Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement
Abstract
:1. Introduction
2. Configuration of Critical Points in the Case of Regular Simplex
3. Special Coordinates (Three-Dimensional Case)
4. A Special Symmetric Case of
5. Critical Points under , and
5.1. The Set
5.2. The Set
5.3. The Set
5.4. The Set
5.5. Conclusions of This Section
6. Regular Tetrahedron Case
6.1. The Set
6.2. The Set
6.3. The Set
6.4. The Set
6.5. Conclusions of This Section
7. Product of Hessians
7.1.
7.2.
7.3.
7.4.
7.5. Conclusions of This Section
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Further Reduction and an Associated Characteristic Function
Appendix A.1. Step 1
Appendix A.2. Step 2
Appendix A.3. Step 3
References
- Aomoto, K.; Kita, M. Theory of Hypergeometric Functions; With an Appendix by Toshitake Kohno. Translated from the Japanese by Kenji Iohara; Springer: Tokyo, Japan, 2011. [Google Scholar]
- Orlik, P.; Terao, H. Arrangements and Hypergeometric Integrals; MSJ Memoirs 9; Mathematical Society of Japan: Tokyo, Japan, 2001. [Google Scholar]
- Aomoto, K.; Machida, Y. Some problems of hypergeometric integrals associated with hypersphere arrangement. Proc. Japan Acad. Ser. A Math. Sci. 2015, 91, 77–81. [Google Scholar] [CrossRef]
- Aomoto, K.; Machida, Y. Hypergeometric integrals associated with hypersphere arrangements and Cayley–Menger determinants. Hokkaido Math. J. 2020, 49, 1–85. [Google Scholar] [CrossRef]
- Orlik, P.; Terao, H. Commutative algebra for arrangements. Nagoya Math. J. 1994, 134, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Aomoto, K.; Ito, M. Product of Hessians and Discriminant of Critical Points of Level Functions for Hypergeometric Integrals. In Proceedings of the Mathematical Amplitude 2019, Intersection Theory and Feynman Integrals, Padova, Italy, 18–20 December 2019; Available online: https://pos.sissa.it/383 (accessed on 14 January 2022).
- Gantmacher, F.R. The Theory of Matrices, Volume 2; Translated by Hirsch, K.A.; Chelsea Publishing Co.: New York, NY, USA, 1959. [Google Scholar]
- Takagi, T. Lecture on Algebra; Kyoritsu Shuppan Co., Ltd.: Tokyo, Japan, 1948. (In Japanese) [Google Scholar]
- Abhyankar, S.S. Ramification Theoretic Methods in Algebraic Geometry; Annals of Mathematics Studies, No. 43; Princeton University Press: Princeton, NJ, USA, 1959. [Google Scholar]
- Abhyankar, S.S. On the semigroup of a meromorphic curve. In Part I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977); Kinokuniya Book Store: Tokyo, Japan, 1978; pp. 249–414. [Google Scholar]
- Minkowski, H. Diophantische Approximationen; Eine Einführung in die Zahlentheorie; Chelsea Publishing Co.: New York, NY, USA, 1957. (In German) [Google Scholar]
- Takagi, T. Theory of Algebraic Numbers, 2nd ed.; Iwanami Shoten: Tokyo, Japan, 1971. (In Japanese) [Google Scholar]
- Zariski, O.; Samuel, P. Commutative Algebra, Volume I; With the Cooperation of Cohen, I.S.; D. Van Nostrand Co., Inc.: Princeton, NJ, USA, 1958. [Google Scholar]
- Falcão, M.I.; Miranda, F.; Severino, R.; Soares, M.J. Dynamics of the Coquaternionic Maps x2+bx. Rend. Circ. Mat. Palermo 2022. [Google Scholar] [CrossRef]
- Macaulay, F.S. Some formulae in Elimination. Proc. Lond. Math. Soc. 1903, 35, 3–27. [Google Scholar] [CrossRef]
- Gröbner, W. Moderne Algebraische Geometrie; Die idealtheoretischen Grundlagen; Springer: Innsbruck, Austria, 1949. (In German) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aomoto, K.; Ito, M. Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement. Symmetry 2022, 14, 374. https://doi.org/10.3390/sym14020374
Aomoto K, Ito M. Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement. Symmetry. 2022; 14(2):374. https://doi.org/10.3390/sym14020374
Chicago/Turabian StyleAomoto, Kazuhiko, and Masahiko Ito. 2022. "Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement" Symmetry 14, no. 2: 374. https://doi.org/10.3390/sym14020374
APA StyleAomoto, K., & Ito, M. (2022). Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement. Symmetry, 14(2), 374. https://doi.org/10.3390/sym14020374