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Abstract: We state the product formulae of the values of the levels of functions at critical points in-
volved in asymptotic behaviors of hypergeometric integrals associated with symmetric arrangements
of three-dimensional spheres. We show, in an explicit way, how the product of the Hessian, regarding
the level functions at all critical points, is related to the behavior of its critical points. We also state
two conjectures concerning the same problem associated with general hypersphere arrangements.
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1. Introduction

For a given ajp € R and a; = (Déjl,...,lx]‘n) eER" (j=1,2,...,n+1), let f; be real
quadratic polynomials in R[x] = R[xy, ..., x,] specified by
Apdates fi(x) = (x,2) +2(aj, ) + wjo =[x + o — | * + o,
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where (x,y) := Y, xyyy and |x|> == (x,x) for x = (x1,...,x4), ¥ = (y1,...,yu) € R".
Let O; be the point —a; € R", which is the center of the hypersphere {x € R" | f;(x) = 0}.
The radius 7; > 0 of S; and the distance pj; > 0 between O; and Oy are given by
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For A = (Aq,...,Apy1) € R*™ et &(x) = ®(xy,...,x,) be a multiplicative meromorphic
function on C" specified by

We set X := C" — U“H S;. For 0 < r < n, we denote by )" = O’ (X, *U”H j) the space

of rational r-forms on X whose singularities all lie in the set U”Jrl S;. For the complex

0000 Yot Y2 Yy Yoon Y,
where V : O — Q1 is the covariant derivation given by
Vi :=dp+dlogd Ay (pe),
the rth twisted de Rham cohomology Hg, (X, ()') is defined by
HS (X, Q) :=Ker(V:Q" — Q") /Im(V: Q"1 — Q).

See [1,2] for more details. For ¢(x)dxy A --- Adx, € O as a representative in HY, (X, Q)),
the hypergeometric integral associated with ®(x) over an n-twisted cycle ; is defined as

n+1
/CD x)dxy A -- /\dxn—/q) Hf] Yidxy A - Adxy.

For an arbitrary integer N, we put A = Nu + A/, where u = (p1,...,4nr1) € Z"! and
A= (A},...,AlL) € R" are fixed. When ¢(x) is independent of N, we are interested in
the asymptotlc behavior of the following integral as N — co in the direction y:

jNy+/\’(§0;3) = /5 NF(X)(P Hf] de1 A ANdxy,

where
n+1

X) = Y ilog fi(x)
j=1
For the real valued level function %eF corresponding to [eNF(¥)| = eNReF(¥) the singularity
of the gradient flow of v = grad fReF in X coincides with the set of its critical points given

by
n+1

C:={xeX|dF(x Zy]dlogf] x) =0}. ()
By definition dF is explicitly written as

n n+1 2<xl/ + ‘X]'I/)

or = § o= 1 (3 e = 1 (™ 7 e,
j=1 i j

v=1 " j=1

In this paper, we assume that the direction y of the asymptotic behavior is specifically fixed
as
p=1=(1,1,...,1) € Z"*

Then, the set C of critical points given by (2) is rewritten as

C={x€X|Gi(x) = Ga(x) = --- = Gu(x) =0}, 3)
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where

1 aF n+1x +
Gy(x) := =)y =L

= = v=1,2,...,n).
2 dxy = fi(x) ( )

The functions G, (x) (v = 1,2,...,n) play an important role in describing the asymptotic
behavior of [y, (@) for large N (see Theorems 4.9 and 4.10 in [1]). The Hessian of F

is defined by Hess(F) := det (%)
(v=12,...,n),ie,

1<ij<n and is expressed as the Jacobian of G, (x)
1 9(G1,Gy,...,Gn)
—Hess(F) = .
n ess(F) o(x1,x2,..., %)

According to the method of steepest decent (saddle-point method), if an n-twisted cycle 3

includes the critical point (saddle point) ¢ € C which gives the maximal value of 9R¢F on 3,
then the asymptotic behavior of Ty 1/ (¢;3) (N — o0) is expressed as

4)

7

TNt (933) ~ CD(C)Q)(C)\/(—N)”Hess(Fﬂx:C (N = o). ®)

If S; (1 <j <n+1) are located as general position in C", for generic exponents
A = (A1,...,Aus1) € R" the dimension of the nth cohomology H% (X, Q)') = Q" /VQ"!
as a C-linear space is known to be x = 21 1 ie., dim¢ HY (X, Q) = « (see [3,4] for hy-
pergeometric integrals associated with hypersphere arrangements). The basis of HY (X, (0')
can generally be chosen as an NBC (non-broken circuit) basis for a commutative algebra
associated with hypersphere arrangement (see [5]). The number x also coincides with the
absolute value of the Euler number of X. It also equals the number of the critical points of
the function F specified by (3) provided that they are non-degenerate and different from
each other. We denote by ¢; (1 < j < «) all of the critical points (real or imaginary) in X,
ie,C = {c¢j|1<j < «}. For arational function ¢ on X, we denote by N(¢) the product of
the critical values at all pointsin C, i.e.,

N(p) =]Teolc),

j=1
which is called the norm of ¢. Here, we state our first claim as follows.
Conjecture 1. Suppose that S; (1 < j < n+ 1) are located as general position in C". Then,
N (Hess(F)) #0
if and only if every critical point in C is different from each other.

Remark 1. When Conjecture 1 holds true, if the n-dimensional stable Lagrangian cycles 3; include
¢; € C as their limiting points, respectively, then by (5) the pairing

(In1+n (4’:';3]'))2]-:1/

where @;(x)dxy A --- Ndx, € QF are representatives in HE (X, )'), satisfies the following
asymptotic behavior

[T, ®(cj) 2
(—N)"N (Hess(F))

K

det (ﬁ”i(cj))i,j:1 (N — o),

det (jN1+/\’((Pi?3j))Zj:1 ~ J

which gives a criterion for C-linear independence of the set { T (¢;;3) |1 < i < x}. This is a rough
explanation as to why we consider Conjecture 1.
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In this paper, one of our aims is to confirm Conjecture 1 when n = 3 for a special
pyramid AO10,0304. The result is stated in Theorem 4. For this purpose, we need to
compute NV (f;) and N (Z?Ill f]-_l). In order to state the explicit expressions of N'(f;) and
N (2}7;“11 f]-_l) we introduce the Cayley—Menger determinants as follows.

Consider the (1 +3) x (1 + 3) symmetric matrix B = (bif)i,j:(l,*,l,Z,...,n Y
are given by bggp = 0, bx = 0, box = bp; = 1 (1<j<n+1),by, = rjz (1<j<n+1),
bij = p‘;Z] (1 < i,j <n+ 1)/ ie.,

whose entries

0 1 1 1 1 1
N T T R
1 0 1 Pz P P%,nﬂ
. 1 051 0 053 Ph p%,n+1
1 7% P§1 P%z 0 P§4 P%,nﬂ
1 i e P e O :
1 riﬂ P%z+1,1 P%H,z P%H,S P%H,n 0

The Cayley—Menger determinants are defined as the minors of the matrix of B. See [4].

Definition 1. Denote by p,;j = pj. the radius r; for j € {1,2,...,n+ 1} or 0 for j = .
The determinant

0 1 1

2 e 02

a(0 TN _p( Qi iy Y | Fim T P
0 K) “\Oky---kp /) |+ .
2 2

T T

is called the Cayley-Menger determinant, where | = {ji,...,j,} and K = {ky,...,kp} denote
two subsets of the indices in {*,1,...,n + 1}. We simply write B(0 J) instead of B (8 }) Notice
that B(0f) = —1, B(0%j) = 2r7 > 0, B(0jk) = 20% > Oand

B(0*jk) = —(pjk +1i — 1ie) (pjr — 1j + 1ic) (—pjic + 1j 4 1) (0jie + 1 + 7).
B(0jkl) = —(pjx +pji — ox1) (Pjx — pj1 + oxt) (—pjk + 0t + ort) (Ojx + 01 + Px1)-

Using the Cayley—Menger determinants, the latter assumption of (1) is rewritten as

it —1)"=iB(0j j+1 -+ n+1
TT erss = \/ (-1) (Zn]jm ) <0
k=1

forj=1,2,...,n.
Throughout this paper, we suppose the condition

(Ho) : B(0J)#0 and B(0x]) #0

for ] = {j1 <j2<---<jp} C{1,2,...,n+1}. The condition (Hy) gives the moduli space
of arrangement of n dimensional real hyperspheres in general position in C".
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Denote D; the n dimensional real open ball with boundary :eS; in R", where ReS; =
{x € R"| fj(x) = 0}. One sees that

(—=DVIB(0]) >0 forall non-empty J € {1,2,...,n+1},

where |]| is the Cardinality of J. In general every real critical point lies in U?:ll D; or the
real simplex AOj ... O, 1. If further

(—=D)VIB(0*]) <0 forallnon-empty J € {1,2,...,n+1},

then every intersection (Nje; Dj) N (Mieje Dy) is not empty, where Dy means the comple-
ment of the closure Dy. There exists a unique critical point of 9¢F (and so of F) there.

We now state the other claim of ours for the explicit forms of N'(f;) and V/ (Z"H fi D)
using the Cayley-Menger determinants.

Conjecture 2. Forj=1,...,n+1let IAbe theset {1,2,...,n+ 1} — {j}. Under the condition
(Ho), the norms N(f;) and J\/'(Z)”Jrl fi ) are expressed as

(0% 7) 0* K .
N(f) = n+1]2”HH Teel (1<j<n+1), ©)
p=1KcCI~
[K|=p
ntl 1 n+1
MY Z)=2(n+1)" @)
(L) =2 PH B0+ K
[K|=p

Remark 2. We call ¢ the unit relative to the set of all critical points C if N (@) does not vanish
under the condition (Ho). In this sense f; and ijfl are all units if Conjecture 2 holds for them.

Remark 3. Ifn = 2, (6) of Conjecture 2 implies

N(fi) = 72 B(0*12)B(0*13)B(0*72123)’
2035
2 *
N(f) =+ 34B(0*12) (o*zg)w,

2r3 B(0x123
N(fs) = 5- 34 B(0x13)B (0*23)(2[)%2)

7

which have been confirmed under the situation ry = ry = r3. See Theorems 5.19 in [6]. Moreover,
using these formulae, consequently N'(Hess(F)) is also obtained explicitly when AO10,03 is
an arbitrary isosceles triangle under r1 = ro = r3. Thus, Conjecture 1 is confirmed when n = 2,
r1 = 1y = r3 and p1p = p13. See also Corollary 7.16 in [6] for details.

Remark 4. Ifn = 3, (6) and (7) of Conjecture 2 are written as

2r2 B(0%12) B(0x13) B(0 % 14)

Nfi) = 248 1 1 1
. B(0%123) B(0%124) B(0 » 134) B(0 % 1234)
203, 203, 203, B(0234) ’

N(il)z 2.45  B(01234) o B ZP,zk'

24(r1ror3ry)? B(0 * 1234) 1<iZj<ked B(0 x ijk) 1<jk<a B(0 x jk)
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In Section 5 , we shall prove Conjecture 2 in a special pyramid case (n = 3) when the base triangle
AO10,03 is regular and each edge length pjy (1 < j < 3) and each radius rj (1 < j < 4) are all
equal respectively (see Corollary 2).

This paper is organized as follows. In Section 2 we confirm that Conjecture 2 holds
for the very special case, where AO; ... O, is the regular simplex and all hyperspheres
S; have the same radius. The result is stated as Theorem 1. From Section 3 to Section 7,
we discuss three-dimensional case. In Section 3, we introduce a special coordinate system
(denoted by t = (t1,tp,t3) € X C C?®) attached to a tetrahedron, i.e., the fundamental three-
dimensional simplex AO;0,0304, and by means of the projective map 1: X — X;t — x
we transfer the terms relative to C to those of C = 17!C = {t € X|§1 = §» = §3 = 0},
where g; are polynomials in ¢ of degree 3 given by (48). In particular, we call t; the basic
parameter, and a rational curve t, = ws(t1), t3 = ws(t1) passing through specified points in
C, which we call the interpolation curve of those points in C, plays an important role in this
paper. In Section 4, we restrict ourselves to a special symmetric case when AO10,0304
is a pyramid with an axis of symmetry whose base triangle AO;0,03 is regular and all
spheres have the same radius. The critical points are classified into typical four parts Cj
(1 <j <4). InSection 5, under the assumption p1, # p14, for each (fj the interpolation
curve w(ty) = (t;,wa(t1),ws(t1)) € X is still significant, and we calculate the norms of
several linear functions on X solving the defining equation ¢;(t;) = 0 of C~]-, where ;(t1)
is the characteristic function of C;j defined by ¢;(t1) := g1 (w(t1)). Using these norms, we
evaluate N'(f;) and NV (T ( — f ) and, thus, prove Conjecture 2 for our symmetric special
case. See Corollary 2. In Sectlon 6, we consider the other case, p1o = p14, i.e., the case
where AO10,030y is the regular tetrahedron. The results in this section compensate for
those in Section 5. In Section 7, under the same constraint as Section 5, we shall show the
explicit formula for the norm N (Hess(F)) of the Hessian of the level function F relative
to the critical points C. The formula is expressed in terms of the discriminant associated
with C (or equivalently C), see the invariants Ay, Az and Ay in Theorem 4. Consequently,
we also prove Corollary 8, which is Conjecture 1 for our symmetric special case. The
method of proving Theorem 4 and Corollary 8 can be regarded as a generalization of the
Routh-Hurwitz scheme to a case of several variables. This scheme is stated in terms of
Hankel matrices and a system of resultants related to a pair of polynomials in a single
variable (see Chapter XV in [7] or Chapter X in [8], for example).

We note in passing that there is an analogy between the notions “differente”, “discrim-
inant” in the theory of algebraic numbers, and the ones “Hessian”, “norm of Hessian” in
our present situation, respectively (see [9-13] for general definition of “discriminant” of
algebraic numbers, algebraic functions, or more generally commutative algebra).

In [14], there is an interesting argument on zero points of coquaternionic polynomials
using characteristic polynomials, which enable to linearize the problem by Euclidean algo-
rithm. Moreover, our argument goes along the similar line in a more complicated situation.

2. Configuration of Critical Points in the Case of Regular Simplex

In this section, we consider the very special case when AO;...0, 1 is a regular

simplex and all hyperspheres S; have the same radius:
2 _ 2 ; 2 _ .2 ;
h=p* (1<j<k<n+1l), A=P 1<j<n+1) ®)

In this case, all of the critical points can be explicitly described. The total number of critical
points is equal to 21 — 1.

Denoteby I = {1,2,...,n +1}. For theset | = {ji,...,jp} C I, let Wj be the central
point of each (|J| — 1)-dimensional face AOj := AO;, ... O;, defined by

= O;,
W= 2

j€]
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where []| denotes the size of ]. In particular, we see that W; = O; (1 < j < n+1) and
we simply denote by W the center W; of AO;...0,41. For J C I we denote by J° the
complement I — J. For @ C | C I let [((W}, Wyc) be the straight line passing through two
points Wj and Wy, which is parameterized by

(W, Wie) :x = (1 =T)Wj +TWje (=00 < T < 00). )
An arbitrary line [(W}, Wjc) passes through the center W = Wy of AO; ... 0,1, so that

W= (1 (W, Wp).
s

Symmetry argument shows that every linear p-dimensional real affine subspace pj jc
spanned by the real p-simplex AOj, ... O; Wy is preserved by the vector field grad ReF.
In particular the real straight line [(W}, W) is a trajectory of grad 9ReF.

We now consider the critical points on [((Wj, Wje) for @ C J C I

Lemma 1. Suppose that |[J| = p (1 < p < n). Then f; on [(Wy, W) as a function of T is
expressed as

fi(x) = fi(1 = )W) + TWje)

n+1 >, p—1 ﬁ_ > o
(p(n+1—p)T T )2 ' el
— (10)

n+1 n— 2 e
(p(n+1—p)(r_1)2+n+1fp>p2_72 if je]Je.

Proof. Without loss of generality we may assume that | = {1,2,...,p} and J* = {p +
1,...,n+1} (1 < p < n). From (9), for x € (W}, Wjc) we have

P N — o n+1 T
xtaj=(1I=TW +We oy =(1-1) ) F——+7 ) 5,
= P I=pt+1 p
so that we have
(1 2 2 n+1 2
|x+t¥j|2: (ch—txk)‘ +72 Z (‘Xj_“k)‘
(n+1-p) =
(1—1' n+1
RO E——" 2 Y, 2(aj —apa;—ap)
p(n+1— =
(1-—
{Z|“1_“k|2+ Z 2( th,th—txl)}
1<k<I<p
T2 n+1 )
*m{,ﬁ N S CRPEIOY
=p+1 pH1<k<I<n+1

_ P n+l
(1 T>T 2 2(0(1' — K, CK]‘ — 061). (11)

_|._ P S A
p(n+1-p) /o I=p+1

Since AOj ...0Oy41 is regular, we have

laj —ar > = p* (j#k),
2(j — ag, ) — ay) = 2p%cos(n/3) = p* (£ kjF#Lk#I).
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Therefore, if 1 < j < p, then (11) implies that

1-1)2 ~1)(p—-2
a2 = pZT) {(p_1>p2+(P )2(P )P2}+(n+1—p

(n+1-p)(n—p) (1-79)71
+ > P2}+W(P—1)(”+1—P)P2

2

)2{(n+1 - p)e?

:{(1—1')2]0—1 T?nt2—p

R
2 p 2n+1—p+(1 o7 p }p

n+l 5 p-1\p
= T -,
(p(n+1—p) + p ) 2
so that fj(x) = |x 4 &j|* — 12 coincides with (10). In the same way as above, if p+1 < j <
n 4 1, then we see that (11) implies (10). O
By Lemma 1 F on [(W}, W) is expressed as

n+1
F=) logfj=} logfj+ ) logfi=plogfi+(n+1-p)logfi (el ke])
j=1 jel keje
so that dF on [(W}, W) is written as

d .
dF = pdlog f; + (n+1— p)dlog fi = (Pfk£+(”+1p)ﬁ%)${

3,4 _ - d
2(n(i+11—)pp)2p2(“n:-lm p){fz_nﬁ?17+n:i1p(p_1_2 )i

The critical points on [(Wj, Wjc) correspond to the solutions T of the equation dF = 0, which
is equivalent to

(- e S - mR)) o m

The point x = (1 — )W + TWje on [(W}, Wye) for T = n;lgp coincides with W. The other

two points on [(Wj, Wjc) differ from W and satisfy the quadratic equation

2 n+1-— r?
2 4P Pl _q1_ _
T T p—— (p 1 2pp2) =0. (13)

The discriminant of this quadratic equation is given by ©,/ (1 + 1), where

2
0= =+ 1=+ 1) (p-1-2p05), (19

which satisfies
° p= Z)flJrl*p'

Denote by 71, T, the two solutions of (13) such that 1 < 1 if ®), > 0. We denote by Q; and
Qje the corresponding two points in [(W), Wjc) to 7y and 1, respectively. In addition to
W all these points in [(W), Wyc) (@ C ] C I) give all the critical points of F in X. One can
prove the following proposition.
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Proposition 1. The number of critical points is equal to 2"*1 — 1. All the critical points of F lie
on one of the straight lines [((Wy, Wye) (@ C ] C I). Suppose that r satisfies

n—2

n-2 5 o
2 =7 yredt

(15)
n® —4n —4 2<r2<717_220,,717_22<r2 if n is even
2n(n—|—1)(n+2)p 2(n+1)p 2(n+1)p '

Then, all of these, W, Qj (@ C J C 1), are real and distinct from each other.

Proof. For the situation where all critical points W, Q; (@ C J C I) are real and distinct
from each other, we need the condition that each solution of (12) is real and is not a double
point. This condition is equivalent to: (a) The discriminants ©, (1 < p < n) of the
Equation (13) are greater than 0; and (b) The left-hand side of (13) at T = n:_:p does not
vanish. We discuss (b) first. The condition for (b) is written as

(s By - 2 () TP (g o

which is equivalent to

n+l—ps n-2 r? . r? n—2
- e, — A 1
n+1 (Z(n—l—l) p2)7é0’ e B D) (16)
Next, we consider the condition (a). Since the discriminant D, of (13) is rewritten as
2
r n+2 n+1
e =210 (- i + )
if n is odd, then we need
r? n+2 n+1
inqy— — =1,2,...
mln{pz 2(n+1)+2p(n+1—p)’p s ’”}
2 2 _
:Lz_ n+2 n+1 ‘ :%_”72>0/ (17)
p> 2n+1)  2p(n+1—p)lp=2t  p* 2(n+1)
while if n is even, then we need
r? n+2 n+1
inq— — =12,...
mm{pz 2(n+1)+2p(n+1—p)‘P " ,n}
2 2 3 4y _
:%_ n+2 n+1 ‘ :%_ n’ —4n —4 < 0. (18)
e 2n+1) 2p(n+1—p)lp=2 p> 2n(n+1)(n+2)

Therefore, (16)—(18) imply that conditions (a) and (b) are satisfied if (15) holds for r. This
completes the proof. O

Before we prove Conjecture 2 under the condition (8), we show the following identities:

Lemma 2. Suppose that ] is fixed as p = |J| (1 < p < n). Then we have

2
]‘]-(W):%—rz (1<j<n+1). (19)
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Ifj €] k€] then f;(Qy), fr(Qy), fi(Qje) and fi(Qje) are expressed as

o2 P
fi(Qy) = mT(QI)r f(Q)) = ;(1 - 7(Q))), (20)
& 0
fi(Qpe) = mT(QF}/ fi(Qpe) = ?(1 —7(Qje)), (21)
where 5 5
= +
(@) = P ) = @)
1-— ) 1—p—./9
1- Q) = - nf{‘/i”, 1-1(Qp) = 15 nilﬁ. 23)

Moreover, if j € ], then we have

P ((p—1)p* —2pr?)
(m+1)(n+1-p)

fi(Qnfi(Qye) = (24)

Proof. From Lemma 1 and (12) we obtain (19)-(21), where 7y = 7(Qj) and 7, = 7(Qjc) are
the solutions of the quadratic equation (13) satisfying 71 < 7. We simply have (22) and (23)
by the explicit forms of 7y and 7. We also have

QNAQ) = = QITQR) = e (’7_1‘2’“%)'

which coincides with (24). O

Using Lemma 2 we see that Conjecture 2 holds true under the condition (8).

Theorem 1. Under the condition (8) the norms N'(f;) and N (Z]’?Ill fj_l) are expressed as

_ B(0x1) " /B0x12...p)\ ¥ :
N<ff>—z<n+1>zng<3(oze,...m> (=jsnen, @)

o iy Bo12...p) \()
N(]; f) =2y E(B(O*lz...p)> : (26)

Proof. We prove (25) first. Without loss of generality we may assume j = 1 for the proof
of (25). By definition N (f1) is expressed as

N(Aa)=AW) TT AQ)=aW) TT AQ) TT AWQ))

ocic ocjc ocjc
1€] 1¢]

=AW) T A@NAWQE =AMWTT TI AWQ)AQE). (7
ocjcr p=1 ogjcI

1€ 1€, |]l=p
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Applying (19) and (24) in Lemma 2 to (27), N (f1) is calculated as

(T P ((p = 1)p* —2pr?)
Nh) = (2(n+1) )g leg (n+1)(n+1-p)
el 1l=p

np? —2(n+1)r2 (pz((P—l)pz—ZPrz) (")
)
p=1

2(n+1) (m+1)(n+1-p

_ 2+ 1)r* —np? H —1 p2(2p = (p— 1)p?) \b™
B 2(n+1) n+1 n+l—p

N 2r2( -1 )1+2p 1(p"1>’ﬁ1 (p (2pr? - (P—1)92)>(Pn1)

2 \n+1 i p—1
o2t o (Pz (2p7 = (p—1)p) >(""1)
2+ 1)7 p—1 '

On the other hand, by definition, we obtain
B(0x1) =22, B(0x12...p) = (=1)P 102~V {2pr? — (p —1)p?}

and
B(012...p) = (=1)Pp*P~p,

so that
B(023...p) = B(012...p—1) = (—1)P 1P~ (p —1).

Therefore, (29) and (31) imply that (28) coincides w1th (25).
Next, we prove (26). By definition N/ (Z”+1 fi 1) is expressed as

N n+1 1 n+1 1 n+1 1 n+1 n+1 1
(]; -?])_(];f](w))@é—][gl(];f](Ql) 2 ) ﬂ@l—]]:CI(]Elff( ))

Jl=p

N<"§1>=<'§ LTI I (DAl y P
j:lfj f](W) p=10CJCI jej 1Y T(QI) keje Pz(l_T(QI))
[/l=p
_ 2(n+1)? n p(n+1—p) (n+1fp)p)
np* —2(n+1)r p—1oC)CI p27(Qy) p?(1—-1(Qy)
l/l=p
2(n+1)> [ p(n+1-p)

T =2+ 1) S od i pPT(Q) (- T(Q)
[Jl=p

(28)

(29)

(30)

(31)

(32)

(33)
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Using (22), (23) and D = D11 for (33) we obtain

(71+1)

N(Ml): 2(n+1)>2 n ( (n+1)2p(n+1—p) ) P
S0 et =2n+1)r? P2(p = /Dp)(n+1—=p+ /Dui1-p)

_ onr1) ( (n+1)%p(n+1—p) ><"¥1>
np* —2(n+1)r2 p*(p = /Dp)(p+ /Dp)

212 2 1)2pn b1 — )\
o onp?=2(n+1)r ( P2 (p* = Dp) ) ' G4

E:

1

p

p=1

Since we have p?(p? = D) = (n+1)(n+1—p)(p*(p — 1) — 2pr?) from (14), (34) is written
as

<n+1)

n+1 1 2(1’1+1)2 n »

N(EE) - np? —2(n + 1)r2

=

( (n+1)2p(n+l—p) )
(n+1)(n+1—p)(p*(p—1) —2pr?)

241y 1}( (n+1)p ><"¥1)

H::]

~np?=2(n+1)r? p*(p—1) —2pr2
(n+1>
En+l (u+l> n+1 ( p r
n41)=r=1 -
=2n+l) ooi \P2(p —1) = 2pr?
n+1 (";1>
—o(n 412 <+> . 35
(1) ,El p*(p—1) —2pr? )

Hence, (29) and (30) imply that (35) coincides with (26). O

3. Special Coordinates (Three-Dimensional Case)

In this section, for a general three-dimensional case, we define the special coordi-
nate system (denoted by t1, t2, t3) attached to the fundamental three-dimensional simplex
A0O10,0304.

Each plane pj; containing the three vertices O;, O, O; is described by the equation

piki : Ljg = 0,

where the linear functions Lj; on X are given by

Lip3(x) := —det(x + a1, x + ap, x + a3),

Lipa(x) :=det(x + a1, x +a, x + ay), (36)
Lyzg(x) := —det(x + ag, x + a3, x + ay),

Loz (x) := det(x +ag, x + a3, x + ayg)

for nj = (oajl, 0(]‘2,0(]‘3) € R3. Under our setting (1) the functions Ljx are explicitly expanded
as

Lioz = aq3tp0(x1 + az1) — aq3(an1 — az1)x0 + {— (@11 — az1)a + ap (a1 — az) }ag,
Ligg = —aq3000x1 + ap10013X0 + (11420 — X120001) X3,
Li34 = —a13031%2 + a310412X3,
Lozy = —a31407Xx3,
so that

L123 + L124 + L13a + Lozs = a3142013. (37)
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Hence, the simplex AO;0,030; can be defined by Ly >0 (1 <j<k<4).Remark that

B(034)

B(0234
a3z = > >0, azran =/ — ( )

4

B(01234)
8

>0, 31013 = > 0. (38)

Definition 2. Two rational functions @1, g on X are said to be congruent with respect to C and is
denoted by
@1 = @2 mod Ann(C)

if 91, @2 have definite values at every point of C and
¢1(x) = ¢2(x)

at each critical point x in C (Ann(C) means the annihilator of C).
Lemma 3. Let g1, g2, 33 be polynomials in x of degree 3 specified by

§1:= Liosfa — Losaf1, §2:= Liosfa — Lizafo,  §3:= L123fa — L1oafs. (39)
Then, we have
where the functions M; are given by
X1+oap x1+ea; G

M]'I:I: Xp+ap Xp4ap Gy
X3 +wa3 x3+a;3 Gs

Here, {j, k,1} is a permutation of {1,2,3} and =+ denotes its sign. Moreover, we have the congru-

ernces
fo _ Loss  fa _ Liza fa _ Ling

= , = , = mod Ann(C). 41
fi Lz fo Lis® f3 Lz (©) @

Proof. Without loss of generality we prove (40) for j = 1. Since G, (1 < v < 3) are given
as G, = Z?‘:l(xu +waj,)/ fj, using (36) My is written as

4
Ml = Zdet(x+a2,x+“3rx+“]')/fj

j=1
=det(x +ay, x+ag,x+a1)/f1 +det(x +ap, x + a3, x+0aq)/ fa
_ L Loy
f fa'
which is equivalent to (40) for j = 1. From (40), we obtain
fi_Lyps  fi fo _Liza  fu fa_Lia  fu

_ L N Y
fi Lz Lz ! fo Lz Loz z fa Lz L 3

This implies (41). O

According to Lemma 3, we can characterize the set of critical points C in X by the
polynomials g; as follows.

Lemma 4. Under the condition (Hy), the system

Gi=Gy=G3=0
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on X is equivalent to the system
8§1=8=8=0
on X.
Lemma 5. The following identity holds as function of x = (x1, X2, x3):
dg1 Ndgo Ndgs = — L2y f1fafsfedGy AdGy AdG; mod Ann(C). (42)

Proof. By taking the derivatives of both sides of (40) in Lemma 3 one obtains

9% _ oG, ,9G, ,0G
ax, f]f4(]]a +a k]a +a lfa ) mod Ann(C)

for the triple {j, k,1}, which is an even permutation of {1,2,3}, where a}, denotes the
cofactor of the (p,q)-component of the 3 x 3 matrix A = (x + aq,x + ap, x + a3). Thus,
we have

ag1 ag] 8g1

* * * oG G dG1
9%, 9x; ox3 fayy fiay fiag Wll Wzl ey
Jgr 0% 9% | — * % * G, 3Gy 9G,
o on o | = fa| oy feyp oy || 5 55 5 | mod Ann(C).
9g3 983 983 * * * 9G3  9G3  9Gs
Erogli Tl Ty f3a1s fars f3033 )\ T o ax
Hence, we obtain
A81,8285) _ _ ¢ o g 3 (ger ) NG G2 Lo aun(e) (43)
a(xl/xZI x3) 4 a(xll X2, x3> ’
where A* is the cofactor matrix of A given by
aj a4y 4y X1+a Xp+a xp+az
A =laj, ay a3 |, A=| xo+ap xo+an x+azp
a3 Ay A3 X3+a13 X2+ a3 X3+ ass3

Since A* satisfies A*A = (det A)I, where [ is the identity matrix, (36) implies
det A* = (detA)z = (7L123)2 = L%23.

Therefore, we see that (43) is equivalent to (42). O

We now introduce special coordinates t = (t1,tp,t3) instead of x = (x1,x2,x3),
given by
L L L 31000
o=y b b gy L fe1deats (44)
Lixs Lip3 Lixs Lips

The identity (37) implies
too =14+ t1 + £ + 3.

Conversely, for given t = (11, t, t3) solving the system (44) with respect to x = (x1, x2,x3),
we obtain

w1ty + a1ty + azqt oty + agot nq3t
x1:7111+ 21f2 + aifs. x2:7121+ nh - _fsh (45)

teo oo foo

Therefore, (45) defines the projective map ¢ : {t € C3| 1+t +t, +t3 # 0} — C3, e,
t
tx=1u(t) = ——a1 — —ap— —a3

By definition, we notice that
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Lemma 6. et Ao
dxi Ndxy ANdxz = % dt; Adty A dts. (46)
o0
Proof. Differentiating both sides of teox; = —(a1jt1 + apjt2 + azjt3) with respect to t;, we
have tedx; /0ty = —(x; + ay;), so that
d(xq1,x2,x3)  —1 L1z aziapnmgs
- = —z—det (x; + ay;). = = ,
ot ta t3) 1, (64 ) 125 3 ta

which is equivalent to (46). O

Under the condition (Hy), for the sets C and X C C%, weputC = "!Cand X := 17X,
respectively.

Definition 3. Two rational functions @1, ¢y on X are said to be congruent with respect to C and
written by
@1 = ¢ mod Ann(C)

if their restriction to C are equal, i.e., if @1, p3 have definite values at every point of C and
@1(t) = @a(t) at each critical point t in C (Ann(C) means the annihilator of C).

Remark 5. From (41) of Lemma 3, (44) implies the congruences

H= ﬁ‘, th = ]Ti, t3 = fa mod Ann(C). 47)

Through the projective map ¢ : X — X we can characterize the set of critical points C
in X as follows:

Lemma 7. Under the condition (Hy), the system

s1=H=8=0

on X is equivalent to the system

on X, where §j are polynomials in t of degree 3 given by

t3 3
5i(t) i= —=2—0ai(x) = —=—¢:(1(1)). 48
8i(H) == =gy (x) = =gy () (48)
Moreover we have
o3 agzof’ -
dgi Adgo Ndgs = % dg; Adgr ANdgs mod Ann(C). (49)

Proof. By definition the equivalence between g1 = g0 = g3 =0and §; = $» = §3 =0is
obvious. The identity (49) is straightforward from (48). Here, we just confirm that g;(¢) are
polynomials in ¢ of degree 3. By the definition (39) of g;, we have

£ t3,L123 Loz 2
o t — ol L — L = © —_— = t - t .
gl( ) 0631“22“13( 123f4 234f1) (31000013 (f4 L123f1) oo(f4 1f1)

In the same way, we have the expression

gi(t)=ta(fa—tifi) (j=1,23). (50)
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For1 <j <4, wehave
tgof] =2 ((x,x) +2(aj, x) + acjo) = (fooX, tooX) + 2teo(@f, teoX) + zxjotgo (51)
3 ) 3 3 3 )
= | E teoe|” — 21+ Y ti) (), Y i) +ajo(1+ ) i)
k=1 1=1 k=1
= Z|D€k|2tk+2 Z (o, )it — (1+Ztk Z nj, 0 fl+0610 1+ka ,
1<k<I<3 k=1 =1 k=1

which are polynomials in t of degree 2. From (50), we see that §; are polynomials in ¢ of
degree 3. [

Before we show the explicit forms of the polynomials §;, we prove two lemmas.

Lemma 8. The following identities hold:
3
0 ~ k 0 x 4 .

Proof. By definition, we have

0 x kY\_, 2 > > 2
B( 0 j 4 > *(ij_rj)—(Pk4_V4)
= lag — ;] = (Jaj|* — ajo) — o — aal® + (Jwa]* — ag)
= 2(ag, 04 — &j) + ajo — ago. (53)

On the other hand, by the definition of f; we have

too(fj — fa) = teo{2(x, ) —2(x, &4) + @jo — a0}
= 2(—tooX, a4 — &j) + teo(@jo — agp).

Applying the relations —teox = t1a1 + toap + taaz and tee = 1+ t; + tr 4 t3 to the above
identity, we have

Mw

teo(fj — f1) =

{2(ax, g — oj) + (ajo — ago) b + (ajo — agp). (54)
k

1

. 2 2 . . 0 « 4
Under a4y = 0, ie., iy = |aj|*, (53) implies B 0 4 = ajo — ag0. Therefore, we
obtain (52) from (53) and (54). O

Lemma 9.

0 j 4
2fa= Z(p]4 e+ Y {B( 04 ) — 23 bty — 2 + o+ 1) — 7. (59)
j=1 1<j<k<3

Proof. From (51), we have

2 fs = Z e Pe+2 Y ()bt +asg(1+H + b+ £3)?
1<k<I<3

0 j 4
_Zp]4t2+ Y B(O I]{ 4>tjtk—rﬁ(1+t1+t2+t3)2,

1<j<k<3
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which coincides with (55). O

Proposition 2. The polynomials §; in t of degree 3 given in (48) are expressed as

_ 0 k j
gjr]?t]%r(r]?—p]?k)t%thr(rf—pﬁ)t%tj+2r]2t]2(tk+t,)—{B( 0 1 ] > —er}tjtktl

+(pfy = 3+ 28 + (ks — D + (0Fy — D

0 x k 0 x I 0 k 4 )
—2B tity — 2B tit B —2rj otyt
<0j4>’k (014>”+{<014> A

+ (r/2 —2r3 — p]24)tj —2r3(tg + 1)) — 13

Proof. From (50), for 1 <j < 3, we have

(1 — tj)i’goﬂl — t]i%o(f] _f4)
(1= )2 fa — tj(1+ 1 + ta + 13) o (f; — fa).-

8j

Since the explicit forms of 2, f; and teo( fj — f1) have already been given in (55) and (52),
respectively, we eventually obtain the result of Proposition 2. In particular, the identity

0 k j\ ,2_ 0 k 4\ ,» 0 x k 0 % I
B(O p ].> 2r]-—B<O i 4> 2ry+ B 0 j 4 +B 0 j 4
was applied to the coefficient of ¢;tt;. [

Lemma 10. For1 < j <k < 3 let g be functions specified by

(1-t)g— (1~ tj)gk‘

foo

Sjk = (56)

Then, gjx are polynomials in t of degree 3, which are explicitly written as follows:

0 « j 0 ~ k 0 I %
5. = —t24,B t:t2B tityt B
8jk ]k(o kj>+]k<0 ] k>+]kl<0 k ])
0 % j oo O k 0 + 4 0 ~ I
2B — B t{ —B -B t
+f(o4j> ’“(o k)+]{ (o;‘4> <0j4 1}
0 * 4 0
!B B t
+"{<0k4)+<0k4>’}

such that {j, k,1} is the uniquely determined permutation of {1,2,3}.

o

*

Proof. By the definition (50) of §;, (56) implies

Gk = —tj(1 — ti)teo(fj — fa) + t(1 — ))teo(fik — fa)-

Since the explicit form of feo(f; — f4) has already been given in (52) in Lemma 8, we obtain
the result of Lemma 10. O

Remark 6. As a consequence of Lemma 10, we have
(1—t1)83 — (1 —t2)§13+ (1 — t3)§12 = 0,
so that we immediately have

dg1p ANd§13 Ndgrs =0 mod Ann(@).
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The following is a key lemma to characterize the set C of critical points.
Lemma 11. Suppose t1 # 1. Under the condition (Ho) the system
§1=8=8=0

in X is equivalent to the system

§1=812=83=0 (57)
in X. Moreover we have
o Bo o o s .
dg1 Ndg, Ndgs = mdgl ANd§1p Nd§3 mod Ann(C). (58)

Proof. By definition the equivalence between § =3 =¢3 =0and §; = §1p =13 =01s
obvious under t; # 1. From (56) we have

toodgl]' = (1 — t])dgl — (1 — tl)dg] mod Ann(é),
which implies (58). O
Then the following congruence identity holds true:

Lemma 12. Regarding G; = G;j(x) as functions on X through the map 1, i.e., G; = Gj(u(t)),

we have ~ ~ B
az1402013 d§1 N dgx Ndgs

dGy NdGy NdG3 = — mod Ann(C). (59)
fiffsfi t%
Ift € C satisfies t; # 1, then
Gy N dGy N dGy = — 3182013 AQ N AR NG (60)

fifafaf;  B(1—H)?

Proof. From Lemma 5 and (49) in Lemma 7 we have (59) using the definition (44) of te.
Furthermore, from (58) we see that (59) implies (60). O

Lemma 13. For an arbitrary critical point t € C, the Hessian at x = 1(t) is expressed as

_ 1 a(gl/g2/g3). (61)
x=i(t) fif2fafi t3, (i, b, t3)

1
2—3Hess(F)

In particular, if t € C satisfies t; # 1, then

1 1 (81,812, §13)
— Hess(F =— . 62
23 ( ) x=u(t) f1f2f3f43 too(l — tl)z a(tlltZI t3) 62
Proof. From (4), we have
1 _ 9(G1,Gy, Gs3)
23Hess(F) = W)

According to (46) in Lemma 6 and (59), for t € C we have
— a(Glr GZ/ G3)/a(xl/ X2, x3)
vy Ot tats) [ 9(t, b, t3)

__ azamans (04310622“13>*13(~1,g~2,g~3)
fifafsf3t teo oty ta, t3)

a(Glr GZ/ G3)
9(x1,x2,x3)
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which coincides with (61). On the other hand, if ¢; # 1, then from (60) we obtain
9(G1, Gy, Gs) _ (G, &, G3)/3(X1,xz, x3)
o(x, x2,%3) [,y  O(trt2,t3) / 9ty tot3)

__ azjapa (06310622“13)*13(§1,§12,§13)
fihfsfit3(1—t)? ts At t, t3)

which coincides with the right-hand side of (62). O

We denote by c; (1 < j <) all the critical points in X, i.e., C = {cj €X|1<j<«}.
For a rational function ¢(x) on X we denote by N (¢) the product of the critical values at
all pointsin C, i.e., N'(¢) := H};l ¢(c;), which is called the norm of ¢ on X. We also denote

by &; the critical points in X specified by ¢; = 1~ !(c;),ie,C =171C = {g; € X|1 < j <«},
where : : X — X is the projective map given by (45). For a rational function ¢(t) on X we
also denote by A/ (¢) the product of the critical values at all points in C ie,

N(g) == f{q»(ej), ©3)
1

which is called the norm of ¢ on X.
Our aim is to study the norm N (Hess(F)) on X, and the following proposition gives
the formula for A/(Hess(F)) on X to be written by norms of several functions on X.

Proposition 3. Ifan arbitrary t € C satisfies t; # 1, then

N (Hess(F)/23)
- _ 1 <8(§1,§12,§13)> (64)
NN (f2)N (f3)IN (f2) 1PN (to) AN (1 — 1) }2 o(ty, to,t3) )’

Proof. From (62) in Lemma 13 we have

T { -1 3(21,§12,§13)}
fif2fafite(1—1t1)2 9ty t2 t3)

I He;z(l:)

j=1

7

x=¢  j=1 t=¢;

which coincides with the right-hand side of (64). O

In order to calculate the part N'(9(§1, §12,§13)/9(t1, t2, t3)) in the right-hand side
of (64) in Proposition 3 we will use the following lemma later.

Lemma 14. Suppose that there exists rational curve w : C — X in X given by
w it — (t,t0 = wy(ty), t3 = w3(t)) € X
satisfies the equations
S12(ty, wo(t1),w3(t1)) =0 and  §13(t1, wa(ty), ws(ty)) = 0. (65)
Suppose also that the curve w interpolates some critical point in C, i.e., there exists T € C such that
§1(1, wa(7), w3(1)) = 0.

Let 1 be function on C specified by

P(t) := &1(t, wa(t), w3(tr)). (66)
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The following identity as a function on the curve w in X (i.e., as a function of t1) holds.
(&1 812, 813) _ (812, 813)
a(tll t2/ t3) B lp (tl) % a(t2/t3> ’ (67)

where Y’ (t1) denotes the derivative dy/dty. In particular, for the point T € C such that T =
(T, wa(7), w3(7)) € C it follows that

9(81, 812, 513) — /(1) x 9(812, §13)

= e . 68
a(tl,tz, t3) f=T a(tZr t3) t=T )

Proof. Applying chain rule to (65) and (66), we have

_y L% % A&
V'3 9 oah 1 0
9812 912 9% / _
o oy Of wy (=101
9813 9%13 9813 i
ot oty df3 w3 0
so that
L9 9% 9% 91 9 & ;9% 9%
V3 9n o TR A T Voon O
0= 9312 912 9312 | | 9812 9812 98 | _ 0 951 9%
f1 oy of ot Oty  0f o, oty |
9813 9813 9813 9%13 9%z 9813 0 91 9%
oty dty ot oty dty ot3 dty dts

which is equivalent to (67), and (68) is a special case of (67) when t; = 7. O

In the next section we consider a special symmetric case when p3, = p3, = p?, and

p%4 = p%4 = p§4, rjz being the same. We shall present (t;), % and the norms of f;
explicitly by taking the basic parameter ¢;.
We shall also consider the cases when we take the basic parameter t,, and s in place

of t;, where

2 _ 2 2 _ 2
fo =1+t +t +ta, = P13 . P14 t + P23 . P24 ty — ta. (69)
P34 P34

From (52) of Lemma 8, for f« and s, we see that

s+1 (= + 12—+ 2 —r2)(tz3 +1
it B B (- A )

too foo

, (70)
and we also see from (47) that

I T

== d Ann(C). (71)
,;JCJ fi mod Ann(C)

The relations (70) and (71) will be used in Section 5 to evaluate the norms of f3 — f4 and

SR

4. A Special Symmetric Case of AO1020304

In this section, we restrict ourselves to a special symmetric case when AO10,030; is
a pyramid with axis of symmetry whose base triangle AO;10,03 is regular and all spheres
have the same radius, i.e., throughout this section we assume

(M) : P%z = P%3 = P%sr P%4 = P%4 = .0§4, r]2 =12 (1<j<4).
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We first see the fundamental invariants, i.e., the explicit forms of the Cayley—-Menger
determinants.

Lemma 15.
B(012) = B(013) = B(023) = 203, >0, B(014) = B(024) = B(034) = 203, > 0,
B(0123) = —3p}, <0, B(0124) = p,(p}, — 4piy) <O,
B(01234) = —2p7, (03, — 3p34) > 0.

Lemma 16.

B(0xj)=2r* (1<j<4), B(0*jk)=ph(p, —4) (1<j<k<3),
B(0xj4) = piy(ply —4r*) (1<j<3),
B(0x123) = 203,(3r* — p3,), B(0x124) = 20, (4r%p3, — r*pl, — pl4),

(

B(0%1234) = p}, (301, + 4r’p3, — 121%02,) = %p%zB(lzzL) —2r2B(01234).
Remark 7. B(0* jk) < 0, B(0* jkI) > 0, B(0  1234) < 0 for sufficiently large r > 0.

Lemma 17. Under the condition (H1) the polynomials §; (1 < j < 3)and gy (1 <j <k <3)
defined in (48) and (56) are written as

Gi(t) = 7?6 + (= oh) (] + 1)t + 276 (e + 1) — (0T, — 2ttty
+(0ls + ) (B + 5+ 1) —2(0%, — pin)tj (e + 1) (72)
+ (2074 — Py — 27 tkty — (03y +72)t — 277 (tk + 1) — 12,
Sik(t) = (e —t)8(t), () == phatiti + (0T, — pT )t — pLa(tj + e — 1), (73)
respectively, where {j, k,1} is a permutation of {1,2,3}.

Proof. Under the condition (#), the following symbols become as
I\ _ .2 L2 2 = 2

i)~ Pkj T P1j — Pkj = P12/

4 2 2 2 2

4 ) = Oka T 01z — Pkj = 2014 — P12

k
4

— D X —_

> _ 2 2 2 _ 2 2
) = Pikj — i ~ Pia T3 = P12 — P13 = Do,

where {j, k, 1} is a permutation of {1,2,3}. Applying them to Proposition 2 and Lemma 10
in Section 3, we obtain (72) and (73). O

Notice that §j; are independent of r? under the condition (#1). For the succeeding
arguments we write ¢ as polynomial in ¢, and t3 explicitly as follows.

S1(ty, b, t3)
= {(72 — Tt + o1y — 72} (5 +13) + [(272 —ph)h + 207, — p3p — 272] tats (74)
+2[P8 = (0 — Pt — ] (t2 + ) + (= (P8 + 22 + gt + 7).
By definition, we have the identity

$12(t) — §13(t) = php(t1 — 1)(t2 — t3). (75)
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We state a property of theset C = {t € X |§; = §» = §3 = 0} as follows.
Lemma 18. There exists no point t = (t1,to,t3) in C C X such that t; # ty, ty # t3, 1 # t3.

Proof. Assume thatt = (t1,t5,t3) € C satisfies t; # ty, ty # t3,t; # t3. If t; # 1, then
from Lemma 11 we see that t € C satisfies the system §; = §1» = 13 = 0. Seeing (73)
and t; # tp, t1 # t3 wehave 0 = §1p — $13 = p%z(tl —1)(tp — t3), which contradicts the
assumption. If t; = 1, then we have t; # t; = 1, so that again from Lemma 11 we see
that t € C satisfies the system $» = &12 = $23 = 0. In the same way as above we have a
contradiction again. [

As a consequence of Lemma 18, the set C is partitioned into the following:

Ciiti=ta=ty, C:ti=th#ty, Ci:ti=t3#t, Ci:itr=t3#H. (76

Denote C; = l(fj C X, such that C is the disjoint union of C; and that C is the disjoint union
of C;:
]

Remark 8. The number of the critical points is 23t1 — 1 = 15, i.e., |C| = 15. As we will see below,
it is confirmed that |C1| = 3 and |C| = |C53| = |Cy] = 4.

For the set C;, we immediately have the following:
Lemma 19. For (1,1,1) € X the polynomials §; (j = 1,2,3) are evaluated as
§1(1,1,1) = (1,1,1) = §5(1,1,1) = 84,
where Ny = p2, — p3,. In other words, the following equivalence holds:
AN=0 <= (1,1,1)€(.

Our approach to study the structure of C depends on whether we impose the condition
Ag = 0 or not. In the following section, we first consider the case Ag # 0, while we devote
Section 6 to the case Ag = 0, i.e., the case where AO;0,030; is the regular tetrahedron.

5. Critical Points Under (#,o), (#1) and p12 # p1a

Throughout this section, in addition to the imposed conditions (Hy) and (#1), we
suppose further

Ao == pf, — piy # 0. (77)

In this setting, the special parameter s introduced in (69) is given by

02, — 02
S = (5(t1 =+ tz) — ta, where ¢ = 12 2 14/ (78)
P14
and (70) is reduced to
fo—fa=pla(s +1)/te, (79)

where to = 1+t + tp + t3. Thus, N(s 4+ 1) will be used indirectly for calculation of
N (f3 — f4) later.
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Lemma 20. Under the conditions (Hy), (H1) and Ag # 0, there exists no point t = (t1,ta, t3) in
C C X such that t; = 1if and only if Ay # 0, where

Ay = 41 — 303, — 034 (80)
Moreover, Ay = 0 if and only if {(t1,t2,t3) € C |ty = 1} = {(1,1,-1),(1,-1,1)}.
Proof. If (1,1,t3) € C then (1,1, t3) satisfies the condition (76) and the equation
§1(1,t,t3) = —Ag(ta +t3) (2 + t3 +2) = 0. (81)
Then, under the assumption Ag # 0, we need six possibilities for (1,t,,t3) € C, i.e.,
(1,t,t3) = (1,1,-3), (1,1,—1), (1,-3,1), (1,—1,1), (1,—1,—1), (1,0,0).
Under the condition (#), for these points we have
&1(1,1,-3) = 5(1,1,-3) =0, &(1,1,-3) = 4(501, +piy) >0,
aLL-1)=H1,1L-1)=0, &L1-1)=-2,
2(1L,-3,1) = 5(1,-3,1) =0, F(1,-3,1) = 4(5p}, + o) >0,
§1(L,-1,1) =g(1,-1,1) =0, &(1,-11) =24,

§1(L,-1,-1) =0, £(1,-1,-1) =5(1,-1,-1) =2(p, +pis) >0,

; B . o — 2 42— M
§1(1,0,0) =0, £(1,0,0) = &(1,0,0) = p1y — 4r° = B(014) #0
so that we see
(1,1,-3), (1,-3,1), (1,—1,-1), (1,0,0) ¢ C, (82)

and therefore obtain

A17£0 < {(t1,t2,t3)€é|f1:1}:@,
A =0 <= {(t,t,t3) €Clt; =1} ={(1,1,-1),(1,-1,1)}.

This completes the proof. [

Lemma 11 states the equivalence between the systems §; = $» = J3 = 0 and
31 =12 = §13 = Ounder t; # 1. If A7 # 0, then we can omit the condition #; # 1 for this
equivalence, because Lemma 20 says that each pointt € C = {t € X |§1 = §» = §3 = 0}
satisfies t; # 1. Namely, C coincides with {t € X| g1 =812 = §13 = 0} if Ay # 0. On the
other hand, if A; = 0, then Lemma 20 implies that C is expressed as

C={(1,1,-1),(1,-1,1)}u{teX|§1=§n=25§3=0t #1}.

However we eventually realize that this distinction is unnecessary whether A; = 0 or not
(see explanation in Remark 10 after Lemma 21). Hereafter, we analyze the set C regarded as
that of solutions of the system §; = §1» = §13 = 0 without constraint t; # 1, i.e,,

C={teX[§=3n=_3g3=0}
The aim of succeeding four subsections is to evaluate the norms N (t;), N'(1 — t;), N (te)
and N (s + 1) for each C; (j = 1,2,3,4) given in (76). We denote j(¢) the partial product

of p(t) (t € C}), ie.,
Ni(g) =TT o).

tECj
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51.TheSetCy:t; =t) =13

In this subsection, we assume that t; = t, = f3 for the critical points. When t; = #;
and f3 = tq, from (73) 12 = 13 = 0 is automatically satisfied. Then, the solutions of the
equation §i(tq, t1,t1) = 0 correspond to the critical points in C,. We define the characteristic
polynomial i1 (t1) of the set C; by

Pr(h) := G (1t 1) = 3(3r% — pp) 8 + (934 — Spia — 3r2)8] — (5r° + piy)ty — 1, (83)

which gives C; = {(t1,t1,t1) € X|¢1(t1) = 0}. We denote the roots of the equation
P1(t1) = 0by (1,02, {3, then the points corresponding to {; give the set of critical points G
in the straight line t; = t, = 3. Let ¢; be monic polynomial in t; specified by

A H(t —g) =8l 89

j=

where Iy = 3(3r2 — p3,) is the coefficient of highest degree of ;. Then we obtain
the following.

Proposition 4.

2 27204 ’
- 2 2 = p12 (] = 1/ 2/ 3)/
3(3r2 —p3,)  3B(0%123)

B 8Ag ~ 16Agpd, .
M -t) = 3(3r2 —p2,)  3B(0%123) (j=123),

2
Ni (o) = 4Plz 3P14 — 4 B(01234)

3r2 — p2, B(0x123)"
Ni(s+1) = 280(p3, — 3034 (33, + 4r%03, — 12r%p3,) _ 2A0B(01234)B(0+ 1234)
309,(3r2 — p7,) 0%,B(0123)B(0+ 123)

Proof. Since t; = t, = t3, for 1 < j < 3 we have Ni(t;) = Ni(t1) and Ni(1 —t;) =
Ni1(1 — t1), which are evaluated as special values of ¢y (t), as follows:

_ o $i(0) r*
3
B vy (1) 8Ap
Ni(1—t) = ]'11(1 G)=v9,(1) = Mo 36—k

In general, for arbitrary 1, 72 we can calculate the norm of y1t; — v by

Ni(rit1 —72) ﬁ (18— _’Y%ﬁ(ﬁ —Q) - _hilp (zj)

We can evaluate 91 (y2/1) by a direct calculation from (83). Using this formula, we obtain

_ _ 1y _ ,Ph =300
Nl(too)_N1<3tl+1)_ hllp1< 3) =4 372—[7%2,
(26 —1)3

NMi(s+1) =N (20— 1)t +1) = — I 4’1(257—11)

2
P14

~ (8o}, —203,)° )
—ZP%z '

— P
hlP?:; ( 39%4

which coincides with the result for V7 (s + 1) in Proposition 4. [
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52.TheSetCor:t =ty # 13
We assume that t; = t, # t3 for the critical points. From (73) t; = t, implies that
$12 = 0 is automatically satisfied. When t; # t3, according to (73) it is necessary for
$13 = 0 that
N _ 2 2 2 2 _
§13(t1, t1,t3) = piptats + (P12 — p1a)tn — p1a(t +t3 —1) =0

is satisfied. Solving this equation, with respect to t3, we have

2 2 2 b — 2
t3 — CU3(t]) = ( pl42 Plz) 12 pl4. (85)
P12t — P14

Hence, for the basic parameter ¢ the rational curve (t1,t1, w3(t;)) € X interpolates the set
of all critical points in C;.

Lemma 21. Let , be function specified by P (t1) := §1(t1, t1, w3(t1)). Then i, has the factor
ty — 1, namely it is written as

— 1
(tlz )¢22(f12) ’ (86)
(121 — p14)

where (o (t1) is a polynomial in t, of degree 4. Moreover the explicit form of (p (1) is

Pa(ty) =

Pa(tr) = pia (4% — pTp)t] + 2015 (2074 — PT) 8 + P120Ta (=87 + pTp — 3pTu) 1
+20%,004t + P14 (47 — py). (87)

Proof. Since w3(t1) is a ratio of two polynomials in ¢; of degree 1 as (85), and §1(t1, t1,t3) is
a polynomial in t3 of degree 2 and in t; of degree 3, > (t1) = $1(t1, t1, w3(t1)) can be written
as yn(t1) = (polynomial in t; of degree 5)/ (p%ztl — pﬁ)z. In particular, from (81) we have
Pr(1) = §1(1,1,w3(1)) = §1(1,1,—1) = 0, so that ¢, (t;) is divisible by t; — 1. Therefore,
we obtain the expression (86). The explicit form (87) is obtained by direct calculation. O

Remark 9. From Lemma 20, we see that (1,1,w3(1)) = (1,1, —1) & C if Ay # 0. This means
that the root t; = 1 of the equation 1, (t1) = 0 does not correspond to any point in C,.

Since §(t7) is evaluated at t; = p?,/p3, as 2 (p2,/p3,) = 4r*p},03/p}, # 0, we have
the expression )
Gy = {(ty, b, ws(t1)) € X | ha(t1) = 0},

where w;(t1) is given by (85), and we call ¢, (t) the characteristic polynomial of C,.

Remark 10. When Ay = 0, i.e., 1 = (303, + p3,)/4, the characteristic polynomial {(t1) is
expressed as 2 (t1) = p1r? (t — 1) (01, (201, + P14) 8 +50T,014t] — 5oyt — 3piy), which has
the factor (t; — 1), so that t; = 1 is the double root of 5 (t1) = 0. The polynomial P,(t1) was
originally defined from the system § = g12 = 13 = 0 for t; # 1 under Ay # 0. In this sense
t1 = 1 is meaningless as a solution of P (t1) = 0, which corresponds to a point in C,. However,
the point (1,1, w3(1)) = (1,1, —1) formally corresponding to t; = 1 is indeed an element of € C
when Ay = 0 (the fact (1,1, —1) € Cy if Ay = 0 was also confirmed in Lemma 20). This makes
sense even when t1 = 1, and eventually the imposed condition for t1 or Ay can be removed.

We denote the roots of the equation »(t;) = 0 by {1, {2, {3, {4, then the points cor-
responding to {; give the set of critical points C>. Let ¢, be monic polynomial in #
specified by

4 :
Falt) =10 - ) = 20,

j=1
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where hy = pf,(4r? — p3,) is the coefficient of highest degree of §,. Then we obtain
the following:

Proposition 5.

Na(ty) = Na(ty) = P4’ —ply) _ pLB(0x14)
ph(4r2—p2)  pB(0x12)
AM A2A,

No(1—=t1) = Na(1 - 1) = 0 = - , (88)
pia(41% — p3)) p1,B(0%12)
47’2{)4 AZ 47'2P2 104 AZ
2, 2 _ 1450 _ _ 12P1420
Na(pioh = p1a) = 5 — 2, B0x12) (89)

Na((2035 — o)t — 014)
_ 401485 (0T, — 4034) (o34 + 01, — 41%0%,) _ 201,A5B(0124) B(0 » 124)

P (417 — p7,) p5,B(0x12) '
406,A2 (0%, — 402,) 402,0%,A3B(0124)
242 2y _ _ H14P0\F12 14) _ _ *P12F14%0
Nz(PlZ p14) (47’2 7P%2)2 {B(O*lZ)}Z ’ (90)

where Ay is given in (80).

Proof. Since t; = t, we have N;(t;) = N(t2) and No(1 —t1) = N(1 — ). Indeed one
can apply the formula

'S

Na(ritr —712) = H(%Q —72) = “rﬂi[ ( C;) = sz(’yi) Z;IIJ (E) 91)

j=1 j=1

to every case except (90). §»(72/71) can be evaluated by a direct calculation from (87).
For an arbitrary quadratic polynomial czt% + 1ty +co = ca(ty — &) (t; — B), there exist
polynomials P(t;) and q1t; + go such that

$a(t1) = (c2t? + 1ty +co)P(t1) + g1t1 + qo-

Then the norm of czt% + c1t1 + ¢g is calculated by reciprocity law as

4
Na(catf +c1t1 +¢p) = ¢ H —B) = C%‘Pz(“ﬁ/’z(ﬁ)
3 - . 3 = A
= 2o (a)P2(B) = 5 (1 +40) (918 + q0) = 75 (47B + qoq1 (a + B) + 45)
h5 h3 hs
4 3
= 2~ qom L+ ad) = ;3 (a0 — qomer + gea) ©2)
h2 1 qoq1 90 h% q1€o0 — qoq1€1 T 4pc2)-
For ¢, = p%z, c1=0,¢c0 = —p%4, by Euclidean division we have

() = (P11} — P10 P(t) + a1t + qo,
where
P(t) = ph (4% — phy) 1§ + 207, (2074 — pT2)t1 — pRa(4r — ply)
and q1 = 20%,0%,(303, — p2,), g0 = —4p%,. Then, using (92) we obtain

6
o
Na(phat; — 0) = 12 7 {—401203, (3014 — 012)* + 161307, },

Pélgz (4r2 — P%z

which is factorized simply and coincides with (90). [



Symmetry 2022, 14, 374

27 of 59

Corollary 1.
Nty — P2 4030t Ph 4R B0124)B(0 124)
r2pt, 2r2p%,
42 (4r% — p? A2 14
No(1—t3) = o 2’ . 014) _ 4 of(g*z ),
“P1p 7012014
A242—22 AZZB 142
No(s+1) =4 204( r . P142> — 4 0!;128{ (0x14)} )
r207,(4r% — p3,) r203,B(0 % 12)
2 (2 2 2
p1a(PTp — 4014) p14B(0124)
too =-1 =1 .
Na(tes) 6 r2(4r2 — p3,) 6 r2B(0 % 12)

Proof. Since parameters t3, 1 — t3, s + 1 and o, are written as

oo o)t —ply |, 2hoh
3= Zt _ 2 ’ 3 = Zt — 2
P12t1 — P14 P12t1 — P14
202 Ag £2 2(02.£2 — o2
s41=20h —ty 1= 202800 oy gy = 2RI )
p1a (Pt — p1y) 12f1 — P14

we obtain

Nz(fg) _ Nz((ZPﬁ - p%2>t1 - P%4) Nz(l _ t3) _ 24A3N2(t1)
NZ(P%ztl - 9%4) N2(P%2tl - Pﬁ)
ZpphiMa(h)® L 2 Na(0hf — ply)
P£1;4N 2 (P%ztl - P%4) No (P%ztl - P%4)

respectively. They are all combinations of factors evaluated in Proposition 5. We therefore
obtain the results. []

No(s+1) =

53.TheSetCs:t; =t3 %t

The case C3 : t; = t3 # t, for the admissible parameter t; is evaluated from that of
Cr:ty =ty #t3in previous subsection by the use of the transposition 0,3 of the coordinates
ty and t3. In fact, one may take as in (86) and (87), i.e.,

P3(t) = a(t),  Pa(t) := ga(h), (93)
and for the basic parameter t;, the rational curve (t;,wy(t1),t1) € X interpolates the set of
all critical points in C~3, where
(203, — P10t — Phy

Pt — Pl

ty = wy(ty) = , tz=t, (94)

so that we have the expression

C3 = {(ty, wa(ty), 1) € X|a(t1) = 0}.

Then the same assertion as the preceding proposition holds true.
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Proposition 6. The points in C3 consist of the four points corresponding to the solutions { j to the
equation P3(t1) = 0 with ty = wy(t1),ts = t1, and we have

N3(t) = Ma(t1), N3(1—t) =Na(1—1y),
N(phti = ply) = Na(phots — p1a),

Na((2034 — pi)t — pla) = Na((20%4 — o)t — pTa),
N3(teo) = Na(teo)

and

N3(t2) = Na(t3), N3(1—t2) = Na(1 —t3),

Ni(t3) = Na(t2), N3(1—t3) = No(1 —ty). ©2)

These are explicitly given in Proposition 5 and Corollary 1.

Proof. Indeed t1, t leave invariant under the transposition o23. Therefore, NV(t), Nj(1 —
t), Nj(p2,t1 — p34), Ni{ (203, — p3,)t1 — p3,} and N(te) are all invariant under the trans-
position 3. The symmetry with respect to 0,3 also implies (95). O

Proposition 7. For the special parameter s, we have

Ny(s+1) = AFA1 (0, — 401) (014 + 1701, —4r%07,) _ AGA1B(0124)B(0 124) (96)
r2p%,(4r2 — p,) 2r2p%,03,B(0 % 12)

Proof. From (94) the special parameter s + 1 is calculated as

s+1=06(t1+hH)—t3+1=

2 _ 2 202 — 02 Vb — 02
P12 2P14 (t1+ ( P142 P12) 12 P14) 1
P14 P2t — Py

2 2 2
_ P%(l 1)( P14 Pt P14 Plz(l — )b,
014 Plztl P14 P14

so that, using (95) we have
Na(s+1) = p12N3(1 —H)Ns(h) = p12N2(1 — 1) Na(t3).
1014 Pl4

Since N,(1 — t1) and N;(t3) are given in Proposition 5 and Corollary 1, respectively, we
obtain

0} A5A (01, — 4p3,) (014 + 203, — 41703 )
N (S + 1) éZ % : 4(; 5 % 12 14 lé 12 14
Phy P (417 —p1p) r Plz

which coincides with (96). O

54.TheSetCy:tr) =t3 # 1

We assume that t, = t3 # 1 for the critical points. Since 1 # t; and tp = f3, from (73)
it is necessary for g1, = §13 = 0 that

$12(t, ta, o) = 13(t1, b, 1) = photata + (0T, — pla)te — pla(t1 + 1 — 1) = 0.

is satisfied. Solving this equation with respect to t, we have

t)y = W2(t1) =
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where
U(h) := phtt + T =208y, V(h) = ply(t — 1) 97)
We may take the interpolating curve (t,w»(t1),ws(t;)) € X of the set Cy satisfying

Si(ty, wa(t), ws(ty)) =0,

where

14 14
ty = wy(t)) = L tz3 = ws(ty) := U

Furthermore

Lemma 22. Let 14 be function specified by P4 (t1) = §1(t1, %, ). Then 4 has the factor t; — 1,

namely it is written as

clI<

(t1 = 1) py(t1)

Pa(ty) = " , (98)
where Py (t1) is a polynomial in t1 of degree 4. Moreover the explicit form of {4 (t1) is
Balt) = (PR + (0 + 290+ 2) U2+ 403, (P — (g — ) — ) U
+plu(t —1) ((472 —3ph)t +4pty — pTp — 472) (99)
= plar*t] + p1a(pTy +417)8 + pha (601 — 8pTyr® — 2075084 — 3pTy) 11
+ 0T (4pTo1* — 16014 — 3pTo014 + 1001, ) 1
+ (0T2 — 4p14) (P15 + plor” — 4pT4r?). (100)

Proof. By the definition (74) of §1, we have

vy,

uu

= {2((7’2 — i)t +p%y — %) + ((2r° — phy)t + 207, — P — 272)} V2
+4[28 — (o — ol — UV + (1 = 1) [PB + (hy + 27 + 2L,

=(t—1) {Pﬁ(tl -1) ((47’2 — 3pT,)t + 4pTy — pTp — 4r2)

+40% (P8 — (0}, — o)t — P )U+ (P8 + (o + 2k + 2 1P,

Uyy(t) = UG (1,

which is a polynomial in ¢; of degree 5. Thus, we obtain

UPpy(t1) = (1 — 1)Pa(tr),

where 4(t1) is a polynomial in t; of degree 4 explicitly given by (99). We therefore
obtain (98). The explicit form (100) is obtained by direct calculation from (99). [

Remark 11. From (82), we see that (1,w,(1),w3(1)) = (1,0,0) ¢ C. This means that the root
t1 = 1 of the equation p4(t1) = 0 does not correspond to any point in Cy.

Since 4 (t1) is evaluated at t; = (—p2, +2p%,)/p32, as

by ( —ph + 29%4) _ 401, (47 — p1) A = 4p1;B(0%12) A3 #£0, (101)
P%z p4112 ,0?2
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we have the expression
5 Vv o1 A
={(t1, =, —) € X|s(t) =
C4 {( 1s u’ u)e ‘IP4( 1) 0}/

where U(t1), V(t;) are given by (97), and we call 4 (t1) the characteristic polynomial of C4. We
denote the roots of the equation 94(t;) = 0 by {1, {2, {3, {4, then the points corresponding
to ; give the set of critical points Cy. Let ¢, be monic polynomial in t; specified by

. .
Pu(t) = [(—¢j) = ¢4h(i1)'

=1

where hy := pf,r? is the coefficient of highest degree of §4. Due to Lemma 22 we obtain
the following.

Lemma 23. 4(t,) is a polynomial in t| of degree 4 with the leading term
Patr) = hatt (|| = o),

and the leading coefficient is given by hy = p1,r>. Furthermore we have
$4(0) = (03, — 40%4) (P14 + pT2r” — 4p347°),
Pa(1) = 4(47% — p4) A},

Pa(—1) = 40140,
and P ((—p3, +202,)/ 03,) is provided as (101).
Proof. The results are calculated directly using (99) or (100). O

From the symmetry between Cy and C;, we immediately have the following:

Proposition 8.

N4(t1) = Nz(tg,), N4(1 — tl) = Nz(l — t3)
Ni(ta) = Ny(t3) = Na(t1), Na(1—ta) = Ny(1 —t3) = No(1 — 1)
Ni(teo) = Na(teo)-

These are explicitly given in Proposition 5 and Corollary 1.

Since s = d(t1 + tp) — t3, from the symmetry between C4 and C3, we also immediately
have the following:

Proposition 9. Ny(s + 1) = N3(s + 1). The explicit form is given in Proposition 7.
Remark 12. As a consequence of Lemma 23, we can explain another way to have the explicit forms

of Nu(tj) (j =1,2,3,00), Na(1 — t;) (j = 1,2,3) and Ny(s + 1) using special values of 4(t1)
as follows. The basic idea is to use the following formula for arbitrary 1, y»:

4
Ni(rty —72) = %@4(%),
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which is explained in (91). Then, using Lemma 23, we obtain
p4 (0 pa(1 Pa(—1
Na(t) = 1’02( ), Ny(1—1) = ¢4h( ), Ni(th +1) = 1’04; ),
4 4 4
8 2 2
P1r ~ (—P1p T2

Na(U) = Na(hat +p3y — 2p3) = F12 (12714

4 P12

hy ’
P%a 4

Ni(V) = Ni(pla(t = 1)) = ﬁf%(l)'

For our setting tp = t3 = V/U, wehave 1 — ) =1 — t3 = Ag(t1 + 1) /U, so that

_ M) - RV AGESY
Ni(k2) = Na(ts) = Teoggyr Mol = 1) = Nall = t3) = 860 s

are simply calculated. Since s + 1 is written as

o . V V _ p%ZAO tl(fl —|— 1)

sH1=dlh) —hl=d(h+g) - g+1= TR
we have . Ny
P18 Ny(t)Ny(t +1)
N4(S + 1) = pff4 N4(Z,I) ,

which is also simply calculated. Lastly, we evaluate Ny (t« ). The parameter to is written as

74 2t2 22t 2 _42
too:1+t1+t2+t3:1—|—t1+2U:plz1+ 91221“’12 P1a

so that we have . 5 ) )
Nilte) = Na(piat] + 207t +p1p — 4P14)‘
Ny (U)

To evaluate the above numerator we use another method. By Euclidean division, we have

Pa(t1) = (cat] + c1t1 + co) P(t1) + q1t1 + qo,
where, for setting cot3 + c1ty + co = p3,t5 + 203,11 + p3, — 4p3,, there exist
P(t1) = p1or* + 0T (014 + 2%ty + 1o — 4pi4r® — 301, — 4012014
and q1 = 401,07, (0, + 5014), 90 = 4034 (0T, — 4p1y) (0T, + p1y). Using (92) we finally obtain

c3 64p6 (4p2 _p?. )AZ
Na(phf + 205t +pT, — 4piy) = é(q%co — qoq1c1 + qoc2) = —— 1;2 L\

5.5. Conclusions of This Section

In this subsection, we give a proof of Conjecture 2 under the conditions (Hy), (#1)
and Ay # 0. As we saw in (63), for a rational function ¢ on X, the norm of ¢ is defined by
the product of the values over the set of all critical points C ie,

4
N(g) =TT ¢Q = HM(@-
i

QeC

Summing up Propositions 4-9 and Corollary 1, we have
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Theorem 2.
N(t) = A 4P14)(P%4 —4r%)? (P14 +phr* — 4p7,r%) (103)
p13(pT, — 31%) (pf, — 4r2)?
B B(0124)B(0*124){B(0*14)B(014)}2 (i=123)
= B(0123)B(0%123){B(0x12)B(012)}2 = =)
32 NI AN3 (03, — 412)
NA—-t)=—-= 01114 (104)
! 3 r2p13(p3, — 3r2) (pf, — 4r2)?
210 AJA2B(0 14) 193
= 3 B0+1)B(014)B(0123){B0x12)B(012))2 U~ L2
N(te) = 4% (pT, — 301 (pT, —4p1,)° _ 47 B(01234){B(014)B(0124)}° (105)
* r6(03, — 3r2) (02, — 4r2)3 B(0+123){B(0*1)B(0x12)}3’
N(s 1) = BA0AT (0T — 3pty) (o, — 403,)* (0, — 4r2)”
3 6 26( 2 _3,,2)( 2 _4,,2)3
P14 Plz P12
X (301 +40%,1% — 1207,7%) (014 + pTor” — 4p747°)? (106)
7 A7A? B(01234)B(0+ 1234){ B(0 x 14)B(0 % 124) B(0124) }?
3 % B(0x123){B(0x1)B(0x12)B(012)}3
Corollary 2.
N(f) = VZP%% (Plz - 372)(9%2 - 4r2)2(P%4 —4r%)
) 21652 ( 2 _ 402 )
P14\012 — *014
X (3pis +40%,r% — 120747%) (014 + pTo1” — 40747%)? (107)
_ B(0x1) B(0*1234)B(0%123)B(0*14){B(0x 124)B(0 % 12)}?
T 248 B(0124)B(012){B(014)}2
(=123),
1"
N(fs) = pi;‘ (074 — 4r%)3(3p1y + 4pT,r* — 1203477 (014 + pTor® — 4p1477)° (108)
_ B(0x1) B(0x1234){B(0*124)B(0 14)}°
248 B(0123){B(012)}3 ’
N(fi— fa) = AT (7, — 4r%)?(3pi, + 40T,r* — 1203,77) (01, + 011 — 401,77)° (109)

321103, (07, — 4p,)
_ ARAT B(0%1234){B(0* 14)B(0 + 124)}? (i=123)
~3.27  B(0124){B(012)B(014)}3 J= 420
N(fj—fi) =0 (1<jk<3), (110)
(i ) 345 (o7, —307,) (o], — 401y’
j=1 fi (0T, —3r2) (03, — 4r2)3(p3y — 412)3
1

- (3014 + 47,72 — 1207,72) (01, + p1pr? — 4p341%)3 -
B 2-415 B(01234)B(0123){ B(0124)B(012)B(014) }®
~ {B(0x1)}*B(0%1234)B(0% 123){B(0x 124)B(0x 12)B(0 x 14) }3’
{3(01234) }g
N (L) = 5 , N(Ljgg) = N(t)N (L123), (112)

N (teo)

where {j, k,1} denotes a permutation of {1,2,3}.
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Proof. From (47) wehave f; — f; = f4(1—1¢;)/t; mod Ann(C) (j = 1,2,3), so that we have
N(fj = fa) = N(fo)N(1 = t;) /N (t;) for j = 1,2,3. Using (103) and (104) in Theorem 2,
we see that N'(f1 — fa) = N (f2 — fa) = N(fs — fa). On the other hand, from (79) we have
N(fs — f1) = p3Y N(s + 1) /N (te), which coincides with the right-hand side of (109) by
using (105) and (106) in Theorem 2. We therefore obtain (109). From (47) we also have
N(fj) = N(fa)/N(t;) for j = 1,2,3, so that we have N'(f1) = N(f2) = N(f3). On the
other hand, using (47) again we have f3 — fs = (1 — t3)f3 mod Ann(C), so that we obtain
N(fs) = N(fs — f1)/N(1 — t3), which is evaluated as the right-hand side of (107) by
using (104) in Theorem 2 and (109). We therefore obtain (107). Moreover, from (47) we
also obtain N (fy) = N (t1)N (f1), which is evaluated as (108) by using (103) in Theorem 2
and (107). From (76), we have t; — fx =0 mod Ann(C) for j,k € {1,2,3}, so that we have
N (tj — t) = 0, which implies

N(f)N
N(fi=fo) = NUifON (= F71 = WN(tk —t)) =0 for j,k € {1,2,3}.

We therefore obtain (110). From (71) we obtain N’(Z}l:l fj_l) = N(tw)/N(fs), which
coincides with (111) by using (105) in Theorem 2 and (108). Lastly (112) follows from the
definition (44) of Lj; and (38). [

As we mentioned as Remark 2 of Conjecture 2 in the introduction, we have the
following:

Theorem 3. Under the conditions (Hy), (H1), and Ag # 0,

4

1
fi for far far ) X L123, L124, L134, Loz
j=17j

are all units.

Proof. From the product expressions for N'(f;), N' (Z}l:l f]fl) and N (Ljy) in Corollary 2
we see that there appears no factor of their numerators which vanishes. [

6. Regular Tetrahedron Case (p12 = p14)

In this section, we impose the conditions (Ho) and (H;) with Ag = o3, — 3, = 0,
which means AO10,030; is a regular tetrahedron and all spheres S; have the same
radius, i.e., p]Zk =p>(1<j<k<4) and r]z =12 (1 < j < 4). Under this setting, we
present the explicit formulae for N'(f;), N (Z}lzl fjfl) and NV (Hess(F)) using the admissible
parameters f1, f5, t3, and show that Conjectures 1 and 2 stated in the introduction hold true.

The polynomials §; (1 < j < 3) and gj (1 < j < k < 3) defined in (72) and (73) are
simplified as

gi(t) = (t—1) [rz(tj F 12+ 0%+ 272(5 + 1) (b + 1)
(113)
+ (2 = )+ 1) + (27 = Pt

Sik(t) = (e —t))8jx(t),  gix(t) := p*(tj — 1) (t — 1), (114)

respectively, where {j, k,1} is a permutation of {1,2,3}. Let C = ~!C be the set of critical
points characterized by C = {t € X | &(t) = $»(t) = §3(t) = 0}. By Lemma 11 if t; # 1 for
t € C, then the system & (t) = §(t) = §3(t) = 0is equivalent to

1(t) = g12(t) = §13(t) = 0.
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We may use the same notation for the points corresponding to these points in X. As a
result, the set of 15 critical points are tabulated as W, Q]-, ij, ijl- One can also classify

these points by the property (76). The set C is partitioned into four parts, i.e., C = |_|;L:1 Cj.

6.1. The Set él =t =13

The point (1, t2,t3) = (1,1,1) € X satisfies the system §; () = & (t) = $3(t) =
this point corresponds to the point W. Since g1 (t1,t1,t1) = (1 — 1) [3(3r* — p?)£3 +
p?)t1 +1%],if t # 1, then the two solutions of the quadratic equation

3(3r2 — p2) 2 4 (61% + o)ty 4+ 17 = 0,
correspond to the points Q123, Q4. We obtain C; = {W, Q123, Q4 }.

6.2. TheSet Cy i t1 =ty # 13

Ifts =1fort € C~2, then 1 # 1. Thus, t € C~2 satisfies g12(t1/t111) = g~13(f1,t1,1) =0
automatically. Since §(t,t1,1) = (t1 — 1)[(4r* — p*)12 + 8%t + (4r*> — p?)], the two
solutions of the quadratic equation

(42 — p*)3 + 8%t + (4r* — p?) =0 (115)

correspond to Qip, Q34. On the other hand, if t3 # 1 for t € C,, then t € C, satisfies
the system

33(t, t,t3) = $31(t1, t1, £3) = Gao(t, t1, t3) = 0.

Since §31(t1, t1, t3) = $a2(t1, t1,13) = p2(t1 — 1)(t3 — 1)(t3 — t), we need t; = 1 for t € C,.
Then we also need §5(1,1,t3) = (t3 — 1) [r?t5 4 (612 + p?)t3 + 3(3r* — p?)| = 0. Thus, the
two solutions of the quadratic equation

rzté + (61’2 + p2)t3 + 3(3r2 - pz) =0
correspond to Q3, Q124. We obtain C» = {Q12, Q34, Q3, Q124 }-

6.3. The Set C~3 h=t3#b
This occurs from C» by exchange of 5, t3. The cases f; = 1 or t; # 1 correspond to
Q13, Q24 0r Q2, Q134, respectively. We obtain C3 = {Q13, Q24, Q2, Q134 }-

6.4. The Set Cy : th = t3 # 1

Ifty=1fort e C~4, then t, # 1. Thus, t € C~4 satisfies g21(1, ty, tz) = g~23(1, tr, i’z) =0
automatically. Since §2(1,tp,t2) = (tp — 1)[(4r% — p?)£3 + 8r%ty + (412 — p?)], the two
solutions of the quadratic equation

(42 — p*)3 + 8%ty + (4r* — p?) = 0

correspond to Qq4, Q23. On the other hand, if t; # 1fort € C4, then t € C, satisfies
the system

S1(t1 ta, t2) = &1a(t1, to, ) = S13(ty, 12, 12) = 0.
Since $12(t, t2, t2) = §13(t1, ta, t2) = p?(t1 — 1)(ta — 1)(t — t1), weneed t, = 1 for t € Cy.
Then we also need §;(t1,1,1) = (t; — 1) [r#2 + (612 + p)t; + 3(3r* — p?)| = 0. Thus, the
two solutions of the quadratic equation

P22 + (62 + p?)t; +3(3r> — %) =0 (116)

correspond to Q1, Q234. We obtain Cy = {Q14, Q23, Q1, Q234 }-
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6.5. Conclusions of This Section

We have the following two lemmas by a direct calculation:

Lemma 24.

2 2
fi(W) = w for j € {1,2,3,4},

fi(Q)) = plo = ”f§72+pz) forj e {1,2,3,4},
fi(Qj) = Chs 5472 +0%) fork # j,

fi(Qu) = PO VETER) o 1y € 1,2,3,4),

fn(Qu) = EOENVEEO) o g (k1) € (1,2,3,4),

fi(Qix) = plo = ”fﬂ*pz) for {j,k} C {1,2,3,4},

f(Qu) =P Vfﬂ*"z) for I ¢ {j,k}.

As a consequence

Corollary 3.
N = NUf) = =535 20302 = 82) (07 = 377 (2 — 472)°
2 B(0 1){3(?;(102323)(}(; ;(102132);)33(0* 19 1<j<a),  awm
N (g }]) " BB 8r2)2(;')2’34. ;Lrlj)‘*(p2 —4r2)6
g B(01234){B(0123)}*{B(012)}° (118)

B(0x1234){B(0x123) }4{B(0 12) }6{B(0x 1) }*"

Proof. The above formulae are obtained by definition and from Lemma 24 in view of the
following identities: B(0« j) = 2r2, B(0 % jk) = p?(p? — 4r?), B(0* jkI) = 20*(3r* — p?),
B(0%1234) = p®(3p? — 8r2), B(0jk) = 20%, B(0jkl) = —3p*, B(01234) = 40°. [

Lemma 25.
2 2\3
_ 49 (p7—8r)
Hess(F)| _,, = G — 826" (119)
2 2\ (2 2\3
_ 47 (07 +24r7)(p” — 8r)
Hess(F)[,_q x Hess(F)|,_q =4 e e (120)
2 2\4
_ 3 (p7—8r)
Hess(F)|x:ij X Hess(P){x:le =4 (= 4728 (121)
for {j,k,1,m} a permutation of {1,2,3,4}.
Proof. We prove (119) first. By the definition (113) of ; we have
X~ = 2(8r% — p?)
(81,82, 83) _ 282 — p?) = 8(8r2 — p?)3. (122
Aty ta, t3) ti=ty=t3=1 2(8r% — p?)
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By definition, we also have

=1+t +t+1t;3 4. (123)

O |p =ty=ts= o]
t’ ty=t3=1 )}tl ty=t3=1

From Lemma 24, we obtain

fifofsfi)_w = (3% —8%)0/8°. (124)

Applying (122)—(124) to the formula (61), we therefore obtain (119).

Next, we show (120). Without loss of generality, we prove the case Hess(F) ’x: o, X
Hess(F) |x:Q23
written as Q1 = 1(71,1,1) and Qp34 = (1, 1,1), respectively. From (62) of Lemma 13
we have

' only. We denote by 11, 7> the solutions of (116). Then Q; and Q34 are

Hess(F)| X Hess(F)|

x=Q x=Q234

_ 96 2 ( 1 a(§1,§12,§13)> (125)

= —z.

=1 fifafafiteo(1—11)2  O(t1,t2, t3) t12:1;

t3=1
We now calculate the right-hand side of (125) precisely. From Lemma 24 we have
(ffafsfi)|mg, ¥ F12fsfD)]— oy, o
:_p2r2 (pz(p2—3r2))5:_rzplz(p2—372)5 (126)
6 2 203 )

From (68) in Lemma 14 we see that

081,.812.813) | _ ¥ (312, &13)
d(t1,t,t3) fﬁj dt; 9(ty,t3) Zj

where (t1) = §1(t,1,1) = (t; — 1) [r?£ + (6r> + p?)t; + 3(3r> — p?)]. This implies that
for the solution T of (116), we have

dyp

dy e = 77 1)(2r7 + (6r* +p?)) = 27T + (47 + p*) T — (6% + p?)

=2[=(6r +p*)T = 3(3r" — p*)] + (4% + p*)T — (61 + p?)
= (2 +7)T - (242~ 500,

so that we obtain

d d
d—z - % - = (87 + p2)’1yT2 + (812 4 p?) (24r* — 50%) (11 + To) + (2417 — 5p?)?
3(3r2 — p? 6r’ 4 p?
e o] o ) _ (82 + %) (247 - 5¢%) S+ (24— 5p%)?
= 20%(p* — 812)(0? + 24r%) /7. (127)

Since we can calculate

(812, &13) _ ‘ —0*(t — 1) 0 — oAt —1)*
d(ty, t3) 23 0 —0%(t; —1)2 ’
we have
(812, 13) (812, 13) _ 8 4 4
3(ta, t3) gilﬁ X 3(ta, t3) g:sz =p’(m - —1)% (128)

=1 =1
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Moreover, by definition we have
teo|ty—1 = (1+t1 +t2 +t3)|1,—1 = t1 + 3. (129)
tz3=1 tz3=1
Applying (126)-(129) to the Equation (125) we therefore obtain
3(p? = 8r2) (02 + 247%) (1y — 1)*(1z — 1)
Hess(F Hess(F = 2P
ess( )|x:Q1 x Hess( )|x:Q234 r4p2(p% — 3r2)> (1 +3)(+3)’

which coincides with (120) by calculating (73 — 1)(72 — 1) and (11 + 3)(7 + 3) as follows:

3(3r2 — p?) 612 + p? 2(8r% — p?)
(m-D(m-D=nn-(n+n)+1=""g "+ = +l="p
3(3r2 — p? 612 + p? 602
(m+3)(n+3)=un+3(n+n)+9= ( 3 )3 rzp +9:—riz.

Finally, we show (121). Without loss of generality, we prove the case Hess(F)| _ O X
Hess(F) ’x: Qs only. We denote by 01,0 the solutions of (115). Then Qp, and Qs34 are
written as Q1o = 1(07,01,1) and Q34 = (02,02, 1), respectively. From (62) of Lemma 13,

we have
Hess(F) ]x:le X Hess(F)|x:Q34
_ 96 z ( 1 a(§1/§12,§13)> o (130)
i1 \f1fofsfi teo(1 = 1) At tots) )]
ty=1

We now calculate the right-hand side of (130) precisely. From Lemma 24, we have

20:2 _ p42 120472 _ 41,2\6
(AP X AR g, = (P2 = €T )

From (68) in Lemma 14, we see that

(81,812, §13) _ 4y 9(%12,813)
a(t1, ta, t3) gjl dt; 9(to, t3)

ty=ty”’
tz3=1

where ¢(t1) = §1(t1, 11, 1) = (t1 — 1) [(4r* — p?)3 + 8r%t; + (41> — p?)]. This implies that
for the solution ¢ of (115), we have

ay
dt

A G 1)(2(4r% — %) + 81%) = 2[4 — p*)0” + p%0 — 407
= 2[~(8r%0 +4r* — 0?) + > — 4p%] = 2(p* — 8%) (c + 1),
so that we obtain

dyp

dp 2,2 2,2
L —_— =2 -8 1 1). 132
o < At by, = 2 07 =8 (1 + D02 +1) (132)
Since we can calculate
9(Z12,§13) ‘ p2(t — 1) 0 4 4
_— — - t — 1 ’
o(ty, 13) Z;il 0 P2t — 1) p*(t—1)
we have 331 213) 3312 313)
812,813 812,813 3 4 4
—e=e=r —e ==y = o — 1) (on —1)*. 133
d(t, t3) 2:3} d(t2, t3) 2:2 Pl =ie =1 (159

ts=1 =1
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Moreover, by definition, we have

too|ty=t; = (1+t1 + 2 + fs)ftzztl =2(tH +1),

tz=1 tz3=1
so that
too|t1=c1 X too|ty=cn = 4(01 + 1) (02 + 1). (134)
t2:L7] t2:t72
tz=1 tz3=1

Applying (131)—(134) to the Equation (130) we therefore obtain

2 Q.2)\2
x Hess(F)|_ =224 0 =87 (105, 17,

HeSS(P)‘ =Qu ~ ° pA(p2 — 4726

*=Q12
which coincides with (121) by calculating (67 — 1)(0» — 1) as follows:

8r2 1= 2(8r% — p?)
4r2 — p? 4r2 — p?

(=1 —1)=0m— (1 +0m)+1=1+

This completes the proof. [

From Lemma 25, we obtain:

Proposition 10.

(pz + 247’2)4(p2 _ 81”2)27

_ 476
N (Hess(F)) =4 728078 (302 — 812)6(p2 — 3r2)20 (o2 — 4r2)2"

(135)

If N(Hess F) = 0 then 8> = p* and vice versa. This case occurs when all critical points
Qix (j < k) and Qi (j < k < 1) coincides with W the center of gravity.

Remark 13. If 12 > %pz, then all 15 critical points ¢, are real and distinct from each other.
If > > $p?, then D1 N Dy N D3N Dy # @. If 3% > 12 > Lp?, then D; N DN D;ND,, # @.
If 302 > r? > 1p? then D;N DN D} ND,, # @.

Let {j,k,1,m} be an arbitrary permutation of {1,2,3,4}. Then grad ReF preserves every
affine plane pjx 1, and the lines (W;, Wiy, ), (Wir, Wiy, ) are trajectories of grad ReF.

If }Ipz > 12 > %pz, then Dj 0 Dy = @. The four points Q; lie one by one in the inside of each
ReS;. The remaining 11 points lie in the common part of the inside of the pyramid AO10,0304
and the outside of all Dy. The values of ReF at ReS;j, Qji, Qjr, W satisfy the ordering

%8F|§Re5j =_—00 < EReF|Q]_k < 9“{21-"|Q]_k’ < meF’W.

There exist the unique trajectories (separatrices) of the real vector field grad ReF starting from
some point of ReS; and tending to Q, starting from Q; and tending to Qjy, starting from Qjy and
tending to W respectively.

We assume that p = 2. Take the axis y1 and the ordinate y, to be the lines (Wi, Wiy,)
and 1(Oj, Ox) such that Wy is the origin in the plane pjx 1,,. The restriction of f; to the plane is
represented by

fi=vit W+ =7 fi=yi+ (-1 =7 fi=fu= (- V2 >+ +1-7,
and the vector field grad ReF on pjx 1, is defined by the differential equation

dy, _ v
dy1 v’
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where Y
2 2 4 — /2 2 2 -1 4

U1=£+£+ (1 ), vy = (2 + )+ (12 )+ﬂ

fi fr fi

fi h fi
Then every trajectory in pjy. 1, tending to the infinity has an asymptotic expansion
1 G G
pprCan-—7)+t5+=+ - (lnl—-)
V2w

or
y~C’y+1+ §+C§+ (lya| = o)
1=+ —F—+5+ 5+ 2 .
V2 ¥y
where C_y or C'_; denotes an arbitrary real constant and the remaining C,, C;, (v > 2) are uniquely
determined in a successive way. The phase portrait of grad ReF in pjx 1, is given as in the Figure 1.

N\

Figure 1. Phase portrait of grad ReF in pjy 1.
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The real vector field grad ReF preserves the two dimensional real plane piy 1, which contains
the critical points Q;, Qx, Qjkr Qims Qjim and Q. The three straight lines Q;W, QeW and
Wi Wiy, are trajectories themselves. Every trajectory starts from each point of the circles ReS; N
Pk, im and ReSy N iy 1, in a perpendicular manner to the circles, or from the point Qy,,, (unstable
node). The points Qjx, Qjim and Qg are saddle points. Every trajectory finally tends to one of the
points Q;, Qr and W (stable nodes), or to the infinity.

7. Product of Hessians

In this section, we evaluate the norm of the Hessian of F under the same constraints
as Section 5, i.e., we still impose the conditions (Hy), (#1) and Ag # 0. From (64) of
Proposition 3 the Hessian of F satisfies that

1 1 3(§1,§12,§13)>
N (L Hess(p)) = - x(
(23 ess( )) N (AN ()N (f3)N (f4)3N (teo) N (1 — 11)2 Aty ta, t3)
Since we have already evaluated N (¢;) (j = 1,2,3,00), N (1 — ;) (j = 1,2,3) and N (f;)
(j =1,2,3,4) in Section 5, our aim in this section is to study the remaining part

N<a(g1/§121§13) ) )

d(t1, 2, t3)

Since the set C is separated into four parts, which are specified in (76), i.e., C = |_|;4:1 éj, we

have A
a(§1,§12,§13)) (3(§1,§12,§13)>
N( _ Ty (8L )
d(t1,to, t3) ]11 T\ 9(t, ta, t3)

Furthermore, from Lemma 14, it follows that

(0(81,812,.813)\ _ s (905N (9(S12, 1)
Nf( A(ty, ta, t3) >_Nf(dt1)Nf< d(t, 13) ) (136)

where ;(t1) = §1(w(t1)) are the characteristic functions defined by the interpolation curve
w : C — X associated with C}, respectively (see Section 5 for further detail on the functions
#;j(t1)). In the sequel, we shall abbreviate

5 _ 9&1,812,813) 9(812,813)

At tat3) - 0T 9(tat)

respectively.

Definition 4. Let §j(t1) (1 < j < 4) be the characteristic polynomials of C; defined in Section 4
(see (83), (87), (93) and (100) for explicit forms of P1(t1) = P1(t1), Pa(t1), P3(t1) and Pa(ty),
respectively). For the polynomial ;(t1) of degree m, let {; |1 < k < m} be the set of roots of the
equation j(ty) = 0.

- e i(t)

pi(t) =Tt —8) = ]h- ,

k=1 ]

where h; are the coefficients of the leading terms of lﬁ]-(tl). We define the discriminant of the
polynomial (1) associated with each C; as follows:

Discrij:= [ (G — Q)™ (137)

1<k<I<m

By definition, we can immediately confirm that

Discrij = (=1) 2N (§(11)) = (1) D "N (1)), (138)
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i.e., Discri; = —hy N (¢} (t1)) and Discri; = h;‘*]\/j(lp]%(tl)) (j=2,3,4).

7.1. N1(Z)

In this subsection, we consider N1 (Z) for the set C;. As we saw in Section 5.1, an
arbitrary critical point ¢ = (t1,t,,t3) € Cj is characterized as a point on the interpolation
curve w : C — X defined by w(t) = (1, wa(t), ws(t)) € X, where

th =wa(ty) :=t, t3=ws(t) =1,
and t = w(t]) € X satisfies the equation §;(w(t1)) = 0. Since 1 and g3 are expressed

as (73), §12 = 13 = 0 is automatically satisfied. The characteristic function ¢; relative to
the parameter #; is defined by

(4]} (tl) = g~1(t1, t1, fl) = Llof% + ﬂzt% +azt; +az = h1¢1 (tl),

I = a9 =3(3r* — pty), ap = =31 + 91y — 5p1y, a3 = — (57 +p3y), as = 1% (139)
Lemma 26. Let $1p and $13 be polynomials in t given by (73). Then we have
ZO = ng g13 mod Ann(él), (140)

namely

Ni(Zy) = N1(812)N1(813)- (141)

Proof. Since 1o = (t — t1)¢12 and §13 = (t3 — t1)$13, the point on the interpolation line
t; = tp = t3 satisfies

G1n, & 6 98 g
A d) | _ g [ St -0)T (—h)TE
—t; 96 . P
d(tp, t3) ii;i} (t3 — tl)iilz?’ 13+ (t3 — tl)% b=t

= S1a(t1, t1, t1)&13(t, 1, 1),
which implies (140). [

By definition, the polynomial ¢1>(t1,t1, 1) coincides with ¢13(t1, t1, t1), and they are
written as
ga(t ) = Gt tt) = phot] + (oh, = 3pla)t + ol

Lemma 27.

o . 200, AL YAV
Ni(§12(t, 11, 11)) = M1(§13(t, ta, 1)) = = , (142)
h? 9(3r2 — p3,)?

where A, denotes

By := 41t (pTy — 9p14)* + 12 (0Ty — 9p14) (P12 — 201014 + 9p1s) + 40100 (143)
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Proof. For an arbitrary quadratic polynomial czt% + 1ty +co = ca(ty — a)(ty — B), there
exist unique polynomials P(t;) and g1t1 + qo, such that 1 (t;) = (cat? + c1t1 +co)P(t1) +
g1t1 + go. Then the norm of czt% + c1t1 + cp is calculated by reciprocity law as

3
Ni(caff + c1t1 + o) = C%H(@j —a)(li—B) = C%% () (B)

j=1
CS . N 3 3
= h%lh(w)ll)l(ﬁ) h%(quo)(qlﬁwo) w 2 (q3ap + qoq1(x + B) + q3)
1 1
3 C% 2
= = (qf - qo&/r +q5) = 2 2 (q1c0 — qoq1c1 + q5¢2).- (144)
1

By Euclidean division, we have
P1(t1) = (catf + c1t1 +c0) P(t) + q1t1 + qo,
where, for setting $12(t1, 11, t1) = c2t3 + 1ty + co = p3,12 + (p3, — 303, )t + p3,, there exist

P(ty) = 301, (31> — pla)t1 + p15 (27p747% — 12077 — 2015),
0 = pp5 (209, — 4P14P12 + 7ptyr* — 72050747 + 81p1,r?),
qo = 91_24(2912P14 - P12” + 12P12P14” 27P147’ )-

Using (144), we obtain

M (g12(t1,t1,11)) = 3 (q5co — qoqrer + qoc2)hy® = 280A2h; 2,

which coincides with (142). O
Lemma 28. The explicit form of Discriy is given by

B (T2 —3p14)As

Discri; = hil , (145)
where A3 denotes
Az = 3072r° — 64(1303, — 303,)r* + 4(12507, — 430p%,0%4 + 30907, )7
~ (2501, — 27py)pls- (146)
The explicit form of N1 (y) is also expressed as
- (eh =308 (pT, —3p3y)0s
Ni(9}) = —1 Discriy = ~112 14)23 _ P12 14)53 (147)
h 3(3r2 - p3,)
Proof. The resultant of i, and ¢ gives the discriminant of 1 (t1), i.e.,
ap ai ar as
ap ai a as
R(l,tq,l/){) =1|3ap 2mq a = —a8 H (@j - ék)z = —hi’ Discriy,

3a0 2a1 ap 1<j<k<3
3ag 2a1 ap

where ay, a1,a2,a3 are given in (139). From direct calculation of the above determinant,
we obtain

R(1,91) = 3(3r* — pTp) (0T, — 3p14) 3 = (0T, — 3p1a) s,
which implies (145). Using (138) we obtain (147) from (145). O
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Due to (145) we immediately have the following:
Corollary 4. There exists no double point in Cy if and only if Az # 0.
We conclude the following from (136) and Lemmas 26-28.
Proposition 11.
4N3A3 4N3A3
Ni(Zo) = — 72 = Ry (148)
CRNNEEEERYENE
N(Z) = _ 4A3A3Discriy _ 4(pf, — 3p§4)A5A§A3_ (149)

n i
Proof. Applying (142) to (141) we have (148). Using (148) and (147), (136) implies (149). O

7.2. N>(2)

As we saw in Section 5.2, an arbitrary critical point t = (t1, t5,t3) € C, is characterized
as a point on the interpolation curve w : C — X defined by w(t1) = (t1, wa(t1), w3(t1)) € X,
where 5 ) )
(2014 —p1p)t1 — P14

Pt — Pl
and t = w(t;) € X satisfies the equation §; (w(t;)) = 0. Since ; are expressed as (73),
$12 = 0 is automatically satisfied when t; = t;. The relation t3 = w3(t;) in (150) is
determined by solving the equation ¢13(t1, t1,t3) = 0, where

th = wy(ty) :==t1, t3=ws(t):= , (150)

S13(t1, 11, t3) = photits + Aoty — ply(t + t3 — 1),
In this setting,

$12(t, t1,ws3(h)) = pot] + Dotz — pi4 (24 — 1).
From (75), ¢12 is also expressed as

S12(t1, t,wa(t)) = $1a(t1, b, wa(t)) — 13t t,wa(t)) = pla(t — 1) (k1 — t3).

The characteristic function ¢, relative to t; is defined by ¥ (t1) = §1(t, t1, w3(t1)), and
from Lemma 21 1, (1) is expressed as

(tr = D) a(t1) (151)

) = .
valtr) (P%ztl_Pﬁ)z

Here, >(t1) is a polynomial in #; of degree 4 given by

lpz(h) = {101‘,111 + azi’% +aszty +azty + a4 = h2¢2(t1)/

where
hy =ag = P%z(‘”z - P%z)/ ap = ZP%z (ZP%4 - P%z)r 152
— 0202 (—82 & 02, — 302 — 902 b — ok (42 _ 2 (152)
ay = p1pP14(—8r" + 01y —3p14), a3 = 2075014, A4 = P14(4r" — p1y)-
Lemma 29.
Zo = p3,(phots — pa) (1 — 1) (t1 — t3)* mod Ann(Ca), (153)
namely

Na(Zo) = 3o Na(pots — pia) Na(1 — t1){Na(t — t3) }2 (154)
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Proof. Since §1p = (t2 — t1)$12 and 13 = (t3 — t1)$13, the point on the interpolation curve
ty = 1, I3 = w3 (fy) satisfies

. 38 a8
ty=t B 92 A 03 ty=t
ot/ t3) fa—cn (1) (ts—t)F Gt —t)F )220 )
. 93
= $12(t1, t1, t3) [(fs - tl)%} = (phat1 — Pa)pTa (1 — 1) (f1 — t3)?,

which implies (153). O

Lemma 30. A A
Na(t —t3) = Na(ty — £3) = = = Z (155)

"~y 2ol (4 =)’

where A, is given by (143).
Proof. Since {1 — t3 on the curve w is written as

(201, —ph)t —ply  $ua(ttih)
2 2 - 2 2 7
Pt — 1y Pt — 014

tp—t3 =1t —ws(ty) =t —

where ng(tll t1, tl) = p%zt% + (p%z - 3p%4)t1 + p%4, we have

oy MGt hh))
No(ty —t3) = Nolphyh — %) (156)

By Euclidean division, we have
$a(t1) = (cat? + c1ty + o) P(t1) + g1t1 + qo,
where, for setting $12(t1, t1,t1) = c2t2 + c1t1 + ¢ = popt3 + (p3, — 3p3,)t1 + p3,, there exist
P(ty) = pho (4 — ph) 8 + (1203477 — 4pTo7* + phoply — P1o)1
+ 015 (3601, — 360T,07,7> + 40T, — 201,074 — 0,),
1 = —p17 Do (1080147 — 40807,07,7> + 401" — 501,074 + 0T2),
qo = P15 Dopi (360147 — 4p1or + o074 — PTh)-
Using (92), we obtain
Na(812(t1, t1,11)) = 3 (q5co — qoqrcr + qoca)hy > = 401014050205 .

Since Ny (p3t1 — 03,) = 4r2pl,p%, A3 ! is presented in Proposition 5, using (156), we
therefore obtain N (t; — t3) = Azr_zhg 1 which coincides with (155). O

Corollary 5.

9(3r2 — p3,)?
No(t—t3) = 122 Ni($12)-
=) 2r2p%, 0 (417 — p7,) 1(812)

Proof. See (142) in Lemma 27. O

Proposition 12. Ay = 0 ifand only if C;NCy # @ (1 < j < k < 4).
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Proof. By definition, the curve w(t;) = (t1,t, ws(t1)) € X defined by (150) cross the line
t; =ty = t3, when w3(t;) = t3, i.e., the parameter t; satisfies

St b, h) = phtf + (01 = 3pT )t + 01 =0, (157)

which is equivalent to ¢12(t1,t1,t1) = 0, since $12(t1,t1,t1) = $13(t1, t1,£1). This means
that C; N C; # @ if and only if there exists a solution t; = { of the equation ¢, (t;) = 0
satisfying (157), also means that C; N C; # @ if and only if there exists a solution t; =
of P1(t1) = 0 satisfying (157). Hence, by definition, NV, (#; — t3) = 0 holds if and only if
there exists a solution t; =  of the equation (1) = 0, such that { — w3({) = 0, which is
equivalent to C; N C, # @. The evaluation (155) in Lemma 30 implies the following:

A =0 <= MNy(tj—t3)=0 <= CNGC #Q. (158)
Due to the symmetry of Gy, C3 and Cy,
Clﬁéz#@, élﬁé37é® and 6106475®

occur at the same time. Hence, we see that A, = 0 if and only if ¢in éj # O (j=2,3,4).
Moreover, since N;(t; — t3) = N (1 — t3), (158) implies that Ay = 0 if and only if NV, (t, —

t3) = 0, which means C> N C3 # @. Due to the symmetry of Gy, C3, and Cy,

CNC#Q, CGNC#@ and CNCy #QD
occur at the same time. As a result, we therefore obtain Proposition 12. [
Lemma 31. The explicit form of Discriy is given by

16013014858 _ 16914054

s P42 —ph)°

where Ay is the polynomial in 2, p3,, p3, of degree 12 given by

Discrip = , (159)

Ay = 16384p7, (4074 — pT,)r® + 204807, (30T, — 1207,01, + p1y)7°
— 48(90%, — 5605014 + 1220101, — 177071004 + 69074)7*
+ 400074 (3509, — 1410107, + 9Tap1s + 8105,)7
+ 01014 (90%, — 49015014 + 631,014 — 270%,). (160)

The explicit form of N ({5 is also expressed as

R . 1601308,A278,  160%,08,A30,4
N () = h Discriy = uhl%‘* == (4r122j;%;’)2. (161)

Proof. The resultant of §, and ¢} gives the discriminant of ¢ (#;), i.e.,

ap ay ar as as
ap ay ar as as
ap ay ar as as
BRI L _ 7 2 171 :
R(¢2,¢;) :=| 4a9 3a; 2a, a3 =ag [ [(Zj — Ck)* = hj Discriy,
4a9 34y 24, a3 j<k
4610 3611 2012 as
4&0 3{11 2&2 as
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where ay, a1, a, a3, a4 are given in (152). From direct calculation of the above determinant,
we obtain

R(ip2, §5) = 16p13p14 (4% — p1) AGAs = 1601303412 05As,
which implies (159). Using (138) we therefore obtain (161) from (159). O

Due to (159) we immediately have the following:
Corollary 6. There exists no double point in Cy if and only if Ay # 0.
We conclude the following from Lemmas 30 and 31:

Proposition 13.

401, 000103
Na(Zo) = 5 Pis —2, (162)
r2p1, (412 — p1,)
4 h 16 44
No(Z) = f 272 AZA3A3 Discriy = 47 1§Z 14 ASA2ABA. (163)
7"P14 i

Proof. Applying (88), (89) in Proposition 5 and (155) in Lemma 30 to (154) we have (162).
Differentiating both sides of (151) with respect to t; we have

' (t = D)y (h) 5
Py (t) Wb =2 mod Ann(Cy),

so that
No(ty —1)
{Na2( Plztl P%4)}2

Using (164) and (154) in Lemma 29, (136) implies

Na() = Na (). (164)

p5{N2(1 — 1) Na(ty — t3)

}?
N> 165
NZ(Putl - P14) (V2) (169

N2 (Z) = No(Zo) Na(py) =

According to Proposition 5, Lemma 30 and (161) in Lemma 31, the right-hand side of (165)
coincides with (163). O
7.3. N3(Z)

An arbitrary critical point t = (f,t2,t3) € C; is characterized as a point on the
interpolation curve w : C — X defined by w(t1) = (t1, wa(t1), ws(t1)) € X, where

(203, — pi)t — P14
P12t1_P14

ty = wy(ty) == tz = w3(ty) := 1,

and t = w(t;) € X satisfies the equation §; (w(t;)) = 0. This situation is represented by
the transposition 0,3 of the coordinates ¢, and ¢3 from that of C>. Thus, the characteristic
function of Cj is the same as C, i.e., ¥3(t1) = §1(t1, wa(t1), w3(t1)) = Po(t1). Hence, our
conclusion is:

Proposition 14. N3(Zg) = Na(Zy), N3(Z) = No(Z). The explicit forms are given in
Proposition 13.
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7.4. Ny(Z)

As we saw in Section 5.4, an arbitrary critical point t = (1,1, t3) € C, is characterized
as a point on the interpolation curve w : C — X defined by w(t;) = (t,wa(t1), w3(t)) €
X, where

V(t1)

U(t)’
2 2 2 2

U(t1) := pipt1 +p12 — 2014, V(H) i= pia(t = 1),

and t = w(t;) € X satisfies the equation §; (w(t1)) = 0. The relation t, = t3 = V(t1)/U(t1)
in (166) is determined by solving the equation §15(t1, t2, t2) = 0, where

ts = w3(ty) == (166)

t) = a)z(tl) =

$12(t1,ta, t2) = §13(t1, ta, 1) = photita + Dota — pi4(t1 +ta — 1) = taU(H) — V(t1).

The characteristic function ¥4 relative to t; is defined by ¢4 (t1) = $1(t1, wa(t), ws(t1)),
and from Lemma 22 4(t;) is expressed as

Pa(ty) = (= Vips(t) 324’4(“) (167)

Here 4 (#1) is a polynomial in #; of degree 4 given by

Pa(ty) = ﬂofil + ﬂzt:{’ + asty +azty +ag = hatp,(t1),

where
hy = a9 = pyr®, a1 = pio(p7y +4r%),
az = P%2(6P%2V 8p14r 2P%29%4 - 3P%4)r (168)
a3 = p1,(401or* — 16p347* — 301,01, + 10p1,),
as = (p1o — 4p%y) (014 + P1or* — 4p147°).
Lemma 32.
2
Zo = p%(t — 1)(h — 02)2U(t) = %(tl ~H)2U(H)V(H) mod Ann(Cy),  (169)
14

namely
8
Ni(Zo) = pioNa(1 — 1) {Na(h — t2) PNa(U) = %{M(tl — ) PNG(U)NL(V). (170)
14

Proof. Since $1p = (fp — t1)812 and §13 = §12, the point on the interpolation curve
ty =tz = V(t1)/U(t1) satisfies
t=V/U

¢ ¢
det g2+ (b —t) B2 (2 — 1) 52
=de
= ¢
iz:“j;ll (t3—t1) 813 g13+(t3—t1) 813 b=y

N {(tz - tl)aaiflzz}z {(tz -1 )851‘13 } (2 — t1)2{(P%2f1 - P%4)2 - A%}

= (2 — t1)*pTr (1 — 1) (pTots + Ty — 2074),

9(g12,§13)
d(t, 13)

which implies (169). O

From the symmetry between C; and C,, we immediately have Nj(t; — ty) = Na(t3 —
t1), which has already been evaluated as (155) in Lemma 30. Hence, we have the following:
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Lemma 33. A
Na(ti =) = Na(t —t3) = 54— ————. (171)
r20%, (472 — py)
Lemma 34. The explicit form of Discriy is given by
16p1208,030,  16p%,A3A
Discriy — P120148024 _ 160748054 (172)

g r2pi3
where Ay is the polynomial in 12, p3,, p2, of degree 12 given by (160). Ny(¢}) is also given as

. . 16p1208,A2A, 16 A2 A4
N () = I Discriy — 12042058 _ 220 12’; 140 (173)
4

Proof. The resultant of {4 and ¢} gives the discriminant of §4(#;), i.e.,

ap 1 az az a4
ap @ az asz 44
ap a4 ap a4z a4
DY e
R(¢s,¢y) == | 4ap 3ay 2ay a3 OH —h4Dlscr14,
4ay 3a7 2ap; as j<k
4ay 347 2ap; az
4610 3011 2612 as

where ay, a1, a, a3, a4 are given in (168). From direct calculation of the above determinant,
we obtain

R(ps, ) = 160150547 A5A4 = 1601507414 A5As,
which implies (172). Using (138) we therefore obtain (173) from (172). O

Due to (172) we immediately have the following;:
Corollary 7. There exists no double point in Cy if and only if Ay # 0.
We conclude the following from Lemmas 33 and 34:

Proposition 15.

2 422
Ni(Zo) = 16P148(47 2(’14)A 082 , (174)
r 912(4” _Pu)
N4(Z) =4 W—MAZAZ h4DlSCI'14 — 64p%gp%4( p%4)2 AéA%A‘L ) (175)
p1s(4r2 — 7))’ (4r2 = p}p)° h

Proof. Applying (102) and (171) to (170) in Lemma 32 we have (174). Differentiating both
sides of (167), with respect to t;, we have

i) = (= 1yy(t) 32@1(“) mod Ann(Cy),

so that
N4(t1 1)



Symmetry 2022, 14, 374 49 of 59

Using (136), (176) and (170) in Lemma 32, (173) in Lemma 34 and Proposition 5, we obtain

Ni(Z) = Na(Zo)Na(yy) = MMU — 1) {Na(t1 — t2) PN (P))
! P§4N4(u) 4
8
= :%Nzi(tz)/\ﬂx(l — 1) {Na(t — B) 1N (6)
14
8
- ‘p’g}iNz(tlwz(l ~ t3){Na(t1 — t3)} I Discriy
8 4 2 2 2 2 2
_ Pl PL(4r —p1y)  4AG(47 —pyy) Ay 2y
- [ g P12(4r% — p,) g r2p%, [Vzp%z (4r2 — P%z)] "y Discri,

which coincides with (175). O

7.5. Conclusions of This Section

In this subsection, we give a proof of Conjecture 1 under the conditions (H() and
(H1). And we try to prove Conjecture 1 without the constraint (1) in Appendix A.

Theorem 4. Under the conditions (Ho) and (H,) the norm of the Hessian of F relative to C is
expressed as

ASA3AS
T L A T Coar N
1
X ,
(P%At + P%zrz - 49%472)15(39%4 + 4P%2r2 - 129%472)6

N (Hess(F)) = 2%

where Ay, Az and Ay are the polynomials in 2, p%z, p%4 given by (143), (146), and (160), respec-
tively. The right-hand side is written in terms of the Cayley-Menger determinants as

29 ol SIS

{B(0x1)}12 {B(0%12)B(0+ 14) }12{B(0+ 123) }5{B(0+ 124) }15{ B(0 % 1234) }¢~

Proof. From Propositions 11, 13, 14, and 15, we obtain

_ 4 : _ 212 Pﬁ(P%z - 39%4)(4”2 - P%4)2A34A%A§A3Ai
MO =LNE = 5 gen - - dr Y
Since we already had
-N(Z)
N (Hess(F)) = 2% 179
(Hess(E) = 2 G N N (B N ) PN G N -2 79

by Proposition 3, using (178) and the results for N'(f;), N (tx) and N (1 — t;) stated in
Theorem 2 or Corollary 2, we therefore see that (179) coincides with (177). O

Remark 14. While Theorem 4 was proved under Ay # 0 in the above proof, the formula (177) is
also valid for Ay = 0. When Ay = 0, i.e., p3, = p3, the invariants Ay, Az and Ay degenerate to

Ay = 4p*(p* —8r%)2 Az = 2(p* — 81)%(p? + 241%) and Ay = —4p* (0* — 8r%)3(0* + 241°),

respectively, so that we can confirm that the right-hand side of (177) degenerates to (135) in
Proposition 10, which is the result proved independently under Ag = 0.

Remark 15. The factors Ay and Aq do not appear in the expression (177) of N'(Hess(F)), while
N (Z) in (178) is divisible by A*AL. Since N'(1 — t1) given in Theorem 2 is also divisible by



Symmetry 2022, 14, 374

50 of 59

A}, the factor A AT in the numerator and that in denominator of (179) are cancelled. For
the right-hand side of the formula (177) as a meromorphic function of r?, we see that the point
12 = (303, + p3,) /4 for Ay = 0 is a removable singularity.

Corollary 8. Under the conditions (Hg) and (H)
N (Hess(F)) #0
if and only if every critical point in C is different from each other.

Proof. By (177) in Theorem 4 we have N (Hess(F)) # 0 if and only if ASA3A3 # 0. Accord-
ing to Proposition 12, Corollaries 4, 6 and 7, we see that ApAszA4 # 0 if and only if every
critical point in C = I_I;Lzl(f j is different from each other. [J

8. Conclusions

We discussed the norm of the Hessian of the level function F at critical points C
involved in asymptotic behaviors of hypergeometric integrals associated with a symmetric
arrangement of three-dimensional spheres. We also provided two conjectures (Conjectures 1
and 2) relevant to this topic. We provide a proof in a special symmetric case where
AO10,0304 is a pyramid with the axis of symmetry, whose base triangle A010,03 is
regular and all spheres have the same radius.
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Appendix A. Further Reduction and an Associated Characteristic Function

As we saw in Section 7.5 (Theorem 4), we calculated N (Hess(F)) explicitly under the
conditions (Hp) and (1), and we consequently confirmed that Conjecture 1 holds true
under the conditions (H() and (). However, we want to prove Conjecture 1 without the
constraint (1), if possible. For that purpose, we show a way to compute the part

(81,812, 813)
a(tlr t2/ t3)

in the expression (62) of Hess(F) under a more general setting.

Appendix A.1. Step 1

We fix the admissible parameter t. Then §; given in Proposition 2 is polynomial in
t, t3 whose coefficients are explicitly written using the parameter f; as follows:

§1 = Bimts +2B1stats + Braath + 21ty + 215t + Bro, (A1)
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where the coefficients ; . are polynomials in t; of, at most, second degree:

2 2 > 2
Bi22 = (ri — 1)t + 024 — 74,
2 2 2 2
B1as = (r1 —p13)t + P34 — 74,

0 2 1 0 2 4
251,232{2&3(0 3 1>}t12r§+3(0 3 4>,

2B1 = 2{ 35 + B(

Moreover, §12 and §;3 given in Lemma 10 are also polynomials in t5, t3, whose coefficients
are explicitly written using the parameter ¢; as follows:

§1j = PBujjjt7 + 2B jititk + Bujxkti + 2B1jt; + 2B1iktk + Brio (= 2.3), (A2)

where {j, k} is a permutation of {2,3} and the coefficients f; . are polynomials in f; of at
most second degree:

Appendix A.2. Step 2

We modify g1 as
P22 . Pi3s

~ .~ /-
=81 - 12
£1=2 B12,22 8 B13,33

813/
which can be represented as
§1 = 2P p3tat3 + 2P ot + 2B 313 + Bl g,

where

122 133
2B1 23 = 2P1,23 — P 2B12.23 — L2l313,23,

B12,22 B13,33
r_ B1,22 B1,33
2817 =2B12 — 2B122 — m2B132,
B12,22 B13,33
133 122
215 = 2P13 — Pz 2B133 — Pz 2123,
B1333 Bz,

B1,22 1
Blo = Bio— Bi2o — B13,0-
222 B13,33
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We also modify &; as

3 N P22

$1p =812 — [ g1 = B, nits + 2B1p0t2 +2B123t3 + Bloos
1 23

. . B33

$13 =813 — B 23 g1 = Bis, i3+ 2B132t2 +2B13 383 + Biso
1,

where

Bloom = B1222,  Plaz = B133s,

12,23 13,23
2B190 = — P 2B, + 2P0, 2Bi33 = — P 215+ 2133,

Bios Bios
/312 23 /313 23
2B1p3 = B 2B 3+ 2B123, 2B13p = B 2B 5 + 2132,
123 123
B12,23 s B1323

Proo = *Tﬁm +Bro Pug= *Tﬁl,@ + Bo-
1,23 1,23
Remark that 28 ik =0 for j = 2,3 and j # k. According to Lemma 11, we may conclude

Lemma A1. Suppose that B1222B1333 # 0. Then under the condition (Hy) the system (57) holds
if and only if
§1=812=8;3=0. (A3)

In this case, the identity
g1 ANdgi, Ndgs = dg Ad§ip Ad§is mod Ann(C)

holds, i.e.,

(31,812, 813) _ 9(81,.812,813) mod Ann(C).

A(t, to, t3) o(t1, o, t3)

Appendix A.3. Step 3

In this subsection, we want to express

(81,812 813)
a(tll t2/ t3)

explicitly in terms of the resultant of §}, |, and §};. We assume that the monomials in
ty, t3, of at most fourth degree, are arranged in the following order:

1= Bt = 315 = s = 13 = 13 = 13 = t3t3 = 0t = 13 = 15 = tots =ty = t3 = 1. (A4)

Three fundamental linear relations among &, §},, §15 over the coefficients of quadratic
polynomials are given as follows:

2 - 2 .
(Biopats +2B1opts + 2B103t3 + Blog)§13 — (Biasats + 2132tz + 2B135t3 + Blap) 31 = 0,
(,3/12,221% +2B1p0t2 + 212383 + Biop) S — (2B 2atats + 2B ota + 2B 3t3 + Bl p)§12 = O,
(Blassts +2B1aota + 2Bhssts + Bisw)§h — (2B1astats + 2B ota + 2B 5ts + Bp) 313 = 0.

As a result 12§}, is a linear combination of

2~ - - - - - -
13812, 0 tn & h&in B8 S
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and #3¢/ is a linear combination of
~/ 2 =~/ =~/ ~/ =~/ =~/
81, 1381, &1 B, h8n, 13812, S
Moreover, 3¢/ is also a linear combination of
~/ =/ =/ ~/ =~/ ~/ =/
81, 1381, &1 hisdiz h&is 13813 Sis
One can see:

Lemma A2. The system of (ordered) 15 polynomials (denoted by X)

2~ ~ 2~ ~ 2~

X1 = 15§15 = Xo = bata@1y = X3 = 15381y = Xg = bt3)3 - x5 = 13813
= Xe = ha1p = X7 = 1313 = Xg = 1381y = X9 = 113, X10 = §1a
~/ ~/ ~/ ~/ ~/
=X11 =813 = X12 = 81 = X13 = 287 > X14 = 1387 > X15 = 387

are linearly independent and span the linear space of polynomials at most fourth degree.

Definition Al. The Macaulay'’s diagram X 15 x 15 associated with the ordered basis x; with
respect to the monomials in the ordering (A4) is defined by the following equation:

X: T(X],Xz,...,xl5) = X T(t%,t%i’:;,...,tz,t:;,l),

where X is the 15 X 15 matrix given by

Bl 2815, 28125 B2
B2 2810, 2B12s Pioo
B2 2125 2815, Bioo
Bis3s 2815, 2B13s Biso
B33 28155 2813, Bis0
Bl 2815, 28105 Bro
B33 2155 2P130 Biso
X = Blo 2815 2P Bioo
Biass 2Pisn 28155 Bio
Bio 28122 2P Prno
B33 28132 2P133 Puao
28105 21, 2Bz Bio
2123 21, 2815 Pio
28123 2815 2P, BLo
2812 281, 2Bi3 Bio

The resultant of §},,§15, &}, which we denote by R(§,,§15,§}) is related to det X
as follows:

det X = (B1y2)(Bi333) R(&12 813.81), (A5)

where

R($12.813,81) = (/3,12,22ﬁ/13,33)3(ﬁﬁ.@)2{ﬁ,12,225/13,33(/3/1@)2 - 4(ﬁ/1,23)2/3/12,@ﬁ,13,®} +-
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See [15] and W. Grébner : Moderne Algebraische Geometrie [16] (pp. 70-71). Using (A1)
and (A2), we first define

3 - ﬁl 23
§h =t — a1, = Ents + ot + Cistats + Eiatr + Eists + Cie,
1222
~/ lBl 23 2 2
§13 = 13§ — [ —— =113 = Coty + Ent5 + Castats + Loty + Costs + Cos,
13,33
where
4B123P1 23 4B152P1 23
611 = zﬁ/l 27 612 =——0F, = 213I13 -,
12,22 Bi2m
2812 0P 23
Cu=plp Gis5=——2——, C16=0,
12,22
4B13,P1 23 4B133P1 23
En — —f—=, T =2P13 G =2p1,— —Fr——,
B335 13,33
2B13,0P1 23
$u=Pro G5 = 7,3;7,’ Go6 = 0.
13,33

Then we have
Tyall sl Al Al =Tr2 42
(81281581, 812, 813) = E (83,15, tat3, 1y, 13, 1),

where the 5 X 6 matrix 2 is given by

i1 C12 C13 G1a Gi15 Cie
$o1 G2 €23 Goa G5 o6
B:= 0 0 &3 G3a G35 G36 |- (A6)
1 0 0 Gua Cus Cas
0 ¢s2 0 &ss {55 Gse

Here, the entries ¢;; of the matrix E can be expressed as
333 =2P1o3 G4 =2P1n G35 =213 G =Plo

G = 5/12,22/ Gaa = 2,3/12,2/ a5 = 2.3’12,3/ Gae = ﬁllz,@
Ts2 = Blass  Gsa =2B13p 855 =2P133 56 = Blao:

Define further

PR LA TEY I 5 VU Y N (A7)
¢33 Cn Cs2

PO NV T W T Y TN O (A8)
¢33 Ca1 Cs2

where C;k can be expressed more concretely

13/1,213/1,3_'_ .31231312315132
/

$la=Bio—2 , (A9)
181,23 12 22.313 33
!/ 418,1,213/12,3 + 213,1,23ﬁ12,® :31 23:812 3/313 3 :31 S(ﬁl 3.312 22 zﬁ/l 23:3I12,2)
(:15 - / +38 ’
512,22 2 22ﬁ13 33 ﬁl 23ﬁ12 22
/ / / / / / /
- +
656 _ 1,3,ﬁl,® + 7 /31,2:312@ ﬁl,@ﬁlz,z 4 1,23ﬁ12,3/313,®

ﬁ 1,23 ‘3 /12,22 IB /12,2213 /13,33
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and likewise ¢, = 023(C}5), &hs = 023(814) = &hus Che = 023(E1), Where 023 denotes the

transposition between the subscript {2,3}. The polynomials §{5 and g7} are linear in t,, t3.

Using the matrix &' := (C;k)lgjgz,lgkgs we have

. 15)
o\ |
=11 - - 3
813

Lemma A3. Under the condition

(H2): PBrom #0, Biazs #0, 14 #0,

the system (A3) are equivalent to
§1=8n2=85=0 (A10)

Proof. It is obvious from (A7) and (A8) that (A3) implies (A10). Conversely suppose that
(A10) holds true. Then from (A7) and (A8) we have

2[3/1 23 ~ ~ - 2:3/1 23 -
0 ( T f3+@>832+@8/13/ Ozgﬂgiz‘F( T t2+@)g/13-
12,22 641 552 (341 ﬁ13,33 ‘;‘52
Since ty, t3 satisfies g’l = 0, the determinant

2B13 o &

[ s+, 52 _ 2123814 (A11)
o 2[3’],23 & | T 7 7
& o tr + # 1812,2218 13,33

does not vanish by hypothesis. Hence, we obtain §}, = §j; =0. [

One can also express t3¢1; and 333 as linear combination of the basis X":

Lemma A4.

t3g1y = t3(G1ata + E1sts + C16)

/
. 123 .2 - 13, ~ G111, ~ G2, -
= tyt3§) — o131 — C*t3gi - ?tsgiz — 213313,
122 33 41 ¢5
ts813 = t3(Caat2 + Costa + 826)
2B g & g
2~ 123, , - 23, - 21, ~ 2, .
= 138) — o ht3g)3 — gfsgfl - Efsgﬂz - Etg,g’l?,
13,33
2'8/ 2'3/ ﬁ/
_ 7{ P32y ( 133 +@>t3+ 150 }g/l 7 @tgg’u
13,33 :313,33 Ca3 13,33 a1
2B ot2 + (2B15 — C2)ts + By
+ 7 813
B33

1zl FI 11

Definition A2. Macaulay’s diagram Y 5 x 5 corresponding to §7, §15, §14, t3813 13§14, is
defined by

$1 £ 0 {33 G 35 G36
g /1l2/ tat3 0 0 534 ‘335 ‘356
g =Y| t, |, where Y= 0 0 &by &b Che
t3815 t3 C15 G 0 G O

t3813 1 Cs Gy 0 Gy O
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Let U, be function specified by

(12345
_\_‘ 1 2 3 4 5
B ¢33G41052 ’

where the minor determinants of order [ for the matrix & = ({j) given in (A6) are defined as

S R A |
H<k1 ky - kl) det(éjpkq>p,q:1,2,...,l

forl1<ji<jpp<---<jj<hand1<ki <ky<--- <k <L6.

b, = 2B1235) _ | G s
(2, 13) $os o5

Lemma A5. Suppose that Uy never vanishes at any point of C. Then the equations

=~/ ~/ O

812 = 813 =

concerning ty, t3 can be uniquely solved by

(CU2,CLJ3) T b =

7 7 t_ 7
L 0

which defines a rational curve interpolating C, where

w(12345)
b |8 G| _\1 2356

G5 G2 | 833641652 '
=(1 2 3 45
s Cie \123 46
u3 = - 7 ! = -
a1 2 C33641G52
The associated characteristic function = (t,) given by
o, U2 Uz
= / b2 3 2
2 gl(l’ul’lh)ul
equals
p = —detY = Gl Us + E34lpUy + Ea3sUslly + Ea6ls (A12)

Furthermore Lemma A3 shows that if U] is finite and U; # 0 at all points of C then (A3)
holds if and only if ¢(t;) = 0.

Lemma A6. The system of (ordered) polynomials (denoted by Y) is obtained from X after exchang-
ing {x3,x11,x13,X14} for {y12, y13, y14, y15}

y = (X - {X3,X11, X13, X14}) U {ylZI Y13,Y14, YIS} = {YL yY2,--. ,Y15},
where

i A A /]
Y12 := 812, Y13:= 813, Y4 = 13812, Y15 = 13813
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and y; are connected with xi by the matrix T:

yi=x (1=j<2)
yi=xjy1 (3<j<9),

Y10 = X15,
T Y11 = X12

y12 = c2x11 + X33 mod (xg, X10, X12),

y13 = c3x11 +x14 mod (X9, X190, X12),

yi4 = c1x3 +x15 mod (x7,Xs, X14),

Y15 = c4X11 + c5X13 + c6X14  mod (x7,Xs, X9, X12)
such that

2B 2 ) _ Pio 2P0 _ 2B135 | &
1= —73 sy =77, 3= —%7—, 4= 7 ; 05 = ——73 ;r C6 = 77 =
B2 G52 G52 ﬁ13,33 1313,33 Praz 63
and g
281 23814
detT =1 (C4 — CpC5 — C3C6) =g (A13)
1222P13.33
In other words,
Y=TX
and hence
dety =detT det X. (A14)
The ordered system (y;) 1<j<15 97¢ linearly independent and span the linear space of polynomials at
most fourth degree.
On the other hand

Lemma A7. Macaulay’s diagram associated with the system Y

y = T(Y1/Y2, e /Y15)
is given as follows (each sum is expressed in the ordering (A4)):

V1 = 1331 = Blooots + - - - (lower order terms),
Y2 = hatadly = Brombta + -+,

V3 = hat3dls = Blasshat3 +- -,

Ya = 155813 = Brazsts + -

Y5 =t = Bonti+ -,

Yo = 13813 = Biazty + -,

y7 = 13812 = Bromtita + -+,

Y8 = hadis = st +- -+,

Yo =81 =Bt + -,

Yo = tatad1 = 2B1 231583 + 2B 21383 + 281 3t + Bl oot
yi1 = &1 = 21 pstats + 2B ota + 2B 515 + Bl o0
yi2 = §1s = Clata + &ists + &6,

Y13 = §13 = Coata + &osts + &,

Yia = 13815 = 1513 + Glatats + Glgta,

Y15 = 13815 = Ehs13 + Gaatats + Chgta.
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so that
detY = 2B/ 23 (Bi222)° (Bi33)* det. (A15)

Hence, (A5), (A13), (A14) and (A15) imply the following identity:

Proposition Al. 1 is related with the resultant R(§1,, 15, §}) as follows:

6/14 ~/ ~/ ~/
- _71{( ’ s )/
Y BPoomPlam) 812/ 813/ 81

where &, is given by (A9).
The determinant identity (A11) in the proof of Lemma A3 shows

Lemma AS.

3 3 N & N N 5
gy N gy NGl = —722 Y43 Ndgl, Ndg; mod Ann(C).  (Ale)
12,2213,33

Proof. Indeed in view of (A7)-(A9)

The left-hand side of (A16)

1 2B p3t3 +8nn & L

= Bombiaml dg; Ndgi, Ad
B12,22P13,33 Ga1 2B p3ta + E SRASVRATS K
2 ~
51 23(:14 dg1 A dgu A dg{3 mod Ann(C)
/312 0P335

since ) =0. O
We now assume that
(&1 813)
(ta, t3)

Then, we finally obtain the following fundamental equality:

(Hz): U= does not have any zero or pole at C.

Proposition A2. Suppose that the conditions (Ho), (Hz) and (H3) are satisfied. Then,

t=(t, %%) €C ifandonlyif y(t)=
and .. / / il
(%1, %12, §13) _ _ﬁlz,zzﬁls,as (81, 815 813) mod Ann(C) (A17)
ot ta,ts) 2B Gy Ot fo t3) ,
where a( g/ g~/// g///) 1/1 ~
W = UT mod Ann(C). (A18)

Proof. Equation (A17) is a direct consequence of Lemmas Al and A8. On the other hand,
by a direct calculation, we have the identity

A&, 812 &) _ 1 Ay (815 813) 5
3t by, ) :U%E 3ty 13) mod Ann(C).

This means (A18) in view of (A12). O
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