefficient of determination of the regression equation
and determines how much explanatory power it has in consideration of the number of
parameters [39].

R2 = 1− ∑n
i=1(m̂(ti)− yi)

2

∑n
i=1(yi − yi)

2 , Adj_R2 = 1−
(
1− R2)(n− 1)

n−m− 1
(13)

Fourth, the predictive ratio risk (PRR) is obtained by dividing the distance from
the actual value to the estimated value by the estimated value in relation to the model
estimation [40].

PRR =
n

∑
i=1

(
m̂(ti)− yi

m̂(ti)

)2
(14)
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Fifth, the predictive power (PP) is obtained by dividing the distance from the actual
value to the estimated value by the actual value [41].

PP =
n

∑
i=1

(
m̂(ti)− yi

yi

)2
(15)

Sixth, Akaike’s information criterion (AIC) was used to compare likelihood func-
tion maximization. This is applied to maximize the Kullback–Leibler level between the
probability distribution of the model and the data [42].

AIC = −2 log L + 2m

L =
n
∏
i=1

(m(ti)−m(ti−1))
yi−yi−1

(yi−yi−1)!
e−(m(ti)−m(ti−1))

logL =
n
∑

i=1
{(yi − yi−1) ln(m(ti)−m(ti−1))− (m(ti)−m(ti−1))

− ln((yi − yi−1)!)}

(16)

Seventh, the predicted relative variation (PRV) is the standard deviation of the predic-
tion bias and is defined as [43]

PRV =

√
∑n

i=1(yi − m̂(ti)− Bias)2

n− 1
(17)

Here, the bias is
n
∑

i=1

[
m̂(ti)−yi

n

]
.

The root mean square prediction error (RMSPE) can estimate the closeness with which
the model predicts the observation [44]:

RMSPE =
√

Variance2 + Bias2 (18)

Ninth, the mean error of prediction (MEOP) sums the absolute value of the deviation
between the actual data and the estimated curve and is defined as [38]

MEOP =
∑n

i=1|m̂(ti)− yi|
n−m + 1

(19)

Tenth, the Theil statistic (TS) is the average percentage of deviation over all periods
with regard to the actual values. The closer the Theil statistic is to zero, the better the
prediction capability of the model. This is defined as [45]

TS = 100 ∗

√
∑n

i=1(yi − m̂(ti))
2

∑n
i=1 yi

2 % (20)

Eleventh, it takes into account the tradeoff between the uncertainty in the model
and the number of parameters in the model by slightly increasing the penalty each time
parameters are added to the model when the sample is considerably small [46].

PC =

(
n−m

2

)
log

(
∑n

i=1(m̂(ti)− yi)
2

n

)
+ m

(
n− 1
n−m

)
(21)

Based on the above criteria, we compared the proposed model with the existing
NHPP software reliability model. When Adj_R2 is closer to 1, and the other 10 criteria
are closer to 0, it indicates a better fit. Using R and MATLAB, the parameters of each
model were estimated through the LSE method, and the goodness of fit is calculated to
compare the superiority. This is a method of estimating parameters through the difference



Symmetry 2022, 14, 343 8 of 22

between the model in Table 1 and the actual number of failures in Table 2, and follows
LSE = ∑n

t=1(yt −m(t))2 [47].

3.3. Results of Dataset 1

Table 3 shows the estimated values for the parameters of each model obtained using
dataset 1. Each parameter of the proposed model is represented by â = 80.0907, b̂ = 0.07231,
ĉ = 15.9288, and ĥ = 9.8182. Figure 2 shows the result of calculating the estimated value
of m(t) at each time point based on the cumulative number of failures at each time point
in dataset 1 and each model equation. The black dotted line represents the actual data,
and the dark red solid line represents the predicted failure value at each time point of the
proposed model. Compared with other models, it shows the predicted value closest to the
actual value.

Table 3. Parameter estimation of model from dataset 1.

No. Model Estimation

1 GO â = 191.3881, b̂ = 0.0483
2 HDOG â = 191.3880, b̂ = 0.04832, ĉ = 1.3929
3 DS â = 92.0916, b̂ = 0.3034
4 IS â = 88.9815, b̂ = 0.3274, β̂ = 3.9383

5 ZFR â = 14.6285, b̂ = 0.21179, α̂ = 33.5808
β̂ = 0.0304, ĉ = 15.1085, p̂ = 0.2085

6 YE â = 212.1517, α̂ = 0.2021
β̂ = 0.00568, γ̂ = 38.0032

7 YR â = 101.8036, α̂ = 0.5271
β̂ = 0.0276, γ̂ = 3.3321

8 YID1 â = 181.0676, b̂ = 0.05131, α̂ = 0.00114
9 YID2 â = 140.9842, b̂ = 0.06636, α̂ = 0.0126

10 PZ â = 27.3845, b̂ = 0.41396, α̂ = 0.1349
β̂ = 4.5437, ĉ = 63.7781

11 PNZ â = 27.3845, b̂ = 0.0218
α̂ = 0.0000332, β̂ = 0.0000684

12 TP
â = 0.8506, b̂ = 0.38022, α̂ = 0.6721,

β̂ = 0.000333
ĉ = 114.6551, p̂ = 0.0122, q̂ = 0.00326

13 KSRGM Â = 3.2070, b̂ = 8.76921
α̂ = 0.9764, p̂ = 0.4157

14 RMD â = 78.5350, b̂ = 0.21915
α̂ = 1.3358, β̂ = 0.2192

15 IFD â = 7.6597, b̂ = 0.84452, d̂ = 0.00171

16 Vtub â = 1.8954, b̂ = 0.70887, α̂ = 6.7593
β̂ = 62.2968, N̂ = 83.1687

17 TC â = 0.1736, b̂ = 1.33331, α̂ = 11.5457
β̂ = 18.8347, N̂ = 105.1851

18 3P â = 1.4640, b̂ = 0.3299, β̂ = 0.6008
N̂ = 94.1037, ĉ = 37.8421

19 DP1 α̂ = 0.1104, β̂ = 2.5829

20 DP2 α̂ = 46197.046, γ̂ = 0.00451
t̂0 = 3.7402, m̂0 = 30.01197

21 DPF â = 80.3065, b̂ = 0.06122
ĉ = 13.9314, ĥ = 9.8182

22 Proposed model â = 80.0907, b̂ = 0.07231
ĉ = 15.9288, ĥ = 9.8182
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Table 4 shows the results of calculating the criteria of each model using the parameters
obtained through dataset 1. As a result, the values of MSE, MAE, PRR, PP, PRV, RMSPE,
MEOP, TS, PC of the proposed model show the smallest values of 9.9274, 3.2140, 0.0647,
0.0577, 2.6866, 2.6870, 2.8569, 4.6682, and 13.0594, respectively. The AIC shows the second
smallest value at 73.4605. In addition, Adj_R2 is 0.9821, which is the closest to 1. The DPF
model shows the highest value with AIC = 73.2850, and the second highest result for the
other criteria. The model with the third highest criterion is the Vtub model.

Table 4. Comparison of all criteria from dataset 1.

No. Model MSE MAE Adj_R2 PRR PP AIC PRV RMSPE MEOP TS PC

1 GO 21.1918 4.4966 0.9627 0.4187 0.2758 80.5308 4.3889 4.3892 4.0878 7.6254 16.5565
2 HDOG 23.5465 4.9962 0.9581 0.4187 0.2758 82.5308 4.3889 4.3892 4.4966 7.6254 16.5875
3 DS 22.4994 3.8718 0.9604 9.4838 0.7292 92.7861 4.4119 4.5135 3.5198 7.8572 16.8558
4 IS 16.8528 3.8882 0.9700 1.4452 0.3769 80.9153 3.6786 3.7104 3.4994 6.4512 15.0824
5 ZFR 24.2415 5.8035 0.9540 1.2042 0.3441 86.8823 3.6068 3.6338 4.9744 6.3174 18.4848
6 YE 26.5773 5.6309 0.9519 0.4182 0.2753 84.5796 4.3963 4.3965 5.0052 7.6380 16.9984
7 YR 33.2210 5.1600 0.9398 23.6437 0.9460 103.5558 4.6865 4.8967 4.5867 8.5395 17.8909
8 YID1 23.6037 4.9679 0.9579 0.4140 0.2764 82.4537 4.3944 4.3946 4.4711 7.6347 16.5984
9 YID2 23.8374 5.0079 0.9575 0.4070 0.2771 82.5743 4.4162 4.4163 4.5071 7.6724 16.6427

10 PZ 217.3085 17.6277 0.5983 0.5816 1.2389 84.1256 4.7893 11.3435 15.4243 20.4300 24.8053
11 PNZ 4000.777 68.0533 −6.2441 2.6223 10.4504 142.6741 25.7721 52.1779 60.4918 93.7126 37.0551
12 TP 31.0301 7.0496 0.9387 1.6004 0.3946 89.3412 3.7102 3.7518 5.8747 6.5247 21.7987
13 KSRGM 26.0975 5.4865 0.9527 1.5345 0.4198 88.8357 4.3440 4.3556 4.8769 7.5688 16.9255
14 RMD 21.9129 5.0225 0.9604 1.1967 0.3659 84.6918 3.9784 3.9909 4.4644 6.9355 16.2264
15 IFD 29.9616 5.5723 0.9467 0.653 0.3059 87.6572 4.9344 4.9498 5.0151 8.6017 17.6717
16 Vtub 18.9012 4.8111 0.9650 0.7591 0.2784 82.2273 3.4511 3.4667 4.2097 6.0252 16.2579
17 TC 26.6474 5.8343 0.9507 1.8283 0.4312 89.1447 4.0938 4.1159 5.1050 7.1541 17.4601
18 3P 21.7357 5.0238 0.9599 1.4395 0.3767 84.9059 3.6859 3.7164 4.3958 6.4613 16.7470
19 DP1 361.825 19.1467 0.3631 448.095 3.2745 174.8811 14.9748 17.8944 17.4061 31.5087 30.7442
20 DP2 113.5394 11.4623 0.7945 0.5996 1.0133 109.7792 9.0867 9.0870 10.1888 15.7870 22.8067
21 DPF 9.9490 3.2278 0.9819 0.0689 0.0606 73.2850 2.6894 2.6899 2.8692 4.6732 13.0680

22 Proposed
model 9.9274 3.2140 0.9821 0.0647 0.0577 73.4605 2.6866 2.6870 2.8569 4.6682 13.0594
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3.4. Results of Dataset 2

Table 5 shows the estimated values for the parameters of each model obtained using
dataset 2. Each parameter of the proposed model is represented as â = 79.1444, b̂ = 0.2001,
ĉ = 72.3208, and ĥ = 9.3327. Figure 3 shows the results of calculating the estimated value
of m(t) for each point in time based on the cumulative number of failures at each time point
in dataset 2 and each model equation. Here, the black dotted line represents the actual data,
whereas the dark red solid line represents the predicted failure value at each time point of
the proposed model. Compared with the other models, the predicted value is closest to the
actual value.

Table 6 shows the results of calculating the criteria of each model using the parameters
obtained through dataset 2. As a result, the values of MSE, MAE, PRR, PP, AIC, PRV,
RMSPE, MEOP, TS, and PC of the proposed model are 18.9722, 4.3544, 0.1615, 0.1482,
92.2155, 3.7139, 3.7145, 3.8706, 6.3751, and 15.6500, respectively, which show the smallest
criteria. Adj_R2 is 0.9723, which is the closest to 1. The model with the second highest
criterion is DPF, and Vtub is the third best-fitting model.

Table 5. Parameter estimation of model from dataset 2.

No. Model Estimation

1 GO â = 518.0607, b̂ = 0.0156
2 HDOG â = 518.0607, b̂ = 0.01561, ĉ = 15.4479
3 DS â = 105.5701, b̂ = 0.2548
4 IS â = 85.7894, b̂ = 0.4918, β̂ = 13.4498

5 ZFR â = 4.3416, b̂ = 0.3506, α̂ = 67.6487
β̂ = 0.00128, ĉ = 57.1077, p̂ = 0.0548

6 YE â = 583.6809, α̂ = 0.0700
β̂ = 0.00224, γ̂ = 88.6105

7 YR â = 0.8619, α̂ = 5.0727
β̂ = 0.0000000232, γ̂ = 0.3849

8 YID1 â = 369.1037, b̂ = 0.02206, α̂ = 0.00446
9 YID2 â = 174.7977, b̂ = 0.04618, α̂ = 0.0292

10 PZ â = 80.3516, b̂ = 0.5195, α̂ = 4.0448
β̂ = 15.4266, ĉ = 4.4447

11 PNZ â = 82.6869, b̂ = 0.5259
α̂ = 0.0013, β̂ = 15.5683

12 TP â = 0.2772, b̂ = 0.5328, α̂ = 0.5551, β̂ = 0.000359
ĉ = 76.4359, p̂ = 0.5610, q̂ = 0.5583

13 KSRGM Â = 85.4315, b̂ = 0.3829
α̂ = 0.0353, p̂ = 1.5904

14 RMD â = 102.8360, b̂ = 0.2355
α̂ = 1.0649, β̂ = 0.2355

15 IFD â = 21.4202, b̂ = 0.2758, d̂ = 0.00001004

16 Vtub â = 2.1725, b̂ = 0.7383, α̂ = 48.1784
β̂ = 961.5799, N̂ = 81.1633

17 TC â = 0.1524, b̂ = 1.9761, α̂ = 21.6626
β̂ = 22.4388, N̂ = 87.7121

18 3P â = 2.3685, b̂ = 0.4823, β̂ = 1.1973
N̂ = 94.4688, ĉ = 59.8790

19 DP1 α̂ = 0.01104, β̂ = 8.2449

20 DP2 α̂ = 4.1249, γ̂ = 0.0000000161
t̂0 = 0.0000168, m̂0 = 0.000213

21 DPF â = 79.1447, b̂ = 0.1928
ĉ = 69.3637, ĥ = 9.2699

22 Proposed model â = 79.1444, b̂ = 0.2001
ĉ = 72.3208, ĥ = 9.3327



Symmetry 2022, 14, 343 11 of 22

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

�̂� = 15.4266, 𝑐̂ = 4.4447 

11 PNZ 
�̂� = 82.6869, �̂� = 0.5259 

�̂� = 0.0013, �̂� = 15.5683 

12 TP 
�̂� = 0.2772, �̂� = 0.5328, �̂� = 0.5551, �̂� = 0.000359 

𝑐̂ = 76.4359, �̂� = 0.5610, �̂� = 0.5583 

13 KSRGM 
�̂� = 85.4315, �̂� = 0.3829 

�̂� = 0.0353, �̂� = 1.5904 

14 RMD 
�̂� = 102.8360, �̂� = 0.2355 

�̂� = 1.0649, �̂� = 0.2355 

15 IFD �̂� = 21.4202, �̂� = 0.2758, �̂� = 0.00001004 

16 Vtub 
�̂� = 2.1725, �̂� = 0.7383, �̂� = 48.1784 

�̂� = 961.5799, �̂� = 81.1633 

17 TC 
�̂� = 0.1524, �̂� = 1.9761, �̂� = 21.6626 

�̂� = 22.4388, �̂� = 87.7121 

18 3P 
�̂� = 2.3685, �̂� = 0.4823, �̂� = 1.1973 

�̂� = 94.4688, 𝑐̂ = 59.8790 

19 DP1 �̂� = 0.01104, �̂� = 8.2449 

20 DP2 
�̂� = 4.1249, �̂� = 0.0000000161 

𝑡0̂ = 0.0000168, 𝑚0̂ = 0.000213 

21 DPF 
�̂� = 79.1447, �̂� = 0.1928 

𝑐̂ = 69.3637, ℎ̂ = 9.2699 

22 Proposed model 
�̂� = 79.1444, �̂� = 0.2001 

𝑐̂ = 72.3208, ℎ̂ = 9.3327 

 

Figure 3. Prediction of all models for dataset 2. Figure 3. Prediction of all models for dataset 2.

Table 6. Comparison of all criteria from dataset 2.

No. Model MSE MAE Adj_R2 PRR PP AIC PRV RMSPE MEOP TS PC

1 GO 52.7922 6.9705 0.9252 0.4713 0.6631 113.9369 6.9157 6.9267 6.3369 11.8896 21.1202
2 HDOG 58.6580 7.7450 0.9159 0.4713 0.6631 115.9369 6.9157 6.9267 6.9705 11.8896 20.6949
3 DS 40.0324 5.9373 0.9433 8.5312 1.0273 116.8063 5.9998 6.0299 5.3975 10.3536 19.7368
4 IS 30.7961 5.1688 0.9559 5.1137 0.8444 102.4472 4.9413 5.0132 4.6519 8.6150 17.7954
5 ZFR 42.3215 7.0918 0.9353 3.2756 0.7195 104.7204 4.7496 4.8001 6.0787 8.2459 20.1564
6 YE 66.0197 8.6990 0.9038 0.4695 0.6677 117.922 6.9138 6.9280 7.7325 11.8923 20.6380
7 YR 4668.125 73.375 −5.7994 4.00 × 1017 12.000 2807.273 28.0112 56.369 65.2222 100.000 37.6722
8 YID1 58.7470 7.7242 0.91571 0.4677 0.6707 115.8113 6.9207 6.9319 6.9518 11.8987 20.7017
9 YID2 58.9848 7.7955 0.91544 0.4730 0.6551 116.2140 6.9390 6.9463 7.0159 11.9227 20.7199
10 PZ 42.3248 6.7234 0.9371 11.0678 1.0170 110.5663 5.0554 5.1787 5.8830 8.9070 19.0795
11 PNZ 35.2459 5.7358 0.9486 6.5289 0.9046 104.9515 4.8955 5.0492 5.0985 8.6893 18.1275
12 TP 63.8102 10.1380 0.8983 4.8099 0.8346 112.9315 5.0230 5.3563 8.4484 9.2430 23.6011
13 KSRGM 50.5240 6.8779 0.9265 114.740 1.4819 135.0029 5.8715 6.0461 6.1137 10.4035 19.5679
14 RMD 49.4957 7.4822 0.9279 3.9839 0.8882 116.9778 5.9847 5.9985 6.6509 10.297 19.4857
15 IFD 54.1681 7.6923 0.9223 0.7680 0.6392 116.0510 6.6572 6.6573 6.9231 11.4255 20.3365
16 Vtub 35.2724 6.0531 0.9476 2.4728 0.6598 101.2283 4.6866 4.7335 5.2965 8.1311 18.4415
17 TC 50.7521 7.5092 0.9245 21.0460 1.1721 121.4836 5.5793 5.6745 6.5706 9.7535 19.7150
18 3P 40.5560 6.8976 0.9397 4.5115 0.8180 107.3639 5.0151 5.0748 6.0354 8.7189 18.9300
19 DP1 319.4078 17.5031 0.5477 219.278 2.8473 190.4276 14.6847 16.8565 15.9119 29.2453 30.1207
20 DP2 4668.094 73.3747 −5.7994 8.23 × 1011 11.9998 5,039.181 28.0112 56.3689 65.2219 99.9997 37.6722
21 DPF 19.0466 4.3652 0.9722 0.1630 0.1495 92.2767 3.7212 3.7218 3.8802 6.3876 15.6657

22 Proposed
model 18.9722 4.3544 0.9723 0.1615 0.1482 92.2155 3.7139 3.7145 3.8706 6.3751 15.6500

3.5. Results of Dataset 3

Table 7 shows the estimated values for the parameters of each model obtained using
dataset 3. Each parameter of the proposed model is represented through â = 194.7684,
b̂ = 0.3062, ĉ = 307.0805, and ĥ = 135.5641. Figure 4 shows the results of calculating the
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estimated value of m(t) at each point in time based on the number of cumulative failures at
each time point in dataset 3 and for each model equation. The black dotted line indicates
the actual data, and the dark red solid line is the predicted failure value at each time point
for the proposed model. Compared with other models, the proposed model shows the
predicted value closest to the actual value.

Table 8 shows the results of calculating the criteria of each model using the parameters
obtained through dataset 3. As a result, MSE and PC of the proposed model show the
smallest values of 26.8047 and 24.5551, respectively, and Adj_R2 shows the closest value
to 1 at 0.9765. In addition, MAE, PRR, PP, PRV, RMSPE, MEOP, and TS are 4.9209, 0.0096,
0.0092, 4.6668, 4.6668, 4.5694, and 2.5484, respectively, showing the second smallest values.
Figure 4 shows the estimated failure values at each time point using the developed models.
The Vtub model shows the most suitable criteria of 0.0094, 0.0090, 4.6356, 4.6357, and 2.5315
in PRR, PP, PRV, RMSPE, and TS, and DPF shows the most suitable criteria of 4.9195 and
4.5682 with MAE and MEOP. However, in calculating the AIC of the Vtub model, DPF,
KSRGM, and the newly proposed model, a value indicating t = 14 is shown, indicating
that the calculation is no longer being applied. In the process of calculating the AIC value,
if there is no difference between the value at a specific point in time and the next point in
time, the denominator is 0, so the AIC calculation can not be performed.

Table 7. Parameter estimation of model from dataset 3.

No. Model Estimation

1 GO â = 197.387, b̂ = 0.399
2 HDOG â = 197.3858, b̂ = 0.3985, ĉ = 0.00088
3 DS â = 192.528, b̂ = 0.882
4 IS â = 197.354, b̂ = 0.399, β̂ = 0.000001

5 ZFR â = 198.0864, b̂ = 0.0038, α̂ = 1545.538
β̂ = 3.7206, ĉ = 603.6647, p̂ = 4.7236

6 YE â = 248.808, α̂ = 0.00797
β̂ = 0.2253, γ̂ = 208.4032

7 YR â = 206.0833, α̂ = 1.0937
β̂ = 0.1427, γ̂ = 2.3984

8 YID1 â = 183.4522, b̂ = 0.4620, α̂ = 0.0066
9 YID2 â = 182.934, b̂ = 0.464, α̂ = 0.0071

10 PZ â = 195.990, b̂ = 0.3987, α̂ = 1000.0, β̂ = 0.0000,
ĉ = 1.390

11 PNZ â = 183.125, b̂ = 0.463
α̂ = 0.007, β̂ = 0.0001

12 TP â = 21.2071, b̂ = 0.3086, α̂ = 0.9415, β̂ = 0.0209
ĉ = 1.8073, p̂ = 0.2950, q̂ = 0.1959

13 KSRGM Â = 61.8904, b̂ = 53.2238
α̂ = 0.6853, p̂ = 0.0256

14 RMD â = 5.4873, b̂ = 0.3986
α̂ = 35.9711, β̂ = 208.4596

15 IFD â = 23.5220, b̂ = 0.6188, d̂ = 0.000000002

16 Vtub â = 1.2170, b̂ = 2.9515, α̂ = 0.0595
β̂ = 0.000006, N̂ = 194.7808

17 TC â = 0.053, b̂ = 0.774, α̂ = 181.0
β̂ = 38.600, N̂ = 204.140

18 3P â = 0.0307, b̂ = 0.2038, β̂ = 0.000581
N̂ = 203.8418, ĉ = 100.8152

19 DP1 α̂ = 0.1105, β̂ = 3.1046

20 DP2 α̂ = 0.0290, γ̂ = 6.0596
t̂0 = 0.7697, m̂0 = 0.0387

21 DPF â = 194.766, b̂ = 0.304
ĉ = 304.566, ĥ = 135.464

22 Proposed model â = 194.7684, b̂ = 0.3062
ĉ = 307.0805, ĥ = 135.5641
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Table 8. Comparison of all criteria from dataset 3.

No. Model MSE MAE Adj_R2 PRR PP AIC PRV RMSPE MEOP TS PC

1 GO 80.6779 6.9602 0.9301 0.1705 0.1013 184.3314 8.6734 8.6955 6.5252 4.7492 34.1231
2 HDOG 86.4370 7.4526 0.9247 0.1714 0.1015 186.2332 8.6705 8.6951 6.9558 4.7491 33.2854
3 DS 232.628 9.5029 0.7982 1.2915 0.3330 331.8567 14.6423 14.7605 8.9090 8.0644 42.0654
4 IS 86.4395 7.4550 0.9247 0.1706 0.1013 186.3337 8.6711 8.6953 6.9580 4.7492 33.2856
5 ZFR 111.138 9.4352 0.9010 0.1837 0.1047 193.0813 8.7023 8.7388 8.6489 4.7734 32.2423
6 YE 79.3698 8.1539 0.9304 0.0993 0.0738 167.3203 8.0202 8.0298 7.5715 4.3853 31.6111
7 YR 378.666 12.8708 0.6679 2.7655 0.4685 523.3189 17.3551 17.5296 11.9514 9.5785 41.7676
8 YID1 78.8312 7.1635 0.9313 0.1282 0.0868 157.6388 8.2937 8.3046 6.6860 4.5353 32.6406
9 YID2 78.8367 7.1869 0.9313 0.1276 0.0866 157.8252 8.2915 8.3047 6.7078 4.5355 32.6411

10 PZ 100.990 8.6962 0.9108 0.1719 0.1017 190.3321 8.6767 8.7014 8.0272 4.7525 32.2669
11 PNZ 84.9077 7.7388 0.9256 0.1281 0.0867 159.8744 8.2915 8.3049 7.1860 4.5356 32.0493
12 TP 98.6971 10.573 0.9113 0.0740 0.0626 166.0911 7.8528 7.8540 9.6118 4.2889 31.5071
13 KSRGM 111.132 8.1738 0.9025 0.2521 0.1297 NA 9.4631 9.5000 7.5900 5.1890 33.7990
14 RMD 93.1051 8.0261 0.9184 0.1714 0.1015 188.2567 8.6714 8.6960 7.4528 4.7496 32.6486
15 IFD 3691.538 60.2705 −2.2183 24.7762 2.5036 466.1166 51.3584 56.5265 56.2524 31.0359 59.5661
16 Vtub 28.6529 5.2313 0.9747 0.0094 0.0090 Inf 4.6356 4.6357 4.8289 2.5315 24.7084
17 TC 72.2812 8.5966 0.9361 0.0521 0.0479 158.9319 7.3621 7.3628 7.9353 4.0207 30.2602
18 3P 81.0554 8.8835 0.9284 0.0731 0.0614 164.5417 7.7935 7.7967 8.2001 4.2577 30.9476
19 DP1 11,068.48 101.169 −8.6006 9,218.87 6.8842 1224.361 78.7966 100.6555 94.8460 55.6271 71.0335
20 DP2 12,760.68 116.690 −10.191 11,546.76 6.8801 1248.593 78.7816 100.6144 108.3548 55.6039 64.6312
21 DPF 26.8104 4.9195 0.9765 0.0096 0.0092 NA 4.6673 4.6673 4.5682 2.5487 24.5565

22 Proposed
model 26.8047 4.9209 0.9765 0.0096 0.0092 NA 4.6668 4.6668 4.5694 2.5484 24.5551



Symmetry 2022, 14, 343 14 of 22

4. Optimal Release Time

When releasing software, it is very important that find the optimal release time. In
order to find that, we need to find a time that minimizes the cost. We apply m(t) proposed
in Section 2 to the cost model to find the optimal time point between time to market and
the minimum cost. The optimal time is suggested based on the cost model that reflects the
software installation cost, software test cost, operation cost, software removal cost, and risk
cost when the software failure occurs. Figure 5 describes the software field environment
from the software installation of the software cost model. The expected software cost model
follows Equation (22) [30,31].

C(T) = C0 + C1T + C2m(T) + C3(1− R(x|T)) (22)

where C0 is the installation cost for system testing, C1 is the system test cost per unit time,
C2 is the error removal cost per unit time during the test phase, and C3 is the penalty cost
owing to a system failure. In addition, x represents the time the software was used. In
addition, in the cost model equation, R(x|T) follows (23) [32,33].

R(x|T) = e−[m(t+x)−m(t)] (23)
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In this section, we propose a cost model using dataset 1 based on the proposed software
reliability model and find the optimal time point between time to market and the minimum
cost by changing the cost coefficients from C0 to C3.

4.1. Results of the Optimal Release Time

For the parameters of the cost model, a, b, c, and h calculated through numerical
examples described in Section 3 were used. The cost coefficient of the cost model aims to
find the optimal release time with the lowest cost by finding the optimal value through the
changes in several values. The baseline value of the cost coefficient is as follows:

C0 = 500, C1 = 20, C2 = 50, C3 = 5000, x = 6

Here, baseline denotes to the reference value for confirming the change of the cost
coefficient. The total cost value obtains as a reference value is 4888.856, and the optimal
release time T at this time is 18.3. Table 9 changes the cost coefficient of each reference value,
checks the minimum cost C(T) and optimal release time T∗, and then checks the changing
trend to find the most optimal release time T∗. When x = 2, the smallest total cost value
obtains 4886.985 at T∗ = 18.2. When x = 4, the smallest total cost value shows 4888.735 at
T∗ = 18.3. When x = 6, the smallest total cost value shows 4888.856 at T∗ = 18.3. When
x is 8 and 10, the smallest total cost value shows 4888.863 at T∗ = 18.3.
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Table 9. Optimal release time of expected total cost according to baseline.

Base
x = 2 x = 4 x = 6 x = 8 x = 10

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

18.2 4886.985 18.3 4888.735 18.3 4888.856 18.3 4888.863 18.3 4888.863

Here, C0 is the setup cost, and as the value increases, the cost, which is directly
proportional, increases as well; thus, the lower the setup cost is, the lower the cost. Table 10
compares the changes when the coefficients of are 300, 500, and 700. It is found that the
higher the value is, the higher the total cost value, whereas the optimal time does not
change. Therefore, it appears that C0 does not help determine the optimal release point.
However, because the setup cost for a system stabilization is required, the appropriate C0
cost coefficient is set to 500. Figure 6 shows a graph of the results according to the change
in C0.

Table 10. Optimal release time of expected total cost according to C0.

C0
x = 2 x = 4 x = 6 x = 8 x = 10

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

300 18.2 4686.985 18.3 4688.735 18.3 4688.856 18.3 4688.863 18.3 4688.863

500 18.2 4886.985 18.3 4888.735 18.3 4888.856 18.3 4888.863 18.3 4888.863

700 18.2 5086.985 18.3 5088.735 18.3 5088.856 18.3 5088.863 18.3 5088.863
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Figure 6. Optimal release time of total cost according to C0.

Table 11 compares the changes when the coefficients of C1 are 10, 20, and 30. The
results show that when C1 is 10, the total cost is the minimum at approximately 18.9 to
19.0, and when C1 is 20, the minimum value is at 18.2 to 18.3, and when it is 30, the total
cost shows the minimum value at approximately 17.8 to 17.9. As the cost coefficient C1
increases, the optimal release time is gradually pushed back. Figure 7 shows a graph of the
results according to the changes in C1.
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Table 11. Optimal release time of expected total cost according to C1.

C1
x=2 x=4 x=6 x=8 x=10

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

10 18.9 4702.044 19.0 4702.818 19.0 4702.864 19.0 4702.866 19.0 4702.866
20 18.2 4886.985 18.3 4888.735 18.3 4888.856 18.3 4888.863 18.3 4888.863
30 17.8 5066.820 17.9 5069.652 17.9 5069.861 17.9 5069.873 17.9 5069.874
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Table 12 compares the changes when the coefficients of C2 are 30, 40, 50, and 60. It can be
seen that the cost coefficient C2 does not change from 18.2 to 18.3 at the optimal release time
as the value changes. Figure 8 shows a graph of the results according to the change in C2.

Table 13 compares the changes when the coefficients of C3 are 5000, 7000, 10, 000,
and 15, 000. The results show that when C3 is 5000, the total cost is the minimum at
approximately 18.2 to 18.3; when it is 7000, it shows the minimum value at 18.5 to 18.6;
when it is 10, 000, the total cost shows the minimum value at approximately 18.9 to 19.0;
and when it is 15, 000, the total cost shows the minimum value at approximately 19.2 to
19.3. This indicates that the optimal release time gradually increases as the cost coefficient
C3 increases. Figure 9 shows a graph of the results according to the changes in C3.

Table 12. Optimal release time of expected total cost according to C2.

C2
x=2 x=4 x=6 x=8 x=10

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

30 18.2 3285.254 18.3 3286.995 18.3 3287.116 18.3 3287.123 18.3 3287.123
40 18.2 4086.120 18.3 4087.865 18.3 4087.986 18.3 4087.993 18.3 4087.993
50 18.2 4886.985 18.3 4888.735 18.3 4888.856 18.3 4888.863 18.3 4888.863
60 18.2 5687.851 18.3 5689.604 18.3 5689.726 18.3 5689.733 18.3 5689.733
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Table 13. Optimal release time of expected total cost according to C3.

C3
x=2 x=4 x=6 x=8 x=10

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

5000 18.2 4886.985 18.3 4888.735 18.3 4888.856 18.3 4888.863 18.3 4888.863
7000 18.5 4893.210 18.6 4894.846 18.6 4894.958 18.6 4894.964 18.6 4894.964

10,000 18.9 4899.648 19.0 4901.186 19.0 4901.277 19.0 4901.281 19.0 4901.282
15,000 19.2 4906.802 19.3 4908.208 19.3 4908.297 19.3 4908.301 19.3 4908.301
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4.2. Results of Variation in Cost Model for Changes in Parameter

In this section, we check whether the optimal release time is affected by the change
in the cost model according to the change in the parameters of the proposed model. The
parameters a, b, c, and h of the proposed model are set at −20%, −10%, 0%, 10%, and 20%,
respectively, in 10% increments, and the coefficient of the cost model is fixed at the baseline
value in Section 4.1. Thus, the minimum cost value is calculated depending on changes in
the parameters, and it derives appropriate release time. In Table 14, 0% is the same as the
value suggested in Table 9 by substituting the parameter estimates described in Section 3
and the coefficient values of the cost model proposed in Section 4.

Table 14. Optimal release time of cost according to parameter change.

−20% −10% 0% 10% 20%

T* C(T) T* C(T) T* C(T) T* C(T) T* C(T)

a 20.4 4129.849 19.2 4507.887 18.3 4888.856 17.6 5272.215 16.8 5657.258
b 22.6 4979.801 20.0 4929.426 18.3 4888.856 16.8 4855.545 15.4 4827.546
c 16.4 4847.806 17.4 4869.089 18.3 4888.856 19.2 4907.319 20.0 4924.648
h 18.6 4892.931 18.4 4890.757 18.3 4888.856 18.2 4887.130 18.2 4885.583

From Table 14 and Figures 10–13, the value of the cost model C(T) increases as the
change in parameter a increases, whereas the optimal release time T∗ decreases. As the
values of parameters b and h increase, the cost model C(T) increases, and the release time
T∗ is shown to decrease; in addition, it is found that the change in parameter h had a very
slight effect on the optimal release time compared to parameter b. As the value of parameter
c increases, the cost model C(T) and release time T* increase together. Based on this, it
is found that parameter a had a very large minimum width of the cost model compared
with the changes of the other parameters, and parameter b had the greatest influence on
determining the optimal release time.
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5. Conclusions

In this study, a new software reliability model was developed under the assumption
that software failures occur in a dependent manner. We used three datasets for our evalua-
tions. The first and second datasets showed the best fit, and the third dataset showed better
results compared with many previously proposed models. The proposed model showed
better results than DP1, DP2, and DPF, which are previously developed software-dependent
failure occurrence models.

In addition, based on the proposed model, the optimal release time according to the
change in the cost coefficient was suggested, and the total cost was analyzed accordingly.
When the test cost was increased, the release time gradually increased, as did the overall
cost; therefore, the optimal release time can be achieved when C1 is 20. In the proposed
model, fault detection rate b was found to be the most important parameter for determining
the optimal release time.

In the past, studies were conducted by assuming independence in the case of soft-
ware failures; however, in a real environment, the software execution environment is
extremely diverse and complex. Therefore, it is necessary to develop a model that assumes
a dependent failure occurrence and propose a model that considers the actual operating
environment. We plan to conduct a study using machine learning and deep learning for
the proposed software-dependent failure occurrence in the future work.
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