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Abstract: Due to the asymmetry of project features, it is difficult for project managers to make a
reliable prediction of the decision-making process. Big data research can establish more predictions
through the results of accurate classification. Machine learning (ML) has been widely applied for
big data analytic and processing, which includes model symmetry/asymmetry of various prediction
problems. The purpose of this study is to achieve symmetry in the developed decision-making
solution based on the optimal classification results. Defects are important metrics of construction
management performance. Accordingly, the use of suitable algorithms to comprehend the characteris-
tics of these defects and train and test massive data on defects can conduct the effectual classification
of project features. This research used 499 defective classes and related features from the Public
Works Bid Management System (PWBMS). In this article, ML algorithms, such as support vector
machine (SVM), artificial neural network (ANN), decision tree (DT), and Bayesian network (BN),
were employed to predict the relationship between three target variables (engineering level, project
cost, and construction progress) and defects. To formulate and subsequently cross-validate an optimal
classification model, 1015 projects were considered in this work. Assessment indicators showed
that the accuracy of ANN for classifying the engineering level is 93.20%, and the accuracy values of
SVM for classifying the project cost and construction progress are 85.32% and 79.01%, respectively.
In general, the SVM yielded better classification results from these project features. This research
was based on an ML algorithm evaluation system for buildings as a classification model for project
features with the goal of aiding project managers to comprehend defects.

Keywords: support vector machines; artificial neural network; decision trees; Bayesian network;
machine learning; defects

1. Introduction

Defects are the focus of quality management and indicators of project performance.
Meng [1] studied the performance information of 103 projects and found that there were
90 quality defects, 37 delayed times, and 26 overspending costs. The quality defect items
contributed to 87.4% of all the items. Thus, defects are one of the main factors for poor
construction performance. Early scholars have studied defects with a focus on the classi-
fication of defects and the types of defects [2–6]. However, the analytical methods used
lack the capability of automatic data exploration, and the evaluation process is complex,
time-consuming, and often requires professionals to set the appropriate parameters to
obtain the correct results. The machine learning (ML) algorithm can compensate for the
shortcomings of these methods. By using nontraditional analysis methods and using a
large database for importing the ML algorithm, it is possible to classify project features
and defects in a simpler model. Due to the frequent occurrence of many defects during
a construction process, ML can be suitably used in the construction industry to enable a
project manager to clearly determine the relationship between defects and project features.

Currently, several scholars have used artificial intelligence (AI) and ML, combined
with big data for defect assessment, or have used a database as a method to estimate
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defects [7–10]. These studies combined ML algorithms and established decision support for
expert systems provide an efficient means to solve problems, quickly determine the ability
of construction defects, and achieve a certain level of predictability. The performance of a
model established using machine learning relies to a great degree on the size and density
of the obtainable training dataset [11]. Often, inadequate data are available owing to the
randomness of the data distribution and incompatible inspection record, which happens
because of inconsistent inspection processes [12]. Therefore, the challenge of a defect
analysis model is that strict data collection agreements are required before application [13].
Macarulla et al. [14] represented that defect data are structurally unreasonable or is not
readily obtainable; thence, data analysis is difficult. Das and Chew [15] specified that a
scientific rating system should be built using a defect database and conducting a systematic
grading to explicitly define the influence of the defects.

Taiwan’s government units systematically record construction inspection data in
the Public Works Bid Management System (PWBMS) through the inspection mechanism.
After, data analyses were executed, and defect improvement approaches were conducted
to upgrade the quality of public works and construction performance. To date, a total
of 499 defects identified by inspection were classified into four categories: construction
management, work quality, program, and design. The feature data of defects used in
the current study were sourced from the PWBMS. The defects were gained by committee
(scholars and experts) in construction site inspections adopted official standardized forms.
Therefore, the inspection criteria were consistent and unprejudiced. In addition, the
database contained 27 years of defect data, and it was extremely large.

The use of considerable amounts of data to train machine models enables the avoidance
of statistical methods and the limitations of frameworks. By replacing sample analysis with
big data analysis, observing the relationship among data points, recognizing patterns that
are previously difficult to realize, and applying the value of new thinking become possible.
Consequently, data cease to be treated as afterthoughts that are subsequently arranged and
applied; instead, they are regarded as tools for building and exploring problem domains.
Accordingly, they enable the creation and development of technical abilities and expertise
in the field of domain knowledge management [16]. The purpose of big data analysis is to
discover knowledge, predict results, and support decision-making to create a competitive
advantage [17].

Since the introduction of the construction inspection system in Taiwan, considerable
construction features of big data related to public projects have accumulated. Currently,
academic scholars and the industry have been focusing on how to mine big data and
analyze the results correctly. Defects indicate a project’s construction quality, and the
relationship between these defects and the features related to the project is an issue that
requires further analysis. Thus, by obtaining useful rules and knowledge that can be
derived from an inspection database, the relationship between the defects and related
features can be comprehended, thereby reducing or removing the risk of future defects.

Because ML can process multidimensional data or information and explore the associ-
ation between multiple variables while conducting exploration of data involving statistics
and large data sets, it is suitable for big data analysis. ML has been widely applied for
big data analytic and processing, which includes model symmetry/asymmetry of various
pre-diction problems. Applying ML algorithms to analyze big data can reveal modes that
were not obvious. Sometimes, unsuspected correlations or new trends may be discovered,
thereby leading to a better solving of the problem.

Based on the above study background and the characteristics of ML, this study com-
bined massive data of defects and ML to obtain hidden information that has not been
explored or considered valuable in the past or to discover patterns and rules. Due to
the asymmetry of project features, it is difficult for project managers to make a reliable
prediction of the decision-making process. Big data research can establish more predictions
through the results of accurate classification. The purpose of this research is to employ ML
to identify the hidden connection of project features from a large amount of inspection data
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and achieve symmetry in the developed decision-making solution based on the optimal
classification results. The relationship between target variables (project features) and defects
is predicted. A classification model for optimizing project features has been established to
provide construction managers with assistant means for comprehending defects. Managers
can be enabled to achieve correct decisions to improve project management strategy and
construction performance.

2. Construction Inspection Data and Machine Learning
2.1. Features of Construction Data

This research utilized the construction inspection data from PWBMS (1993 to 2020
year). The total number of projects inspected was 1015, and the inspection data included
defect types, engineering levels, project costs, and construction progress (Table 1). Defects
are classified into four types based on construction management (X1), work quality (X2),
program (X3), and design (X4); the total classes are 499 defects. Among these, defects due
to construction management include 113 classes for proprietors, supervisory sectors, and
contractors. The defects due to work quality include 356 classes of safety, Strength I, and
Strength II. Defects pertaining to the program include 10 classes. The defects due to design
include 20 classes pertaining to maintenance, construction, security, and gender differences.
Thus, the standardized forms have a total of 499 defective classes. X1, X2, X3, and X4
accounted for 22.7%, 71.3%, 2%, and 4% of the percentage of defective classes, respectively
(Figure 1).

Table 1. Construction inspection information and project feature content.

Decision Variables Target Variables

X1 X2 X3 X4 Y1 Y2 Y3

Construction
management

Work
quality Program Design Engineering

level Project cost Construction
progress

Proprietors,
supervisory
sectors, and
contractors
(classes of

113 defects)

Safety,
Strength I,

and
Strength II
(classes of

356 defects)

Schedule,
management,
and project

network dia-
gramming

management
(classes of 10

defects)

Maintenance,
construction,
security, and

gender
differences

(classes of 20
defects)

A, B, C, and
D

P:
publication

(NT$1–
50 mn)

S:
supervision

(NT$50–
200 mn)

L: large pro-
curement

(NT$200 mn
or more)

N: behind
(under 50%)

Y: ahead
(over 50%)
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During the training of the classifier, the number of samples of different categories
varies significantly (more than 20%), resulting in the machine learning algorithm mistakenly
treating the samples of a few categories as tolerable errors and classifying all samples into
the majority of categories to achieve a higher classification accuracy. Accordingly, the data
imbalance should be addressed before constructing the model. The number of category
samples in the training data can be balanced by processing it from two perspectives: the data
and algorithm. Processing from the former perspective can improve the classification results
of minority categories through sampling techniques such as undersampling, oversampling,
and synthetic minority oversampling techniques (SMOTEs). Furthermore, the risk of
random sampling can be reduced by using cluster-based sampling to divide the data into
clusters and then identifying representative samples from the clusters [18]. Processing
from the latter perspective involves adding a penalty item to the algorithm function, which
increases the cost of misclassifying a certain category or multiple categories (such as cost-
sensitive learning).

In particular, there are additional limitations on either the sampling method or the
addition of penalized terms (penalized), which also tend to overfit the model. In the
presence of data imbalance, the performance of classification models can be determined
more objectively. The metrics used are usually precision and recall. Since the precision
and recall of a good model are not too bad, neither are easily affected by data imbalance.
Therefore, the harmonic mean (F1 score) of precision and recall was used as a measure of
the imbalance classification problem. The F1 score is explained in detail in Section 4.3.

The engineering levels are regrouped using cluster analysis. Because of the present
study, statistics from PWBMS on 1015 projects of construction inspection data found that six
projects were Level I, 780 projects were Level II, 227 projects were Level III, and two projects
were Level IV. The committee reviewed construction projects adopting predominantly Level
II (collectively accounting for 76.8%), and scores were between 80~83. In comparison, cases
of construction projects rated as Levels I, III, and IV accounted for only 23.1%. To reduce
differences between numbers of samples and imbalanced data for all Levels (exceedingly
few Level IV samples are available) and perform a comprehensive assessment, a cluster
analysis of defect frequencies and the scores was conducted on the 1015 construction cases.
Samples are partitioned into disjoint clusters based on their similarities or differences
among feature variables. Cluster analysis avoided the sample size for each group from
being extremely small and assured that defect features within groups were as similar as
possible. The cases were reclassified into four groups (Levels A, B, C, and D), corresponding
to Level I, Level II, Level III, and Level IV for construction inspection. The engineering level
(Y1) were divided into four grades (A, B, C, and D). Cluster analysis was performed for
these four levels by using two variables—defect frequency (18,246) and an inspection score
of 1015 to reduce the number of samples sampled at different levels. The A, B, C, and D
levels were 455 (44.8%), 157 (15.5%), 309 (30.4%), and 94 (9.3%) of all projects, respectively
(Table 2).

Table 2. Statistics on the number of construction inspections and clustering.

Inspection Level Score Project Number Clustering Project Number

Level I 90–100 6 (0.6%) A level 455 (44.8%)
Level II 80–89 780 (76.8%) B level 157 (15.5%)
Level III 70–79 227 (22.4%) C level 309 (30.4%)
Level IV <70 2 (0.2%) D level 94 (9.3%)

The project cost (Y2) was divided into three types—publication (P, NT$1–50 million),
supervision (S, NT$50–200 million), and large procurement (L, NT$200 million or more).
P, S, and L were 654 (64.4%), 138 (13.6%), and 223 (22.0%) of all projects, respectively.
Construction progress (Y3) was divided based on the work progress into 50% or less
and 50% or more, and these categories were 573 (56.5%) and 442 (43.5%) of all projects,
respectively (Figure 2). The number of differences in the category data samples of the above
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three target variables does not exceed 20%, which should satisfy the modeling requirements
for the classification.
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2.2. Application of Machine Learning in Engineering

The development of AI has evolved from “inference” advanced to “knowledge”.
Finally, AI has evolved having the ability to “learn”. Therefore, while building a computer
system, AI can intelligently recommend decisions by imitating human inference. Thus, it
can prepare a computer with an accuracy similar to that of experts. ML involves the field
of computer science and is a branch of AI. It is a means to realize AI, that is, ML has the
ability to learn to solve problems. The following text presents a related application of ML
in engineering.

A decision tree (DT) is an ML method commonly adopted for big data analysis with the
main objective of formulating decision rules and conducting various classification works.
The method is also applied in financial industries, manufacturing industries, and medical
treatments for bank loan evaluations, examination of manufacturing defects, and disease
diagnoses, respectively [19–21]. In the DT method, a tree structure pattern is utilized to
interpret a series of decision problems and classification. DTs have been employed in
the area of construction and management to predict and classify a widespread variety
of attributes [22]. Some researchers have utilized the DT technique in construction for
comparison with other ML methods [23,24].

The Bayesian network (BN) is a type of directed acyclic graph with directional and
non-cyclical conditions based on conditional probability, and it can combine uncertainties
in specific fields into a model [25]. A BN mainly relies on the advantages of a graphical
model to effectively infer the uncertainty due to a large number of variables to determine
the modeling domain. Recently, many studies have applied BNs to solve problems related
to engineering structures and structure strength. For example, Straub and Kiureghian [26]
combined a BN and the structural reliability method to create a new computation frame-
work for risk analysis of infrastructure and engineering structures. Ma et al. [27] proposed
a method involving BN to predict bridge residual strength. BN is also used for conducting
qualitative and quantitative estimations of the affects of reinforced concrete structures [28],
and for executing classification in maintenance inspections of road structures [29].

In an ANN, biological neurons are simulated to acquire information from other ar-
tificial neurons or the external environment. The neurons are learned using the network
structure and different algorithms for performing estimation, prediction, and decision mak-
ing. Using neurons, the network learns the patterns of the dataset, establishing the ability
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to accurately classify new models, and carrying out predictions [30]. ANN applications
in construction include the evaluation of project costs [31–33], construction safety [34,35],
construction risk assessment [36,37], and diagnosis of related defects [38].

SVM uses a supervised learning algorithm and is a learning method for addressing
classification or regression problems. An SVM obtains support vectors from specific training
data by addressing mathematical problems of quadratic programming [39]. An SVM is
frequently applied for spatial feature identification of image data and in engineering
structures such as detection or classification. Li et al. [40] implemented bridge crack
recognition to use the greedy search-based support vector machine. Hadjidemetriou
et al. [41] used the SVM to automate pavement patch detection and quantification. Liu
et al. [42] proposed a technique for fire damage identification of reinforced concrete beams
with the SVM. Chen et al. [43] exploited an SVM-based evaluation approach and rust
recognition for steel bridges.

Additionally, ML can extract complicated connected modes of parameters potential
in large amounts of data and is an adequate method for building a classification model
of the concrete defect [44]. Okazaki et al. [11] stated the importance of employing ML to
defect prediction for infrastructure. In the past 20 years, some scholars have proposed
multiple hybrid ML algorithms to analyze construction defects. These algorithms include
DT, BN, ANN, SVM, cluster analysis (CA), association rules (AR), genetic algorithm (GA),
and fuzzy logic (Table 3).

Table 3. ML algorithm analysis using project defect statistics and comparisons.

Author Algorithm Description

Sinha and
Fieguth [7]

ANN and fuzzy
logic

ANN and fuzzy logic are proposed for the detection of
defects by using features from underground

pipe images.

Cheng et al. [8] GA and AR
Using Genetic Algorithm (GA)-based association rules
(AR) enhanced construction management by causation

analysis and defect prediction.

Elmasry et al. [9] BN
The BN developed a defect-based deterioration

employing the likelihood of occurrences from the
sewer pipelines.

Lin and Fan [10] AR, CA and
fuzzy logic

Combining association rules (AR), cluster analysis (CA),
and fuzzy logic, they mine the causal relations between

inspection grades and construction defects.

Lee et al. [13] AR
AR is used to find the between defect causality, and
social network to explore indirect causality among

defects.

Chae and
Abraham [45]

ANN and fuzzy
logic

The proposed multiple ANN and fuzzy logic recognize
the various conditions of defects from sanitary pipelines.

Cheng and
Leu [46] CA Integrating-based clustering and affinity diagram (KJ

method) to classify bridge construction defects.

Gui et al. [47] GA and SVM
The genetic algorithm based SVM had for the large-scale

civil engineering structures to detect the
damage/defects.

Lin and Fan [48] DT
DT were developed for classification rules of defects to

compare the performance of CART, CHAID,
and QUEST.

Fan [49] AR and BN
The AR and BN (hybrid ML) approach was adopted to
find relationships and probability in construction defect

data and assess the risks of defects.
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3. Research Methodology

The utilization of ML involves a computer system calculation that addresses problems
intelligently by imitating the thought process of the human brain [50] in solving prediction
or classification issues [51]. In ML, many algorithms and technologies, such as DT, ANN,
and SVM, have been used to execute prediction tasks and classification models [52,53].
Classification and regression are used to acquire a group of models by training information,
and the model can be applied to predict the group category of unclassified data. Both
models build a system of feature (input) and label (output) relationships. The goal is to
establish a model that can be applied to predict unknown data with similar characteristics.
Moreover, the classification and regression outputs are discrete and continuous values,
respectively. In the former, the data are assumed to be correctly labeled, whereas in the
latter, the data class labels are derived from random variables [54].

The ML algorithm intelligently learns and acquires rules from data, then analyzes
these rules to classify unknown data. The aim of this study is to analyze the hidden pattern
of the defect information gathered by the committee using the construction inspection data
in public projects. Moreover, ML was utilized to identify potentially valuable features
related to target variables and defects and to assess the benefits of the classification.

3.1. Decision Trees (DT)

DT sets target variables and selects branches to present as a hierarchical structure to
explore rules. A pruned DT can discover the hierarchical relationship between decision
variables and target variables, and use it for prediction. A DT is a supervised ML algorithm
that can be employed as an effective technology for multivariate analysis [55]. DT algo-
rithms including C5.0, classification and regression tree (CART), Chi-squared automatic
interaction detector (CHAID), and quick unbiased efficient statistical tree (QUEST) are
commonly applied in academia and the industry [56].

3.1.1. CART Algorithm

Breiman et al. [57] proposed the CART algorithm is a binary splitting technology.
After training the CART, pruning is implemented, and the error proportion is adopted as
the base for pruning. The CART with the least number of tree layers provides the most
valid classification and applies to target variables expressing categorical and continuous
data. Accordingly, the target variables represent categorical and continuous data, then
classification and regression trees may be employed, respectively. The splitting condition
in the CART algorithm is determined based on the Gini index. The object of the Gini index
is to determine the largest number of classifications from the dataset in other categories at
different nodes. The smaller the Gini index, the more uneven the category allocation of the
data is. This implies that if the purity of category in the subset produced using the splitting
point is higher, then the capability to discriminate among different categories is better. If a
dataset (S) includes m data, Fi is the relative frequency that the data of category i occurs in
S. The equation of the Gini index is given as follows.

Gini(S) = 1−
m

∑
i=1

Fi
2

(1)

3.1.2. CHAID Algorithm

Kass [58] proposed CHAID as an implemented Chi-squared test to determine the split-
ting condition. Moreover, a probability value determines whether the splitting operation in
the CHAID has to be continued to evaluate possible predictive variables. In the algorithm,
the significant differences among the categories of dependent variables are tested with all
variables. When the insignificant categories are merged into a homogeneous class, and the
remaining categories are repeatedly examined until the differences become insignificant.
The CHAID is used to compute the feature branches, and they can be separated into merge
and split. In the first step, each variable is regarded as a different group, and the value of



Symmetry 2022, 14, 372 8 of 22

the merger is set. In each operation procedure, the two branches of the tree are pairwise
comparisons primarily to define whether p-value significantly differs. If the p-value is
greater than the merger value, and the two branches are merged into one branch, which
represents that the required significance level is not achieved; then, the examination is
repeated. The procedure is continued until all the outcomes obtained after the pairwise
branch examination are significant. The second step, the value of the split is set, and all
branches containing more than two categories are examined. If p-value is less than the split
value, the variables of different categories are split into different branches, which represents
that branch being significant.

3.1.3. QUEST and C5.0 Algorithm

Loh and Shih [59] proposed the QUEST algorithm, which is used for classifying tree
structures. The splitting rule in this algorithm assumes that the target variable is continuous.
This algorithm has a faster computation speed than the other ML based on DT and can also
prevent the bias present in those algorithms. The QUEST algorithm is more suitable for
mult-category variables; however, it can only calculate binary attribute data. Quinlan [60]
proposed that the C4.5 is incapable of processing continuous attribute data. C5.0 was
developed to overcome this drawback. It adopts information gain as the standard for
determining the variables of branches and uses cross-validation and boosting training
data for faster and more accurate DT analysis. The C5.0 algorithm evaluates the amount
of information under different conditions to find the characteristic that can obtain the
maximum gain based on the information frequency of categories. As in the DT branch, the
overall information involving all categories is presented in Equation (2). The frequency
of occurrence in the category can be defined as Fi, and the information of the category is
−log2 Fi. The above four DT algorithms are summarized in Table 4 [48].

Info(S) = −
j

∑
i=1

Fi× log 2(Fi) (2)

Table 4. Description of decision tree algorithms.

Attribute CART CHAID QUEST C5.0

Variable type Continuous or
category Category Category Continuous or

category

Number of
branches Two More than two Two

Continuous:
more than two;
Category: two

Branching
variable

Single or
multiple
variables

Single variable
Single or
multiple
variables

Single variable

Splitting rule Gain index Chi-square test F/Chi-square
test Information gain

Prior probability
of classification Yes No Yes No

Tree pruning Test sample or
cross-validation Stopping rules Test sample or

cross-validation

Simultaneous
branching and

pruning

3.2. Bayesian Network (BN)

BN is a probability model, and it adopts a graphical pattern to describe the relationship
between variables that graphically displays statistical influence by utilizing the causality
between variables for conducting predictions. The aim of using a BN is to analyze the
probability of an uncertain event in a decision problem by using a set of random variables
and to determine the influence relationship between the variables. BN can be modified
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at any time based on new information or evidence and then pushes out the posterior
probability of uncertain events [49].

A BN, that is, D = < M, N>, a set of conditional probability distribution (CPD) elements
and consists of a network structure. In Part I, M is a set of dependent or conditional
independent relationships in the model, which is directed acyclic and describes the network
structure built by a set of variables X = {X1, X2, X3,. . . . , Xn}. These variables are represented
by nodes, and the relationship is represented by a link. In Part II, N is a set of CPD
elements connected with variables. Parents (xi) represents the parent node of Xi in M, and
P(Xi|parents(xi)) represents the CPD of node Xi under the parent node (parents(xi)). The
joint probability distribution P(X) is combined with M and N. The equation is as follows.

P(X) = P(X1, X2, X3, · · ·Xn)
= ∏n

i=1 P(Xi | x1, x2, x3, · · · , xn )
= ∏n

i=1 P(Xi | parents(xi))
(3)

In summary, BN displays a set of random variables, and the n sets of CPD models are
obtained using graphs of links and nodes. A model with n CPDs is used to present the
relationship and strength between the variables. A link between the variables represents an
interaction between the events, and a node represents a variable (such as a latent variable,
a variable of an observed value, or an unknown parameter). When there is no connection
between the nodes, it implies conditional independence.

3.3. Artificial Neural Network (ANN)

ANN is an information operation system that imitates biological neuronal networks,
can receive information from other neurons or external environments, and can solve
complex problems. ANN uses different learning algorithms to ensure that it outputs the
desired result and is trained by a network structure. ANNs are constituted of many artificial
neurons, wherein the output of each neuron is used as an input for other neurons. ANNs
typically use a set of data to develop a model to predict, classify, and estimate. The equation
is as follows.

Yi = f (∑ WijXi−θj) (4)

Yi and Xi are the output and input of the neuron signals, respectively, and f is the
activation function. The purpose of the activation function is to multiply the values input
by other neurons with the weight and add all values to convert the output values of the
neuron. Wij (weight) is the connection strength of the ANN, and θj is the threshold of the
neuron model. An ANN comprises multiple nerve cells. Each of the cell has a weight
value Wij for indicating the influence intensity of the i-th input on the j-th output. When all
input values are multiplied by the weight, the total value is greater than the threshold (θj).
The total value is converted to an output value through the activation function, and it is
passed to the next neuron. For ANNs, multi-hidden layers in which deep learning is used
to gradually summarize higher-level features from input data have been proposed [61,62].

3.4. Support Vector Machines (SVM)

An SVM is an ML algorithm proposed by Vapnik [63] that is a type of classification
model and is based on the statistical learning method. The basic theory of an SVM is to
identify the optimal hyperplane of the boundary in high-dimensional space to classify
binary categories and obtain a minimum misclassification rate. The optimal hyperplane is
segregated based on maximizing the margin between categories in the features and ensuring
reasonable generalization capacity of the result [64]. SVM is trained using existential data,
and the analyzed data are used to select several features (support vectors) to represent the
overall data. A small number of extreme values are removed in advance, and then the
selected support vectors are packaged into models.

The major steps in this study are shown in Figure 3. In this work, the first stage is to
select target variables and decision variables from PWBMS and evaluate the classification
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models of seven ML algorithms. The second stage applies cross-validation to test results
and develops an optimal model of classification for project features.
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4. Analytical Results

ML constitutes developing algorithms or models for predicting results by learning
from the data features; it focuses more on predictive accuracy and computational effi-
ciency [54]. ML has the capability to identify structures and patterns hidden in massive
datasets, without assuming a predetermined function as a model [11]. ML algorithms
are divided into two learning models: unsupervised and supervised learning. Most ML
algorithms are supervised; labels are used to train a model using known answers (input),
after which the model can predict output for new input data.

4.1. Cross-Validation

In the supervised ML algorithm, a machine learns from the training data to perform
better models in the testing data. However, deviations (errors) exist between predicted
outputs of the training and testing. The errors of the training and testing groups are known
as the “training error” and “generalization error”, respectively. The preferred supervised
ML demonstrates a smaller generalization error. However, the property of the new data
cannot be expected, and actually executing can only minimize training errors. If the training
model is highly complex, then overfitting is caused. Moreover, if the model is very simple,
then underfitting is caused. Supervised ML encounters the problems of overfitting and
underfitting, minimizing the difference between the two. Although it is possible to conduct



Symmetry 2022, 14, 372 11 of 22

more iterations to further reduce the error, long training with very few errors will result in
an overtraining problem and, as a result, the models will memorize the unique training
patterns of the samples presented but be unable to generalize them [65].

To make the model meet the training group after a certain amount of learning and
training, it can better adapt to the new sample and measure the learning level of the model.
The performance of the model must be validated while providing the best choice among
multiple models. Thus, cross-validation avoids reliance on particular training and testing
groups, and it is a measurement for evaluating reliability and accuracy. Cross-validation is
one of the most important concepts in any type of data modeling. It tries to leave a sample
set, does not train the model on this sample set, and tests the model on that sample set
before finalizing the model.

A k-fold of cross-validation randomly divides data into two groups containing training
and testing groups. Training data are divided into k subsamples, and a single subsample is
retained as the data for the test model. The remaining k−1 samples are used for repeating
training k times. Each subsample is tested once, and the average k is the obtained accuracy
of the results. Because the statistical effect has not improved much in a larger number
of cases, the value of k should be between 5 and 10 [66]. Therefore, this study used
tenfold cross-validation to randomly divide construction inspection data into 10 groups.
One group was used for testing, and the remaining nine groups were used for model
training (Figure 4). The advantage of this method is that the subsamples are generated
simultaneously, the subsamples are trained and tested repeatedly, and the results are
verified once. The accuracy of each model was evaluated using the average prediction
results of the ten groups. This method can reduce the bias during the model evaluation and
can overcome the unevenness in data caused by sampling only once, and the classification
model prediction is not sufficiently accurate. While estimating the performance of each
model and comparing two or more accuracy prediction methods, the errors caused by
random sampling can be reduced to evaluate the benefits of various feature classifications
and the reliability of the model.
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Classification involves assigning samples to a predefined category, and the target
variables are labeled, representing the category membership of input data. A ML algorithm
identifies a classifier set of feature variables and exploits a model to predict category
membership of new data with unknown labels, based on the classifier set identified [54].
This study builds a classification model in which construction features are outputted as
responses, and defect types are inputted as predictors. This research applies to the following
seven types of classification algorithms in the SPSS modeler software: CART, CHAID,
QUEST, C5.0, BN, ANN, and SVM algorithms. To construct seven classification models, the
attributes of 1015 cases of construction inspection were analyzed. The selected decision
variables were X1–X4 (defect types), and the target variables were Y1–Y3 (project features).

The most major consideration in the model is the impartial evaluation of its perfor-
mance. To achieve this goal, the data of construction inspection is divided into training
groups and testing groups. Training and testing models is an important process for imple-
menting supervised ML algorithms. Therefore, seven models of tenfold cross-validation
were used in this research, and the average accuracy of classification models are summa-
rized in Table 5. The ANN for engineering level (Y1) generated the best prediction results
with an accuracy of 88.24%, in the 1015 projects of construction inspection data. The SVM
obtained the best results for project cost (Y2) and construction progress (Y3) with accuracies
of 78.91% and 76.18%, respectively.

Table 5. Accuracy of the classification models for the target variables.

Target Variable
The Best of

Testing Set (%)

The Average Accuracy of Tenfold (%)

CART CHAID QUEST C5.0 BN ANN SVM

Engineering level
(Y1) 84.87 (ANN) 72.31 70.37 66.03 76.47 58.52 88.24 80.74

Project cost (Y2) 73.75 (SVM) 68.42 69.49 68.81 71.45 61.2 69.59 78.91
Construction
progress (Y3) 71.46 (SVM) 58.54 61.9 59.04 68.49 56.13 58.47 76.18

In addition, this study used the SPSS modeler automatic classifier to construct a
predictive evaluation model and used construction inspection data to train the model.
The accuracy of the model was evaluated using the testing set and was compared with
the results of the binary data. Because only a portion of the data was used to derive the
classifier, the evaluation results are not necessarily optimized. Therefore, it is necessary to
compare the evaluation results with the cross-validation results.

Furthermore, the target variables contained the engineering level (Y1), project cost
(Y2), and construction progress (Y3) in the testing group. The ANN can accurately classify
engineering level (Y1), and the SVM can gain accurate results of project cost (Y2) and
construction progress (Y3). In this study, the results of the models were consistent with
the cross-validation (Table 5). In the engineering level, the ANN correctly classified the
numbers of A, B, C, and D as 205, 68, 132, and 38, respectively (Figure 5). The accuracy
of the testing set was 84.87%. In project cost, the SVM correctly classified the numbers of
P, S, and L as 339, 18, and 28, respectively, and the accuracy of the testing set was 73.75%
(Figure 6). In construction progress, the numbers of correct classification of the SVM were
283 (N represents less than 50%) and 90 (Y represents more than 50%), and the accuracy of
the testing set was 71.46% (Figure 7). In general, the SVM demonstrates better classification
accuracy for the three target variables (project features), followed by C5.0; however, the
ANN has the most illustrious classification for engineering level.
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4.2. Importance Value of Defect

In this research, importance values were applied to indicate the relative importance of
features. A higher importance value of a feature represents powerful classification ability.
Feature importance was assessed by calculating the total decrease in the impurity of each
feature. For the given algorithm, the sum of importance values of all selected features
should be 100% or 1 [67]. In this research, the importance values of the features were
between zero and one, and the total of the relative importance values of all defects should
be one.

Figure 8 presents the importance value of the C5.0, ANN, and SVM models for
defects in the engineering level (Y1) classification. It is obvious that the most important
defect identified by the three models was “substandard concrete pouring or ramming
(W2)”, which implies that W2 has the highest classification capability of all defects. W2
was followed by “debris on concrete surface (W5)” and “failure to log the construction
journal (Q75)”. However, the C5.0 algorithm excludes Q75, thus indicating that Q75 has
nonsignificant predictive ability in the C5.0 algorithm. Therefore, unimportant input
features are preferentially deleted.
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Both ANN and SVM models selected W2, W5, and Q75 as relatively important defects,
and the important values of the three defects were similar. The C5.0 algorithm is relatively
more important for W2. If the target variable is changed to “project cost (Y2)” and “con-
struction progress (Y3)” to perform another round of testing, cross-validation results reveal
that the SVM can produce the best prediction accuracy. The critical defect of the project
cost is “failure to implement a quality control checklist (Q76)” and that of the construction
progress is “debris on concrete surface (W5)”.

4.3. Confusion Matrix

The model of supervised ML yields different results for different algorithms, and the
prediction performance can be evaluated from the two parts of classification and regression.
(i) Classification: the classification model should be verified against the results of the test
set data and evaluated using a confusion matrix (output value is discrete). (ii) Regression:
the extraction of classification rules vary based on the problem to be solved, and the
difference in rule interpretation varies due to the environment. Thus, after the objective
evaluation, experts and scholars select the most suitable model based on the background
of the problem (output value is continuous). If the variable of the predicted classification
label has only two values of zero and one, it is a binary classification. If the label variable of
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the predicted classification has more than two values, it is a multiclass classification. In this
study, construction progress (Y3) is a binary classification, and the engineering level (Y1)
and the project cost (Y2) are multiclass classifications.

The confusion matrix is an important tool for evaluating the classification model. There
are two categories of a model, positive and negative, and the prediction or classification
result is consistent with the actual category of the data, which is known as “True”. If
the inconsistency is known as “False”, a discriminating error is caused, assuming that
the category is actually positive, but it is classified as negative (false negative, FN) and
the category is actually negative, but it is classified as positive (false positive, FP). If the
category is actually positive, the classification is also positive (true positive, TP), and the
category is actually negative, and the classification is also negative (true negative, TN).
Thus, based on the classification result presented in Table 6, and the accuracy of the model
can be calculated as presented in Equation (5).

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

Table 6. Confusion matrix of the classification model.

Actual
Predicated

Positive Negative

Positive TP FN
Negative FP TN

For example, the ANN correctly predicts that the value of engineering level A, B, C,
and D, that is, 425, 135, 302, and 84, respectively, when divided by the total number of
1015. Thus, the accuracy is 93.20% (Table 7). ANN can process different types of original
data, learn through data training, improve the accuracy of prediction, and establish a
classification model. Compared with other classifiers, the disadvantage is that the ANN
does not easily interpret the relationship between input and output during the operation.
Moreover, the SVM prediction accuracies of the project costs and construction progress,
which were 85.32% (Table 8) and 79.01% (Table 9), respectively, were used in this study.
The evaluation results of the seven classification models are presented in Table 10.

Table 7. Confusion matrix and accuracy of ANN for engineering level (Y1).

ANN Predicated
Total Recall (%) Accuracy

(%)Actual A B C D

A 425 5 22 3 455 93.41

93.20

B 7 135 11 4 157 85.99
C 2 1 302 4 309 97.73
D 0 5 5 84 94 89.36

Precision (%) 97.93 92.47 88.82 88.42 n = 1015 Mean = 91.62

Table 8. Confusion matrix and accuracy of SVM for project cost (Y2).

SVM Predicated
Total Recall (%) Accuracy

(%)Actual P S L

P 66 20 52 138 47.83

85.32
S 14 166 43 223 74.44
L 6 14 634 654 96.94

Precision (%) 76.74 83.00 86.97 n = 1015 Mean = 73.07
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Table 9. Confusion matrix and accuracy of SVM for construction progress (Y3).

SVM Predicated
Total Recall (%) Accuracy (%)

Actual N Y

N 549 24 573 95.81

79.01Y 189 253 442 57.24

Precision (%) 74.39 91.34 n = 1015 Mean = 76.53

Table 10. Assessment results of algorithm on three target variables.

ML Algorithm CART CHAID QUEST C5.0 BN ANN SVM

Engineering
level (%)

Accuracy 79.01 77.83 67.39 78.13 62.96 93.20 82.17
Precision 79.54 76.8 65.13 75.57 87.0 91.91 92.01

Recall 74.17 78.05 68.19 73.79 90.12 91.62 75.35
F1 76.76 77.42 66.62 74.67 88.53 91.76 82.85

BEP 80.0 79.30 64.60 74.0 87.20 90.80 95.30

Project cost
(%)

Accuracy 76.16 78.82 71.72 73.89 65.02 80.89 85.32
Precision 76.14 73.94 69.09 62.35 53.29 91.81 82.24

Recall 58.18 64.39 48.93 56.97 53.98 64.11 73.07
F1 65.96 68.84 57.29 59.54 53.63 75.50 77.38

BEP 82.20 73.80 71.0 59.0 47.0 87.80 83.90

Construction
progress (%)

Accuracy 62.96 64.14 58.72 70.25 58.62 75.37 79.01
Precision 64.98 64.92 63.17 69.97 58.03 74.95 82.86

Recall 58.97 60.89 53.12 70.26 58.07 74.9 76.53
F1 61.83 62.84 57.71 70.11 58.05 74.92 79.57

BEP 67.80 67.0 64.30 71.20 58.60 75.90 85.10

The performance of a classification model is expressed in terms of accurate estimates,
particularly when the numbers of a certain category are relatively small and demand
more attention. Therefore, only accuracy is employed; then, other categories with higher
number of category rates are prioritized. However, extremely small numbers of categories
may indicate valuable information, which can be used as an evaluation criterion by using
precision and recall. Precision expresses the number of all prediction categories that actually
belong to the category, as given in Equation (6). Recall refers to the fact that the actual
result of a certain category correctly predicts the rates, as presented in Equation (7).

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

If precision is low, recall is typically higher and vice versa, and both are a set of opposite
measurements. The precision–recall (P–R) curve is acquired by plotting the precision and
recall along the vertical and horizontal axes, respectively; according to the classification
result of the ML classifier, the two sequences above are executed. The P–R curve visually
displays the precision and recall of the ML classifier (Figures 9–11). If the P–R curve of the
classifier is covered by the other classifier (completely contained), it can be judged that
the classification performance of large curves is better than the smaller; however, the P–R
curves of the two intersect, and it is difficult to judge the performance. Therefore, it can
be measured by using break even point (BEP). When the precision and recall values are
the same, the point of intersection in the P–R curve is BEP, and the recall value of BEP is
adopted. In this research, the ML algorithms with the highest BEP values for engineering
level, project cost, and construction progress were SVM (95.3%), ANN (87.8%), and SVM
(85.1%), respectively (Table 10).
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The F1 score has been widely employed for imbalanced data classification, which is
an assessment metric determined by combining precision and recall [68]. In the training
classification, the expectation is that the precision is as high as possible and also that the
recall is as high as possible. In some examples, the two indexes are negatively correlated.
The F1 of the model is high when both precision and recall scores are high. In general, the
mean calculation treats each value equally, but the harmonic mean gives higher weight
to smaller values. Therefore, the adoption of the F1 score harmonizes the two (as shown
in Equation (8), and the higher the F1 score, the higher the performance of the model. In
this research, the highest F1 scores in the engineering level, project cost, and construction
progress were obtained for the ANN (0.918), SVM (0.774), and SVM (0.796), respectively
(Table 10).

F1 =
2× precision× recall

precision + recall
(8)

DT is the best in generating and judging rules, but the model is poor in predicting the
ability to process continuous values, and too many types of features have a great impact on
the results and their performance. The ANN model can easily construct nonlinear input
variable models, which is more flexible, but the relationship between the output variables
and the input variables of the process is not easy to explain. In spite of the ascendancy
of SVM over other machine learning techniques, it suffers from optimization problems,
such as the trade-off minimization error and between maximization margin. SVM may
face issues with selecting items for classification and suffer from different performances
in the classification, relying on the kernel functions that are used. Thus, for the practical
application of such multi-class classification results, it is also necessary to select the general
criteria that are suitable for the algorithm.

In the past, research on defects mostly used traditional statistical methods or multi-
variate techniques. It was impossible to effectively analyze multi-dimensional data features
and dynamic projects. In particular, it is difficult to perform analysis using traditional data
processing techniques for big data, while machine learning is utilized to design models to
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learn tendency, so as to focus on predictions based on known features learned from the
training datasets. Therefore, importing ML can analyze the features of defects from a large
number of projects and then implement effective construction management. So far, there
has not been a sufficient model to mine meaningful information from a large database of
defects. This research can establish more prediction applications in construction defects
and contribution through comprehensive and accurate model results.

Each ML method has its own advantages and limitations, and the characteristics of
its application define which method is most suitable. Therefore, it has become important
to shift the various algorithmic options from exploratory to targeted and reasonable im-
plementations, since different ML algorithms can produce different levels of accuracy and
performance depending on the application [69]. In addition, different machine learning
methods are adopted according to the collected information, which is also related to the
type of issue to be addressed: determining the nature of the problem, testing machine
learning algorithms, and evaluating the suitability of these algorithms for a given problem.
Wolpert and Macready [70] have stated that it is impossible to adopt unique optimal meth-
ods, and the best technique always relies on the character of the issue. The selection of the
appropriate ML algorithms depends on characteristics and the amount of training data in
the dataset, and the evaluated features being considered [71]. There is no one algorithm
that has universal superiority for all problems; instead, there must be an algorithm that
performs best in solving a certain type of problem. Each machine learning method has
its own data that are suitable for processing, and there is no absolute perfect method;
especially, when facing complex problems and a large amount of data, different algorithms
are usually needed to effectively overcome them. The novelty of this study is to discover
the correlation of project features from massive construction data through ML algorithms
and to construct an optimized classification model based on classifier performance.

5. Conclusions

In this research, supervised ML algorithms (DT, BN, ANN, and SVM) were selected
to classify projects and, according to the features of the construction data, were adopted.
Seven classification models were built, and the classification accuracy and performance
were evaluated. The cross-validation results demonstrated that the classification models
adopting SVM, ANN, and C5.0 revealed higher classification efficiency and more reliability
than other ML algorithms. The confusion matrix evaluation results revealed that ANN
yielded the highest classification accuracy for engineering level (Y1: 93.20%). Moreover,
SVM presented the most favorable classification result for project cost (Y2) and construction
progress (Y3) with accuracies of 85.32% and 79.01%, respectively. In general, the SVM
had better classification performances for the three target variables (project features). The
most important defect of the ANN for the engineering level (Y1) classification model was
“substandard concrete pouring or ramming (W2)”. The most important defects of the
SVM for the project cost (Y2) and construction progress (Y3) classification models were
“failure to implement a quality control checklist (Q76)” and “debris on concrete surface
(W5)”, respectively.

ML had a wide variety of classifiers, and each classifier had its own advantages and
disadvantages. The prediction results of the classifier were related to the characteristics
of the data to be classified, for example, the size of a dataset, the type of category, and di-
mensions. There was no single classifier that could have a perfect classification effect for all
given problems. Thus, it was necessary to further analyze and compare the performance of
the classifier based on various data training and testing results to determine the appropriate
classification model. This research developed an optimized model for classifying project
features and offered a comprehensive comparison among the effectiveness of seven ML
algorithms. Therefore, project managers will be able to comprehend classification models
and defects and use this to identify the most appropriate algorithm for classifying various
project features.
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Due to the parameter settings, operating principles and certain properties can limit
the application of classification models. Furthermore, the feature conditions of tested data,
for example, sample characteristics and construction types, may differ. The selection of
appropriate models for project features classification may be discussed in the future. The
imbalance of category samples is not the main source of classification difficulties. The
reason behind it requires a more detailed observation of the data distribution, and the
behavior of the model during the training process. Moreover, future studies must consider
the goal of the research and data characteristics to determine the appropriate model to use.
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