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Abstract: We state the product formulae of the values of the levels of functions at critical points in-
volved in asymptotic behaviors of hypergeometric integrals associated with symmetric arrangements
of three-dimensional spheres. We show, in an explicit way, how the product of the Hessian, regarding
the level functions at all critical points, is related to the behavior of its critical points. We also state
two conjectures concerning the same problem associated with general hypersphere arrangements.
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1. Introduction

For a given αj0 ∈ R and αj = (αj1, . . . , αjn) ∈ Rn (j = 1, 2, . . . , n + 1), let f j be real
quadratic polynomials in R[x] = R[x1, . . . , xn] specified by

f j(x) := (x, x) + 2(αj, x) + αj0 = |x + αj|2 − |αj|2 + αj0,

where (x, y) := ∑n
ν=1 xνyν and |x|2 := (x, x) for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

Let Oj be the point −αj ∈ Rn, which is the center of the hypersphere {x ∈ Rn | f j(x) = 0}.
The radius ri > 0 of Si and the distance ρjk > 0 between Oj and Ok are given by

r2
j = −αj0 + |αj|2 and ρ2

jk = |αj − αk|2,

respectively. In this paper we assume that the points O1, . . . , On+1 ∈ Rn make an n-simplex,
so that without loss of generality, we may assume the following:

αjν = 0 (1 ≤ j ≤ n + 1, n− j + 1 < ν ≤ n) and αj,n−j+1 > 0 (1 ≤ j ≤ n), (1)

i.e.,

O1 = −α1 = −(α11, α12, . . . , α1,n−2, α1,n−1, α1n), α1n > 0,

O2 = −α2 = −(α21, α22, . . . , α2,n−2, α2,n−1, 0), α2,n−1 > 0,

O3 = −α3 = −(α31, α32, . . . , α3,n−2, 0, 0), α3,n−2 > 0,
...

...

On = −αn = −(αn1, 0, . . . , 0, 0, 0), αn1 > 0,

On+1 = −αn+1 = (0, 0, . . . , 0, 0, 0).

Here, we consider the n− 1 dimensional hyperspheres f j(x) = 0 in Cn, i.e., we define Sj as

Sj = {x ∈ Cn | f j(x) = 0}.
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For λ = (λ1, . . . , λn+1) ∈ Rn+1 let Φ(x) = Φ(x1, . . . , xn) be a multiplicative meromorphic
function on Cn specified by

Φ(x) :=
n+1

∏
j=1

f j(x)λj .

We set X := Cn −⋃n+1
j=1 Sj. For 0 ≤ r ≤ n, we denote by Ωr = Ωr(X, ?

⋃n+1
j=1 Sj) the space

of rational r-forms on X whose singularities all lie in the set
⋃n+1

j=1 Sj. For the complex

Ω· : 0→ Ω0 ∇−→ Ω1 ∇−→ Ω2 ∇−→ · · · ∇−→ Ωn ∇−→ 0,

where ∇ : Ωr → Ωr+1 is the covariant derivation given by

∇ψ := dψ + d log Φ ∧ ψ (ψ ∈ Ωr),

the rth twisted de Rham cohomology Hr
∇(X, Ω·) is defined by

Hr
∇(X, Ω·) := Ker(∇ : Ωr → Ωr+1)/Im(∇ : Ωr−1 → Ωr).

See [1,2] for more details. For ϕ(x)dx1 ∧ · · · ∧ dxn ∈ Ωn as a representative in Hn
∇(X, Ω·),

the hypergeometric integral associated with Φ(x) over an n-twisted cycle z is defined as

Jλ(ϕ; z) :=
∫
z

Φ(x)ϕ(x)dx1 ∧ · · · ∧ dxn =
∫
z

ϕ(x)
n+1

∏
j=1

f j(x)λj dx1 ∧ · · · ∧ dxn.

For an arbitrary integer N, we put λ = Nµ + λ′, where µ = (µ1, . . . , µn+1) ∈ Zn+1 and
λ′ = (λ′1, . . . , λ′n+1) ∈ Rn+1 are fixed. When ϕ(x) is independent of N, we are interested in
the asymptotic behavior of the following integral as N → ∞ in the direction µ:

JNµ+λ′(ϕ; z) =
∫
z

eNF(x)ϕ(x)
n+1

∏
j=1

f j(x)λ′j dx1 ∧ · · · ∧ dxn,

where

F(x) =
n+1

∑
j=1

µj log f j(x).

For the real valued level function ReF corresponding to |eNF(x)| = eNReF(x), the singularity
of the gradient flow of v = gradReF in X coincides with the set of its critical points given
by

C := {x ∈ X | dF(x) =
n+1

∑
j=1

µjd log f j(x) = 0}. (2)

By definition dF is explicitly written as

dF =
n+1

∑
j=1

µjd log f j =
n

∑
ν=1

( n+1

∑
j=1

µj

f j

∂ f j

∂xν

)
dxν =

n

∑
ν=1

( n+1

∑
j=1

µj
2(xν + αjν)

f j

)
dxν.

In this paper, we assume that the direction µ of the asymptotic behavior is specifically fixed
as

µ = 1 = (1, 1, . . . , 1) ∈ Zn+1.

Then, the set C of critical points given by (2) is rewritten as

C = {x ∈ X |G1(x) = G2(x) = · · · = Gn(x) = 0}, (3)
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where

Gν(x) :=
1
2

∂F
∂xν

=
n+1

∑
j=1

xν + αjν

f j(x)
(ν = 1, 2, . . . , n).

The functions Gν(x) (ν = 1, 2, . . . , n) play an important role in describing the asymptotic
behavior of JN1+λ′(ϕ) for large N (see Theorems 4.9 and 4.10 in [1]). The Hessian of F
is defined by Hess(F) := det

(
∂2F

∂xi∂xj

)
1≤i,j≤n, and is expressed as the Jacobian of Gν(x)

(ν = 1, 2, . . . , n), i.e.,
1
2n Hess(F) =

∂(G1, G2, . . . , Gn)

∂(x1, x2, . . . , xn)
. (4)

According to the method of steepest decent (saddle-point method), if an n-twisted cycle z

includes the critical point (saddle point) c ∈ C which gives the maximal value of ReF on z,
then the asymptotic behavior of JN1+λ′(ϕ; z) (N → ∞) is expressed as

JN1+λ′(ϕ; z) ∼ Φ(c)ϕ(c)

√
πn

(−N)nHess(F)|x=c
(N → ∞). (5)

If Sj (1 ≤ j ≤ n + 1) are located as general position in Cn, for generic exponents
λ = (λ1, . . . , λn+1) ∈ Rn+1 the dimension of the nth cohomology Hn

∇(X, Ω·) = Ωn/∇Ωn−1

as a C-linear space is known to be κ = 2n+1 − 1, i.e., dimC Hn
∇(X, Ω·) = κ (see [3,4] for hy-

pergeometric integrals associated with hypersphere arrangements). The basis of Hn
∇(X, Ω·)

can generally be chosen as an NBC (non-broken circuit) basis for a commutative algebra
associated with hypersphere arrangement (see [5]). The number κ also coincides with the
absolute value of the Euler number of X. It also equals the number of the critical points of
the function F specified by (3) provided that they are non-degenerate and different from
each other. We denote by cj (1 ≤ j ≤ κ) all of the critical points (real or imaginary) in X,
i.e., C = {cj | 1 ≤ j ≤ κ}. For a rational function ϕ on X, we denote by N (ϕ) the product of
the critical values at all points in C, i.e.,

N (ϕ) :=
κ

∏
j=1

ϕ(cj),

which is called the norm of ϕ. Here, we state our first claim as follows.

Conjecture 1. Suppose that Sj (1 ≤ j ≤ n + 1) are located as general position in Cn. Then,

N (Hess(F)) 6= 0

if and only if every critical point in C is different from each other.

Remark 1. When Conjecture 1 holds true, if the n-dimensional stable Lagrangian cycles zj include
cj ∈ C as their limiting points, respectively, then by (5) the pairing(

JN1+λ′(ϕi; zj)
)κ

i,j=1,

where ϕi(x)dx1 ∧ · · · ∧ dxn ∈ Ωn are representatives in Hn
∇(X, Ω·), satisfies the following

asymptotic behavior

det
(
JN1+λ′(ϕi; zj)

)κ

i,j=1 ∼
∏κ

j=1 Φ(cj)π
n/2√

(−N)nN (Hess(F))
det

(
ϕi(cj)

)κ

i,j=1 (N → ∞),

which gives a criterion for C-linear independence of the set {Jλ(ϕi; z) | 1 ≤ i ≤ κ}. This is a rough
explanation as to why we consider Conjecture 1.
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In this paper, one of our aims is to confirm Conjecture 1 when n = 3 for a special
pyramid 4O1O2O3O4. The result is stated in Theorem 4. For this purpose, we need to
compute N ( f j) and N (∑n+1

j=1 f−1
j ). In order to state the explicit expressions of N ( f j) and

N (∑n+1
j=1 f−1

j ) we introduce the Cayley–Menger determinants as follows.

Consider the (n+ 3)× (n+ 3) symmetric matrix B =
(
bij
)
i,j=0,?,1,2,...,n+1, whose entries

are given by b00 = 0, b?? = 0, b0? = b0j = 1 (1 ≤ j ≤ n + 1), b1? = r2
j (1 ≤ j ≤ n + 1),

bij = ρ2
ij (1 ≤ i, j ≤ n + 1), i.e.,

B =



0 1 1 1 1 1 · · · 1

1 0 r2
1 r2

2 r2
3 r2

4 · · · r2
n+1

1 r2
1 0 ρ2

12 ρ2
13 ρ2

14 · · · ρ2
1,n+1

1 r2
2 ρ2

21 0 ρ2
23 ρ2

24 · · · ρ2
2,n+1

1 r2
3 ρ2

31 ρ2
32 0 ρ2

34 · · · ρ2
3,n+1

1 r2
4 ρ2

41 ρ2
42 ρ2

43 0
. . .

...
...

...
...

...
...

. . . . . . ρ2
n,n+1

1 r2
n+1 ρ2

n+1,1 ρ2
n+1,2 ρ2

n+1,3 · · · ρ2
n+1,n 0



.

The Cayley–Menger determinants are defined as the minors of the matrix of B. See [4].

Definition 1. Denote by ρ?j = ρj? the radius rj for j ∈ {1, 2, . . . , n + 1} or 0 for j = ?.
The determinant

B
(

0 J
0 K

)
= B

(
0 j1 · · · jp
0 k1 · · · kp

)
:=

∣∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 ρ2

j1k1
· · · ρ2

j1kp
...

...
. . .

...
1 ρ2

jpk1
. . . ρ2

jpkp

∣∣∣∣∣∣∣∣∣∣
is called the Cayley–Menger determinant, where J = {j1, . . . , jp} and K = {k1, . . . , kp} denote

two subsets of the indices in {?, 1, . . . , n + 1}. We simply write B(0 J) instead of B
(

0 J
0 J

)
. Notice

that B(0j) = −1, B(0? j) = 2r2
j > 0, B(0jk) = 2ρ2

jk > 0 and

B(0 ? j k) = −(ρjk + rj − rk)(ρjk − rj + rk)(−ρjk + rj + rk)(ρjk + rj + rk),

B(0 j k l) = −(ρjk + ρjl − ρkl)(ρjk − ρjl + ρkl)(−ρjk + ρjl + ρkl)(ρjk + ρjl + ρkl).

Using the Cayley–Menger determinants, the latter assumption of (1) is rewritten as

n−j+1

∏
k=1

αn+1−k,k =

√
(−1)n−jB(0 j j+1 · · · n+1)

2n−j+1 > 0

for j = 1, 2, . . . , n.
Throughout this paper, we suppose the condition

(H0) : B(0 J) 6= 0 and B(0 ? J) 6= 0

for J = {j1 < j2 < · · · < jp} ⊂ {1, 2, . . . , n + 1}. The condition (H0) gives the moduli space
of arrangement of n dimensional real hyperspheres in general position in Cn.
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Denote Dj the n dimensional real open ball with boundary ReSj in Rn, where ReSj =
{x ∈ Rn | f j(x) = 0}. One sees that

(−1)|J|B(0 J) > 0 for all non-empty J ⊂ {1, 2, . . . , n + 1},

where |J| is the cardinality of J. In general every real critical point lies in
⋃n+1

j=1 Dj or the
real simplex4O1 . . . On+1. If further

(−1)|J|B(0 ? J) < 0 for all non-empty J ⊂ {1, 2, . . . , n + 1},

then every intersection (
⋂

j∈J Dj) ∩ (
⋂

k∈Jc D c
k ) is not empty, where D c

k means the comple-
ment of the closure Dk. There exists a unique critical point of ReF (and so of F) there.

We now state the other claim of ours for the explicit forms of N ( f j) and N (∑n+1
j=1 f−1

j )

using the Cayley–Menger determinants.

Conjecture 2. For j = 1, . . . , n + 1 let I ĵ be the set {1, 2, . . . , n + 1} − {j}. Under the condition

(H0), the norms N ( f j) and N (∑n+1
j=1 f−1

j ) are expressed as

N ( f j) =
B(0 ? j)

2(n + 1)2n

n

∏
p=1

∏
K⊂I ĵ
|K|=p

B(0 ? j K)
B(0K)

(1 ≤ j ≤ n + 1), (6)

N
( n+1

∑
j=1

1
f j

)
= 2(n + 1)2n+1−1

n+1

∏
p=1

∏
K⊂I ĵ
|K|=p

B(0K)
B(0 ? K)

. (7)

Remark 2. We call ϕ the unit relative to the set of all critical points C if N (ϕ) does not vanish
under the condition (H0). In this sense f j and ∑ f−1

j are all units if Conjecture 2 holds for them.

Remark 3. If n = 2, (6) of Conjecture 2 implies

N ( f1) =
2r2

1
2 · 34 B(0 ? 12)B(0 ? 13)

B(0 ? 123)
2ρ2

23
,

N ( f2) =
2r2

2
2 · 34 B(0 ? 12)B(0 ? 23)

B(0 ? 123)
2ρ2

13
,

N ( f3) =
2r2

3
2 · 34 B(0 ? 13)B(0 ? 23)

B(0 ? 123)
2ρ2

12
,

which have been confirmed under the situation r1 = r2 = r3. See Theorems 5.19 in [6]. Moreover,
using these formulae, consequently N (Hess(F)) is also obtained explicitly when 4O1O2O3 is
an arbitrary isosceles triangle under r1 = r2 = r3. Thus, Conjecture 1 is confirmed when n = 2,
r1 = r2 = r3 and ρ12 = ρ13. See also Corollary 7.16 in [6] for details.

Remark 4. If n = 3, (6) and (7) of Conjecture 2 are written as

N ( f1) =
2r2

1
2 · 48

B(0 ? 12)
−1

B(0 ? 13)
−1

B(0 ? 14)
−1

× B(0 ? 123)
2ρ2

23

B(0 ? 124)
2ρ2

24

B(0 ? 134)
2ρ2

34

B(0 ? 1234)
B(0234)

,

N
( 4

∑
j=1

1
f j

)
=

2 · 415

24(r1r2r3r4)2
B(01234)

B(0 ? 1234) ∏
1≤i<j<k≤4

B(0 ijk)
B(0 ? ijk) ∏

1≤j<k≤4

2ρ2
jk

B(0 ? jk)
.
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In Section 5 , we shall prove Conjecture 2 in a special pyramid case (n = 3) when the base triangle
4O1O2O3 is regular and each edge length ρj4 (1 ≤ j ≤ 3) and each radius rj (1 ≤ j ≤ 4) are all
equal respectively (see Corollary 2).

This paper is organized as follows. In Section 2 we confirm that Conjecture 2 holds
for the very special case, where4O1 . . . On+1 is the regular simplex and all hyperspheres
Sj have the same radius. The result is stated as Theorem 1. From Section 3 to Section 7,
we discuss three-dimensional case. In Section 3, we introduce a special coordinate system
(denoted by t = (t1, t2, t3) ∈ X̃ ⊂ C3) attached to a tetrahedron, i.e., the fundamental three-
dimensional simplex4O1O2O3O4, and by means of the projective map ι : X̃ → X; t 7→ x
we transfer the terms relative to C to those of C̃ = ι−1C = {t ∈ X̃ | g̃1 = g̃2 = g̃3 = 0},
where g̃j are polynomials in t of degree 3 given by (48). In particular, we call t1 the basic
parameter, and a rational curve t2 = ω2(t1), t3 = ω3(t1) passing through specified points in
C̃, which we call the interpolation curve of those points in C̃, plays an important role in this
paper. In Section 4, we restrict ourselves to a special symmetric case when4O1O2O3O4
is a pyramid with an axis of symmetry whose base triangle 4O1O2O3 is regular and all
spheres have the same radius. The critical points are classified into typical four parts C̃j

(1 ≤ j ≤ 4). In Section 5, under the assumption ρ12 6= ρ14, for each C̃j the interpolation
curve ω(t1) = (t1, ω2(t1), ω3(t1)) ∈ X̃ is still significant, and we calculate the norms of
several linear functions on X̃ solving the defining equation ψj(t1) = 0 of C̃j, where ψj(t1)

is the characteristic function of C̃j defined by ψj(t1) := g̃1(ω(t1)). Using these norms, we
evaluate N ( f j) and N (∑4

j=1 f−1
j ) and, thus, prove Conjecture 2 for our symmetric special

case. See Corollary 2. In Section 6, we consider the other case, ρ12 = ρ14, i.e., the case
where4O1O2O3O4 is the regular tetrahedron. The results in this section compensate for
those in Section 5. In Section 7, under the same constraint as Section 5, we shall show the
explicit formula for the norm N (Hess(F)) of the Hessian of the level function F relative
to the critical points C. The formula is expressed in terms of the discriminant associated
with C (or equivalently C̃), see the invariants ∆2, ∆3 and ∆4 in Theorem 4. Consequently,
we also prove Corollary 8, which is Conjecture 1 for our symmetric special case. The
method of proving Theorem 4 and Corollary 8 can be regarded as a generalization of the
Routh–Hurwitz scheme to a case of several variables. This scheme is stated in terms of
Hankel matrices and a system of resultants related to a pair of polynomials in a single
variable (see Chapter XV in [7] or Chapter X in [8], for example).

We note in passing that there is an analogy between the notions “differente”, “discrim-
inant” in the theory of algebraic numbers, and the ones “Hessian”, “norm of Hessian” in
our present situation, respectively (see [9–13] for general definition of “discriminant” of
algebraic numbers, algebraic functions, or more generally commutative algebra).

In [14], there is an interesting argument on zero points of coquaternionic polynomials
using characteristic polynomials, which enable to linearize the problem by Euclidean algo-
rithm. Moreover, our argument goes along the similar line in a more complicated situation.

2. Configuration of Critical Points in the Case of Regular Simplex

In this section, we consider the very special case when 4O1 . . . On+1 is a regular
simplex and all hyperspheres Sj have the same radius:

ρ2
jk = ρ2 (1 ≤ j < k ≤ n + 1), r2

j = r2 (1 ≤ j ≤ n + 1). (8)

In this case, all of the critical points can be explicitly described. The total number of critical
points is equal to 2n+1 − 1.

Denote by I = {1, 2, . . . , n + 1}. For the set J = {j1, . . . , jp} ⊂ I, let WJ be the central
point of each (|J| − 1)-dimensional face4OJ := 4Oj1 . . . Ojp defined by

WJ :=
1
|J| ∑j∈J

Oj,
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where |J| denotes the size of J. In particular, we see that Wj = Oj (1 ≤ j ≤ n + 1) and
we simply denote by W the center WI of 4O1 . . . On+1. For J ⊂ I we denote by Jc the
complement I − J. For ∅ ( J ( I let l(WJ , WJc) be the straight line passing through two
points WJ and WJc , which is parameterized by

l(WJ , WJc) : x = (1− τ)WJ + τWJc (−∞ < τ < ∞). (9)

An arbitrary line l(WJ , WJc) passes through the center W = WN of4O1 . . . On+1, so that

{W} =
⋂

∅(J(I
l(WJ , WJc).

Symmetry argument shows that every linear p-dimensional real affine subspace pJ,Jc

spanned by the real p-simplex 4Oj1 . . . OjpWJc is preserved by the vector field gradReF.
In particular the real straight line l(WJ , WJc) is a trajectory of gradReF.

We now consider the critical points on l(WJ , WJc) for ∅ ( J ( I.

Lemma 1. Suppose that |J| = p (1 ≤ p ≤ n). Then f j on l(WJ , WJc) as a function of τ is
expressed as

f j(x) = f j((1− τ)WJ + τWJc)

=



(
n + 1

p(n + 1− p)
τ2 +

p− 1
p

)
ρ2

2
− r2 if j ∈ J,

(
n + 1

p(n + 1− p)
(τ − 1)2 +

n− p
n + 1− p

)
ρ2

2
− r2 if j ∈ Jc.

(10)

Proof. Without loss of generality we may assume that J = {1, 2, . . . , p} and Jc = {p +
1, . . . , n + 1} (1 ≤ p ≤ n). From (9), for x ∈ l(WJ , WJc) we have

x + αj = (1− τ)WJ + τWJc + αj = (1− τ)
p

∑
k=1

αj − αk

p
+ τ

n+1

∑
l=p+1

αj − αl

n + 1− p
,

so that we have

|x + αj|2 =
(1− τ)2

p2

∣∣∣ p

∑
k=1

(αj − αk)
∣∣∣2 + τ2

(n + 1− p)2

∣∣∣ n+1

∑
l=p+1

(αj − αk)
∣∣∣2

+
(1− τ)τ

p(n + 1− p)

p

∑
k=1

n+1

∑
l=p+1

2(αj − αk, αj − αl)

=
(1− τ)2

p2

{ p

∑
k=1
|αj − αk|2 + ∑

1≤k<l≤p
2(αj − αk, αj − αl)

}
+

τ2

(n + 1− p)2

{ n+1

∑
l=p+1

|αj − αl |2 + ∑
p+1≤k<l≤n+1

2(αj − αk, αj − αl)
}

+
(1− τ)τ

p(n + 1− p)

p

∑
k=1

n+1

∑
l=p+1

2(αj − αk, αj − αl). (11)

Since4O1 . . . On+1 is regular, we have

|αj − αk|2 = ρ2 (j 6= k),

2(αj − αk, αj − αl) = 2ρ2 cos(π/3) = ρ2 (j 6= k, j 6= l, k 6= l).
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Therefore, if 1 ≤ j ≤ p, then (11) implies that

|x + αj|2 =
(1− τ)2

p2

{
(p− 1)ρ2 +

(p− 1)(p− 2)
2

ρ2
}
+

τ2

(n + 1− p)2

{
(n + 1− p)ρ2

+
(n + 1− p)(n− p)

2
ρ2
}
+

(1− τ)τ

p(n + 1− p)
(p− 1)(n + 1− p)ρ2

=
{ (1− τ)2

2
p− 1

p
+

τ2

2
n + 2− p
n + 1− p

+ (1− τ)τ
p− 1

p

}
ρ2

=
( n + 1

p(n + 1− p)
τ2 +

p− 1
p

)ρ2

2
,

so that f j(x) = |x + αj|2 − r2 coincides with (10). In the same way as above, if p + 1 ≤ j ≤
n + 1, then we see that (11) implies (10).

By Lemma 1 F on l(WJ , WJc) is expressed as

F =
n+1

∑
j=1

log f j = ∑
j∈J

log f j + ∑
k∈Jc

log fk = p log f j + (n + 1− p) log fk (j ∈ J, k ∈ Jc),

so that dF on l(WJ , WJc) is written as

dF = pd log f j + (n + 1− p)d log fk =
(

p fk
d f j

dτ
+ (n + 1− p) f j

d fk
dτ

) dτ

f j fk

=
(n + 1)3ρ4

2(n + 1− p)2 p2

(
τ − n + 1− p

n + 1

){
τ2 − 2p

n + 1
τ +

n + 1− p
n + 1

(
p− 1− 2p

r2

ρ2

)} dτ

f j fk
.

The critical points on l(WJ , WJc) correspond to the solutions τ of the equation dF = 0, which
is equivalent to

(
τ − n + 1− p

n + 1

){
τ2 − 2p

n + 1
τ +

n + 1− p
n + 1

(
p− 1− 2p

r2

ρ2

)}
= 0. (12)

The point x = (1− τ)WJ + τWJc on l(WJ , WJc) for τ = n+1−p
n+1 coincides with W. The other

two points on l(WJ , WJc) differ from W and satisfy the quadratic equation

τ2 − 2p
n + 1

τ +
n + 1− p

n + 1

(
p− 1− 2p

r2

ρ2

)
= 0. (13)

The discriminant of this quadratic equation is given by Dp/(n + 1)2, where

Dp = p2 − (n + 1− p)(n + 1)
(

p− 1− 2p
r2

ρ2

)
, (14)

which satisfies
Dp = Dn+1−p.

Denote by τ1, τ2 the two solutions of (13) such that τ1 < τ2 if Dp > 0. We denote by QJ and
QJc the corresponding two points in l(WJ , WJc) to τ1 and τ2, respectively. In addition to
W all these points in l(WJ , WJc) (∅ ( J ( I) give all the critical points of F in X. One can
prove the following proposition.
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Proposition 1. The number of critical points is equal to 2n+1 − 1. All the critical points of F lie
on one of the straight lines l(WJ , WJc) (∅ ( J ( I). Suppose that r satisfies

n− 2
2(n + 1)

ρ2 < r2 if n is odd,

n3 − 4n− 4
2n(n + 1)(n + 2)

ρ2 < r2 <
n− 2

2(n + 1)
ρ2 or

n− 2
2(n + 1)

ρ2 < r2 if n is even.

(15)

Then, all of these, W, QJ (∅ ( J ( I), are real and distinct from each other.

Proof. For the situation where all critical points W, QJ (∅ ( J ( I) are real and distinct
from each other, we need the condition that each solution of (12) is real and is not a double
point. This condition is equivalent to: (a) The discriminants Dp (1 ≤ p ≤ n) of the
Equation (13) are greater than 0; and (b) The left-hand side of (13) at τ = n+1−p

n+1 does not
vanish. We discuss (b) first. The condition for (b) is written as(n + 1− p

n + 1

)2
− 2p

n + 1

(n + 1− p
n + 1

)
+

n + 1− p
n + 1

(
p− 1− 2p

r2

ρ2

)
6= 0,

which is equivalent to

p
n + 1− p

n + 1

( n− 2
2(n + 1)

− r2

ρ2

)
6= 0, i.e.,

r2

ρ2 6=
n− 2

2(n + 1)
. (16)

Next, we consider the condition (a). Since the discriminant Dp of (13) is rewritten as

Dp = 2p(n + 1− p)(n + 1)
(

r2

ρ2 −
n + 2

2(n + 1)
+

n + 1
2p(n + 1− p)

)
,

if n is odd, then we need

min
{ r2

ρ2 −
n + 2

2(n + 1)
+

n + 1
2p(n + 1− p)

∣∣∣ p = 1, 2, . . . , n
}

=
r2

ρ2 −
n + 2

2(n + 1)
+

n + 1
2p(n + 1− p)

∣∣∣
p= n+1

2

=
r2

ρ2 −
n− 2

2(n + 1)
> 0, (17)

while if n is even, then we need

min
{ r2

ρ2 −
n + 2

2(n + 1)
+

n + 1
2p(n + 1− p)

∣∣∣ p = 1, 2, . . . , n
}

=
r2

ρ2 −
n + 2

2(n + 1)
+

n + 1
2p(n + 1− p)

∣∣∣
p= n

2

=
r2

ρ2 −
n3 − 4n− 4

2n(n + 1)(n + 2)
> 0. (18)

Therefore, (16)–(18) imply that conditions (a) and (b) are satisfied if (15) holds for r. This
completes the proof.

Before we prove Conjecture 2 under the condition (8), we show the following identities:

Lemma 2. Suppose that J is fixed as p = |J| (1 ≤ p ≤ n). Then we have

f j(W) =
nρ2

2(n + 1)
− r2 (1 ≤ j ≤ n + 1). (19)
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If j ∈ J, k ∈ Jc, then f j(QJ), fk(QJ), f j(QJc) and fk(QJc) are expressed as

f j(QJ) =
ρ2

n + 1− p
τ(QJ), fk(QJ) =

ρ2

p
(1− τ(QJ)), (20)

f j(QJc) =
ρ2

n + 1− p
τ(QJc), fk(QJc) =

ρ2

p
(1− τ(QJc)), (21)

where

τ(QJ) =
p−

√
Dp

n + 1
, τ(QJc) =

p +
√

Dp

n + 1
, (22)

1− τ(QJ) =
n + 1− p +

√
Dp

n + 1
, 1− τ(QJc) =

n + 1− p−
√

Dp

n + 1
. (23)

Moreover, if j ∈ J, then we have

f j(QJ) f j(QJc) =
ρ2((p− 1)ρ2 − 2pr2)
(n + 1)(n + 1− p)

. (24)

Proof. From Lemma 1 and (12) we obtain (19)–(21), where τ1 = τ(QJ) and τ2 = τ(QJc) are
the solutions of the quadratic equation (13) satisfying τ1 < τ2. We simply have (22) and (23)
by the explicit forms of τ1 and τ2. We also have

f j(QJ) f j(QJc) =
ρ4

(n + 1− p)2 τ(QJ)τ(QJc) =
ρ4

(n + 1− p)2
n + 1− p

n + 1

(
p− 1− 2p

r2

ρ2

)
,

which coincides with (24).

Using Lemma 2 we see that Conjecture 2 holds true under the condition (8).

Theorem 1. Under the condition (8) the norms N ( f j) and N (∑n+1
j=1 f−1

j ) are expressed as

N ( f j) =
B(0 ? 1)

2(n + 1)2n

n+1

∏
p=2

(
B(0 ? 12 . . . p)
B(023 . . . p)

)( n
p−1)

(1 ≤ j ≤ n + 1), (25)

N
( n+1

∑
j=1

1
f j

)
= 2(n + 1)2n+1−1

n+1

∏
p=1

(
B(012 . . . p)

B(0 ? 12 . . . p)

)(n+1
p )

. (26)

Proof. We prove (25) first. Without loss of generality we may assume j = 1 for the proof
of (25). By definition N ( f1) is expressed as

N ( f1) = f1(W) ∏
∅(J(I

f1(QJ) = f1(W) ∏
∅(J(I

1∈J

f1(QJ) ∏
∅(J(I

1 6∈J

f1(QJ)

= f1(W) ∏
∅(J(I

1∈J

f1(QJ) f1(QJc) = f1(W)
n

∏
p=1

∏
∅(J(I

1∈J, |J|=p

f1(QJ) f1(QJc). (27)
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Applying (19) and (24) in Lemma 2 to (27), N ( f1) is calculated as

N ( f1) =

(
nρ2

2(n + 1)
− r2

) n

∏
p=1

∏
∅(J(I

1∈J, |J|=p

ρ2((p− 1)ρ2 − 2pr2)
(n + 1)(n + 1− p)

=
nρ2 − 2(n + 1)r2

2(n + 1)

n

∏
p=1

(
ρ2((p− 1)ρ2 − 2pr2)
(n + 1)(n + 1− p)

)( n
p−1)

= −2(n + 1)r2 − nρ2

2(n + 1)

n

∏
p=1

(
−1

n + 1
ρ2(2pr2 − (p− 1)ρ2)

n + 1− p

)( n
p−1)

=
2r2

2

( −1
n + 1

)1+∑n
p=1 (

n
p−1)

n+1

∏
p=2

(
ρ2(2pr2 − (p− 1)ρ2)

p− 1

)( n
p−1)

=
2r2

2(n + 1)2n

n+1

∏
p=2

(
ρ2(2pr2 − (p− 1)ρ2)

p− 1

)( n
p−1)

. (28)

On the other hand, by definition, we obtain

B(0 ? 1) = 2r2, B(0 ? 12 . . . p) = (−1)p−1ρ2(p−1){2pr2 − (p− 1)ρ2} (29)

and
B(012 . . . p) = (−1)pρ2(p−1)p, (30)

so that
B(023 . . . p) = B(012 . . . p− 1) = (−1)p−1ρ2(p−2)(p− 1). (31)

Therefore, (29) and (31) imply that (28) coincides with (25).
Next, we prove (26). By definition N (∑n+1

j=1 f−1
j ) is expressed as

N
( n+1

∑
j=1

1
f j

)
=
( n+1

∑
j=1

1
f j(W)

)
∏

∅(J(I

( n+1

∑
j=1

1
f j(QJ)

)
=
( n+1

∑
j=1

1
f j(W)

) n

∏
p=1

∏
∅(J(I
|J|=p

( n+1

∑
j=1

1
f j(QJ)

)

=
( n+1

∑
j=1

1
f j(W)

) n

∏
p=1

∏
∅(J(I
|J|=p

(
∑
j∈J

1
f j(QJ)

+ ∑
k∈Jc

1
fk(QJ)

)
. (32)

Applying (19)–(21) in Lemma 2 to (32), we have

N
( n+1

∑
j=1

1
f j

)
=
( n+1

∑
j=1

1
f j(W)

) n

∏
p=1

∏
∅(J(I
|J|=p

(
∑
j∈J

n + 1− p
ρ2τ(QJ)

+ ∑
k∈Jc

p
ρ2(1− τ(QJ))

)

=
2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

∏
∅(J(I
|J|=p

( p(n + 1− p)
ρ2τ(QJ)

+
(n + 1− p)p

ρ2(1− τ(QJ))

)

=
2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

∏
∅(J(I
|J|=p

p(n + 1− p)
ρ2τ(QJ)(1− τ(QJ))

. (33)
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Using (22), (23) and Dp = Dn+1−p for (33) we obtain

N
( n+1

∑
j=1

1
f j

)
=

2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

(
(n + 1)2 p(n + 1− p)

ρ2(p−
√

Dp)(n + 1− p +
√

Dn+1−p)

)(n+1
p )

=
2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

(
(n + 1)2 p(n + 1− p)

ρ2(p−
√

Dp)(p +
√

Dp)

)(n+1
p )

=
2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

(
(n + 1)2 p(n + 1− p)

ρ2(p2 −Dp)

)(n+1
p )

. (34)

Since we have ρ2(p2−Dp) = (n+ 1)(n+ 1− p)(ρ2(p− 1)− 2pr2) from (14), (34) is written
as

N
( n+1

∑
j=1

1
f j

)
=

2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

(
(n + 1)2 p(n + 1− p)

(n + 1)(n + 1− p)(ρ2(p− 1)− 2pr2)

)(n+1
p )

=
2(n + 1)2

nρ2 − 2(n + 1)r2

n

∏
p=1

(
(n + 1)p

ρ2(p− 1)− 2pr2

)(n+1
p )

= 2(n + 1)∑n+1
p=1 (

n+1
p )

n+1

∏
p=1

(
p

ρ2(p− 1)− 2pr2

)(n+1
p )

= 2(n + 1)2n+1−1
n+1

∏
p=1

(
p

ρ2(p− 1)− 2pr2

)(n+1
p )

. (35)

Hence, (29) and (30) imply that (35) coincides with (26).

3. Special Coordinates (Three-Dimensional Case)

In this section, for a general three-dimensional case, we define the special coordi-
nate system (denoted by t1, t2, t3) attached to the fundamental three-dimensional simplex
4O1O2O3O4.

Each plane pjkl containing the three vertices Oj, Ok, Ol is described by the equation

pjkl : Ljkl = 0,

where the linear functions Ljkl on X are given by

L123(x) := −det(x + α1, x + α2, x + α3),

L124(x) := det(x + α1, x + α2, x + α4),

L134(x) := −det(x + α1, x + α3, x + α4),

L234(x) := det(x + α2, x + α3, x + α4)

(36)

for αj = (αj1, αj2, αj3) ∈ R3. Under our setting (1) the functions Ljkl are explicitly expanded
as

L123 = α13α22(x1 + α31)− α13(α21 − α31)x2 + {−(α11 − α31)α22 + α12(α21 − α31)}x3,

L124 = −α13α22x1 + α21α13x2 + (α11α22 − α12α21)x3,

L134 = −α13α31x2 + α31α12x3,

L234 = −α31α22x3,

so that
L123 + L124 + L134 + L234 = α31α22α13. (37)
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Hence, the simplex4O1O2O3O4 can be defined by Ljkl ≥ 0 (1 ≤ j ≤ k ≤ 4). Remark that

α31 =

√
B(034)

2
> 0, α31α22 =

√
−B(0234)

4
> 0, α31α22α13 =

√
B(01234)

8
> 0. (38)

Definition 2. Two rational functions ϕ1, ϕ2 on X are said to be congruent with respect to C and is
denoted by

ϕ1 ≡ ϕ2 mod Ann(C)

if ϕ1, ϕ2 have definite values at every point of C and

ϕ1(x) = ϕ2(x)

at each critical point x in C (Ann(C) means the annihilator of C).

Lemma 3. Let g1, g2, g3 be polynomials in x of degree 3 specified by

g1 := L123 f4 − L234 f1, g2 := L123 f4 − L134 f2, g3 := L123 f4 − L124 f3. (39)

Then, we have
gj = − f j f4Mj, (40)

where the functions Mj are given by

Mj = ±

∣∣∣∣∣∣
x1 + αk1 x1 + αl1 G1
x2 + αk2 x2 + αl2 G2
x3 + αk3 x3 + αl3 G3

∣∣∣∣∣∣.
Here, {j, k, l} is a permutation of {1, 2, 3} and ± denotes its sign. Moreover, we have the congru-
ences

f4

f1
≡ L234

L123
,

f4

f2
≡ L134

L123
,

f4

f3
≡ L124

L123
mod Ann(C). (41)

Proof. Without loss of generality we prove (40) for j = 1. Since Gν (1 ≤ ν ≤ 3) are given
as Gν = ∑4

j=1(xν + αjν)/ f j, using (36) M1 is written as

M1 =
4

∑
j=1

det(x + α2, x + α3, x + αj)/ f j

= det(x + α2, x + α3, x + α1)/ f1 + det(x + α2, x + α3, x + α4)/ f4

= − L123

f1
+

L234

f4
,

which is equivalent to (40) for j = 1. From (40), we obtain

f4

f1
=

L234

L123
− f4

L123
M1,

f4

f2
=

L134

L123
− f4

L123
M2,

f4

f3
=

L124

L123
− f4

L123
M3.

This implies (41).

According to Lemma 3, we can characterize the set of critical points C in X by the
polynomials gj as follows.

Lemma 4. Under the condition (H0), the system

G1 = G2 = G3 = 0
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on X is equivalent to the system
g1 = g2 = g3 = 0

on X.

Lemma 5. The following identity holds as function of x = (x1, x2, x3):

dg1 ∧ dg2 ∧ dg3 ≡ −L2
123 f1 f2 f3 f 3

4 dG1 ∧ dG2 ∧ dG3 mod Ann(C). (42)

Proof. By taking the derivatives of both sides of (40) in Lemma 3 one obtains

∂gj

∂xν
≡ − f j f4

(
a∗jj

∂Gj

∂xν
+ a∗kj

∂Gk
∂xν

+ a∗l j
∂Gl
∂xν

)
mod Ann(C)

for the triple {j, k, l}, which is an even permutation of {1, 2, 3}, where a∗pq denotes the
cofactor of the (p, q)-component of the 3× 3 matrix A = (x + α1, x + α2, x + α3). Thus,
we have

∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

∂g3
∂x1

∂g3
∂x2

∂g3
∂x3

 ≡ − f4


f1a∗11 f1a∗21 f1a∗31

f2a∗12 f2a∗22 f2a∗32

f3a∗13 f3a∗23 f3a∗33




∂G1
∂x1

∂G1
∂x2

∂G1
∂x3

∂G2
∂x1

∂G2
∂x2

∂G2
∂x3

∂G3
∂x1

∂G3
∂x2

∂G3
∂x3

 mod Ann(C).

Hence, we obtain

∂(g1, g2, g3)

∂(x1, x2, x3)
≡ − f1 f2 f3 f 3

4 (det A∗)
∂(G1, G2, G3)

∂(x1, x2, x3)
mod Ann(C), (43)

where A∗ is the cofactor matrix of A given by

A∗ =

 a∗11 a∗21 a∗31
a∗12 a∗22 a∗32
a∗13 a∗23 a∗33

, A =

 x1 + α11 x1 + α21 x1 + α31
x2 + α12 x2 + α22 x2 + α32
x3 + α13 x2 + α23 x3 + α33

.

Since A∗ satisfies A∗A = (det A)I, where I is the identity matrix, (36) implies

det A∗ = (det A)2 = (−L123)
2 = L2

123.

Therefore, we see that (43) is equivalent to (42).

We now introduce special coordinates t = (t1, t2, t3) instead of x = (x1, x2, x3),
given by

t1 :=
L234

L123
, t2 :=

L134

L123
, t3 :=

L124

L123
and t∞ :=

α31α22α13

L123
. (44)

The identity (37) implies
t∞ = 1 + t1 + t2 + t3.

Conversely, for given t = (t1, t2, t3) solving the system (44) with respect to x = (x1, x2, x3),
we obtain

x1 = −α11t1 + α21t2 + α31t3

t∞
, x2 = −α12t1 + α22t2

t∞
, x3 = −α13t1

t∞
. (45)

Therefore, (45) defines the projective map ι : {t ∈ C3 | 1 + t1 + t2 + t3 6= 0} → C3, i.e.,

t 7→ x = ι(t) := − t1

t∞
α1 −

t2

t∞
α2 −

t3

t∞
α3 ∈ C3.

By definition, we notice that
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Lemma 6.
dx1 ∧ dx2 ∧ dx3 =

α31α22α13

t4
∞

dt1 ∧ dt2 ∧ dt3. (46)

Proof. Differentiating both sides of t∞xj = −(α1jt1 + α2jt2 + α3jt3) with respect to tk, we
have t∞∂xj/∂tk = −(xj + αkj), so that

∂(x1, x2, x3)

∂(t1, t2, t3)
=
−1
t3
∞

det
(
xj + αkj

)
j,k=1,2,3 =

L123

t3
∞

=
α31α22α13

t4
∞

,

which is equivalent to (46).

Under the condition (H0), for the sets C and X ⊂ C3, we put C̃ = ι−1C and X̃ := ι−1X,
respectively.

Definition 3. Two rational functions ϕ1, ϕ2 on X̃ are said to be congruent with respect to C̃ and
written by

ϕ1 ≡ ϕ2 mod Ann(C̃)

if their restriction to C̃ are equal, i.e., if ϕ1, ϕ2 have definite values at every point of C̃ and
ϕ1(t) = ϕ2(t) at each critical point t in C̃ (Ann(C̃) means the annihilator of C̃).

Remark 5. From (41) of Lemma 3, (44) implies the congruences

t1 ≡
f4

f1
, t2 ≡

f4

f2
, t3 ≡

f4

f3
mod Ann(C̃). (47)

Through the projective map ι : X̃ → X we can characterize the set of critical points C̃
in X̃ as follows:

Lemma 7. Under the condition (H0), the system

g1 = g2 = g3 = 0

on X is equivalent to the system
g̃1 = g̃2 = g̃3 = 0

on X̃, where g̃j are polynomials in t of degree 3 given by

g̃j(t) :=
t3
∞

α31α22α13
gj(x) =

t3
∞

α31α22α13
gj(ι(t)). (48)

Moreover we have

dg1 ∧ dg2 ∧ dg3 ≡
α3

31α3
22α3

13
t9
∞

dg̃1 ∧ dg̃2 ∧ dg̃3 mod Ann(C̃). (49)

Proof. By definition the equivalence between g1 = g2 = g3 = 0 and g̃1 = g̃2 = g̃3 = 0 is
obvious. The identity (49) is straightforward from (48). Here, we just confirm that g̃j(t) are
polynomials in t of degree 3. By the definition (39) of gj, we have

g̃1(t) =
t3
∞

α31α22α13
(L123 f4 − L234 f1) =

t3
∞L123

α31α22α13
( f4 −

L234

L123
f1) = t2

∞( f4 − t1 f1).

In the same way, we have the expression

g̃j(t) = t2
∞( f4 − tj f j) (j = 1, 2, 3). (50)
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For 1 ≤ j ≤ 4, we have

t2
∞ f j = t2

∞

(
(x, x) + 2(αj, x) + αj0

)
= (t∞x, t∞x) + 2t∞(αj, t∞x) + αj0t2

∞ (51)

= |
3

∑
k=1

tkαk|2 − 2(1 +
3

∑
k=1

tk)(αj,
3

∑
l=1

tlαl) + αj0(1 +
3

∑
k=1

tk)
2

=
3

∑
k=1
|αk|2t2

k + 2 ∑
1≤k<l≤3

(αk, αl)tktl − 2(1 +
3

∑
k=1

tk)
3

∑
l=1

(αj, αl)tl + αj0(1 +
3

∑
k=1

tk)
2,

which are polynomials in t of degree 2. From (50), we see that g̃j are polynomials in t of
degree 3.

Before we show the explicit forms of the polynomials g̃j, we prove two lemmas.

Lemma 8. The following identities hold:

t∞( f j − f4) =
3

∑
k=1

B
(

0 ? k
0 j 4

)
tk + B

(
0 ? 4
0 j 4

)
(1 ≤ j ≤ 3). (52)

Proof. By definition, we have

B
(

0 ? k
0 j 4

)
= (ρ2

kj − r2
j )− (ρ2

k4 − r2
4)

= |αk − αj|2 − (|αj|2 − αj0)− |αk − α4|2 + (|α4|2 − α40)

= 2(αk, α4 − αj) + αj0 − α40. (53)

On the other hand, by the definition of f j we have

t∞( f j − f4) = t∞{2(x, αj)− 2(x, α4) + αj0 − α40}
= 2(−t∞x, α4 − αj) + t∞(αj0 − α40).

Applying the relations −t∞x = t1α1 + t2α2 + t3α3 and t∞ = 1 + t1 + t2 + t3 to the above
identity, we have

t∞( f j − f4) =
3

∑
k=1
{2(αk, α4 − αj) + (αj0 − α40)}tk + (αj0 − α40). (54)

Under α4 = 0, i.e., ρ2
j4 = |αj|2, (53) implies B

(
0 ? 4
0 j 4

)
= αj0 − α40. Therefore, we

obtain (52) from (53) and (54).

Lemma 9.

t2
∞ f4 =

3

∑
j=1

(ρ2
j4 − r2

4)t
2
j + ∑

1≤j<k≤3

{
B
(

0 j 4
0 k 4

)
− 2r2

4

}
tjtk − 2r2

4(t1 + t2 + t3)− r2
4. (55)

Proof. From (51), we have

t2
∞ f4 =

3

∑
k=1
|αk|2t2

k + 2 ∑
1≤k<l≤3

(αk, αl)tktl + α40(1 + t1 + t2 + t3)
2

=
3

∑
j=1

ρ2
j4t2

j + ∑
1≤j<k≤3

B
(

0 j 4
0 k 4

)
tjtk − r2

4(1 + t1 + t2 + t3)
2,
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which coincides with (55).

Proposition 2. The polynomials g̃j in t of degree 3 given in (48) are expressed as

g̃j = r2
j t3

j + (r2
j − ρ2

jk)t
2
k tj + (r2

j − ρ2
jl)t

2
l tj + 2r2

j t2
j (tk + tl)−

{
B

(
0 k j
0 l j

)
− 2r2

j

}
tjtktl

+ (ρ2
j4 − r2

4 + 2r2
j )t

2
j + (ρ2

k4 − r2
4)t

2
k + (ρ2

l4 − r2
4)t

2
l

− 2B

(
0 ? k
0 j 4

)
tjtk − 2B

(
0 ? l
0 j 4

)
tjtl +

{
B

(
0 k 4
0 l 4

)
− 2r2

4

}
tktl

+ (r2
j − 2r2

4 − ρ2
j4)tj − 2r2

4(tk + tl)− r2
4.

Proof. From (50), for 1 ≤ j ≤ 3, we have

g̃j = (1− tj)t2
∞ f4 − tjt2

∞( f j − f4)

= (1− tj)t2
∞ f4 − tj(1 + t1 + t2 + t3)t∞( f j − f4).

Since the explicit forms of t2
∞ f4 and t∞( f j − f4) have already been given in (55) and (52),

respectively, we eventually obtain the result of Proposition 2. In particular, the identity

B
(

0 k j
0 l j

)
− 2r2

j = B
(

0 k 4
0 j 4

)
− 2r2

4 + B
(

0 ? k
0 j 4

)
+ B
(

0 ? l
0 j 4

)
was applied to the coefficient of tjtktl .

Lemma 10. For 1 ≤ j < k ≤ 3 let g̃jk be functions specified by

g̃jk :=
(1− tk)g̃j − (1− tj)g̃k

t∞
. (56)

Then, g̃jk are polynomials in t of degree 3, which are explicitly written as follows:

g̃jk = −t2
j tkB

(
0 ? j
0 k j

)
+ tjt2

k B

(
0 ? k
0 j k

)
+ tjtktl B

(
0 l ?

0 k j

)

+ t2
j B

(
0 ? j
0 4 j

)
− t2

k B

(
0 ? k
0 4 k

)
+ tj

{
− B

(
0 ? 4
0 j 4

)
− B

(
0 ? l
0 j 4

)
tl

}
+ tk

{
B

(
0 ? 4
0 k 4

)
+ B

(
0 ? l
0 k 4

)
tl

}
such that {j, k, l} is the uniquely determined permutation of {1, 2, 3}.

Proof. By the definition (50) of g̃j, (56) implies

g̃jk = −tj(1− tk)t∞( f j − f4) + tk(1− tj)t∞( fk − f4).

Since the explicit form of t∞( f j − f4) has already been given in (52) in Lemma 8, we obtain
the result of Lemma 10.

Remark 6. As a consequence of Lemma 10, we have

(1− t1)g̃23 − (1− t2)g̃13 + (1− t3)g̃12 = 0,

so that we immediately have

dg̃12 ∧ dg̃13 ∧ dg̃23 ≡ 0 mod Ann(C̃).
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The following is a key lemma to characterize the set C̃ of critical points.

Lemma 11. Suppose t1 6= 1. Under the condition (H0) the system

g̃1 = g̃2 = g̃3 = 0

in X̃ is equivalent to the system
g̃1 = g̃12 = g̃13 = 0 (57)

in X̃. Moreover we have

dg̃1 ∧ dg̃2 ∧ dg̃3 ≡
t2
∞

(1− t1)2 dg̃1 ∧ dg̃12 ∧ dg̃13 mod Ann(C̃). (58)

Proof. By definition the equivalence between g̃1 = g̃2 = g̃3 = 0 and g̃1 = g̃12 = g̃13 = 0 is
obvious under t1 6= 1. From (56) we have

t∞dg̃1j ≡ (1− tj)dg̃1 − (1− t1)dg̃j mod Ann(C̃),

which implies (58).

Then the following congruence identity holds true:

Lemma 12. Regarding Gj = Gj(x) as functions on X̃ through the map ι, i.e., Gj = Gj(ι(t)),
we have

dG1 ∧ dG2 ∧ dG3 ≡ −
α31α22α13

f1 f2 f3 f 3
4

dg̃1 ∧ dg̃2 ∧ dg̃3

t7
∞

mod Ann(C̃). (59)

If t ∈ C̃ satisfies t1 6= 1, then

dG1 ∧ dG2 ∧ dG3 ≡ −
α31α22α13

f1 f2 f3 f 3
4

dg̃1 ∧ dg̃12 ∧ dg̃13

t5
∞(1− t1)2 mod Ann(C̃). (60)

Proof. From Lemma 5 and (49) in Lemma 7 we have (59) using the definition (44) of t∞.
Furthermore, from (58) we see that (59) implies (60).

Lemma 13. For an arbitrary critical point t ∈ C̃, the Hessian at x = ι(t) is expressed as

1
23 Hess(F)

∣∣∣
x=ι(t)

= − 1
f1 f2 f3 f 3

4 t3
∞

∂(g̃1, g̃2, g̃3)

∂(t1, t2, t3)
. (61)

In particular, if t ∈ C̃ satisfies t1 6= 1, then

1
23 Hess(F)

∣∣∣
x=ι(t)

= − 1
f1 f2 f3 f 3

4 t∞(1− t1)2
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
. (62)

Proof. From (4), we have
1
23 Hess(F) =

∂(G1, G2, G3)

∂(x1, x2, x3)
.

According to (46) in Lemma 6 and (59), for t ∈ C̃ we have

∂(G1, G2, G3)

∂(x1, x2, x3)

∣∣∣∣
x=ι(t)

=
∂(G1, G2, G3)

∂(t1, t2, t3)

/
∂(x1, x2, x3)

∂(t1, t2, t3)

= − α31α22α13

f1 f2 f3 f 3
4 t7

∞

(α31α22α13

t4
∞

)−1 ∂(g̃1, g̃2, g̃3)

∂(t1, t2, t3)
,
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which coincides with (61). On the other hand, if t1 6= 1, then from (60) we obtain

∂(G1, G2, G3)

∂(x1, x2, x3)

∣∣∣∣
x=ι(t)

=
∂(G1, G2, G3)

∂(t1, t2, t3)

/
∂(x1, x2, x3)

∂(t1, t2, t3)

= − α31α22α13

f1 f2 f3 f 3
4 t5

∞(1− t1)2

(α31α22α13

t4
∞

)−1 ∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
,

which coincides with the right-hand side of (62).

We denote by cj (1 ≤ j ≤ κ) all the critical points in X, i.e., C = {cj ∈ X | 1 ≤ j ≤ κ}.
For a rational function ϕ(x) on X we denote by N (ϕ) the product of the critical values at
all points in C, i.e.,N (ϕ) := ∏κ

j=1 ϕ(cj), which is called the norm of ϕ on X. We also denote
by c̃j the critical points in X̃ specified by c̃j = ι−1(cj), i.e., C̃ = ι−1C = {c̃j ∈ X̃ | 1 ≤ j ≤ κ},
where ι : X̃ → X is the projective map given by (45). For a rational function ϕ(t) on X̃ we
also denote by N (ϕ) the product of the critical values at all points in C̃, i.e.,

N (ϕ) :=
κ

∏
j=1

ϕ(c̃j), (63)

which is called the norm of ϕ on X̃.
Our aim is to study the norm N (Hess(F)) on X, and the following proposition gives

the formula for N (Hess(F)) on X to be written by norms of several functions on X̃.

Proposition 3. If an arbitrary t ∈ C̃ satisfies t1 6= 1, then

N (Hess(F)/23)

= − 1
N ( f1)N ( f2)N ( f3){N ( f4)}3N (t∞){N (1− t1)}2 N

(
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
.

(64)

Proof. From (62) in Lemma 13 we have

κ

∏
j=1

Hess(F)
23

∣∣∣∣
x=cj

=
κ

∏
j=1

{
−1

f1 f2 f3 f 3
4 t∞(1− t1)2

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

}∣∣∣∣
t=c̃j

,

which coincides with the right-hand side of (64).

In order to calculate the part N
(
∂(g̃1, g̃12, g̃13)/∂(t1, t2, t3)

)
in the right-hand side

of (64) in Proposition 3 we will use the following lemma later.

Lemma 14. Suppose that there exists rational curve ω : C→ X̃ in X̃ given by

ω : t1 7−→ (t1, t2 = ω2(t1), t3 = ω3(t1)) ∈ X̃

satisfies the equations

g̃12(t1, ω2(t1), ω3(t1)) = 0 and g̃13(t1, ω2(t1), ω3(t1)) = 0. (65)

Suppose also that the curve ω interpolates some critical point in C̃, i.e., there exists τ ∈ C such that

g̃1(τ, ω2(τ), ω3(τ)) = 0.

Let ψ be function on C specified by

ψ(t1) := g̃1(t1, ω2(t1), ω3(t1)). (66)
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The following identity as a function on the curve ω in X̃ (i.e., as a function of t1) holds.

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
= ψ′(t1)×

∂(g̃12, g̃13)

∂(t2, t3)
, (67)

where ψ′(t1) denotes the derivative dψ/dt1. In particular, for the point τ ∈ C such that T =
(τ, ω2(τ), ω3(τ)) ∈ C̃ it follows that

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

∣∣∣∣
t=T

= ψ′(τ)× ∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣∣
t=T

. (68)

Proof. Applying chain rule to (65) and (66), we have
−ψ′ + ∂g̃1

∂t1

∂g̃1
∂t2

∂g̃1
∂t3

∂g̃12
∂t1

∂g̃12
∂t2

∂g̃12
∂t3

∂g̃13
∂t1

∂g̃13
∂t2

∂g̃13
∂t3




1

ω′2

ω′3

 =


0

0

0

,

so that

0 =

∣∣∣∣∣∣∣∣∣
−ψ′ + ∂g̃1

∂t1

∂g̃1
∂t2

∂g̃1
∂t3

∂g̃12
∂t1

∂g̃12
∂t2

∂g̃12
∂t3

∂g̃13
∂t1

∂g̃13
∂t2

∂g̃13
∂t3

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

∂g̃1
∂t1

∂g̃1
∂t2

∂g̃1
∂t3

∂g̃12
∂t1

∂g̃12
∂t2

∂g̃12
∂t3

∂g̃13
∂t1

∂g̃13
∂t2

∂g̃13
∂t3

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣

ψ′ ∂g̃1
∂t2

∂g̃1
∂t3

0 ∂g̃1
∂t2

∂g̃1
∂t3

0 ∂g̃1
∂t2

∂g̃1
∂t3

∣∣∣∣∣∣∣∣∣,
which is equivalent to (67), and (68) is a special case of (67) when t1 = τ.

In the next section we consider a special symmetric case when ρ2
12 = ρ2

23 = ρ2
13 and

ρ2
14 = ρ2

24 = ρ2
34, r2

j being the same. We shall present ψ(t1),
∂(g̃12,g̃13)

∂(t2,t3)
and the norms of f j

explicitly by taking the basic parameter t1.
We shall also consider the cases when we take the basic parameter t∞ and s in place

of t1, where

t∞ = 1 + t1 + t2 + t3, s :=
ρ2

13 − ρ2
14

ρ2
34

t1 +
ρ2

23 − ρ2
24

ρ2
34

t2 − t3. (69)

From (52) of Lemma 8, for t∞ and s, we see that

f3 − f4 = ρ2
34

s + 1
t∞

+
(r2

4 − r2
1)t1 + (r2

4 − r2
2)t2 + (r2

4 − r2
3)(t3 + 1)

t∞
, (70)

and we also see from (47) that

4

∑
j=1

1
f j
≡ t∞

f4
mod Ann(C̃). (71)

The relations (70) and (71) will be used in Section 5 to evaluate the norms of f3 − f4 and
∑4

j=1 f−1
j .

4. A Special Symmetric Case of 4O1O2O3O4

In this section, we restrict ourselves to a special symmetric case when4O1O2O3O4 is
a pyramid with axis of symmetry whose base triangle4O1O2O3 is regular and all spheres
have the same radius, i.e., throughout this section we assume

(H1) : ρ2
12 = ρ2

13 = ρ2
23, ρ2

14 = ρ2
24 = ρ2

34, r2
j = r2 (1 ≤ j ≤ 4).
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We first see the fundamental invariants, i.e., the explicit forms of the Cayley–Menger
determinants.

Lemma 15.

B(012) = B(013) = B(023) = 2ρ2
12 > 0, B(014) = B(024) = B(034) = 2ρ2

14 > 0,

B(0123) = −3ρ4
12 < 0, B(0124) = ρ2

12(ρ
2
12 − 4ρ2

14) < 0,

B(01234) = −2ρ4
12(ρ

2
12 − 3ρ2

14) > 0.

Lemma 16.

B(0 ? j) = 2r2 (1 ≤ j ≤ 4), B(0 ? jk) = ρ2
12(ρ

2
12 − 4r2) (1 ≤ j < k ≤ 3),

B(0 ? j4) = ρ2
14(ρ

2
14 − 4r2) (1 ≤ j ≤ 3),

B(0 ? 123) = 2ρ4
12(3r2 − ρ2

12), B(0 ? 124) = 2ρ2
12(4r2ρ2

14 − r2ρ2
12 − ρ4

14),

B(0 ? 1234) = ρ4
12(3ρ4

14 + 4r2ρ2
12 − 12r2ρ2

14) =
3
2

ρ2
12B(124)− 2r2B(01234).

Remark 7. B(0 ? jk) < 0, B(0 ? jkl) > 0, B(0 ? 1234) < 0 for sufficiently large r � 0.

Lemma 17. Under the condition (H1) the polynomials g̃j (1 ≤ j ≤ 3) and g̃jk (1 ≤ j < k ≤ 3)
defined in (48) and (56) are written as

g̃j(t) = r2t3
j + (r2 − ρ2

12)(t
2
k + t2

l )tj + 2r2t2
j (tk + tl)− (ρ2

12 − 2r2)tjtktl

+ (ρ2
14 + r2)(t2

j + t2
k + t2

l )− 2(ρ2
12 − ρ2

14)tj(tk + tl)

+ (2ρ2
14 − ρ2

12 − 2r2)tktl − (ρ2
14 + r2)tj − 2r2(tk + tl)− r2,

(72)

g̃jk(t) = (tk − tj)ĝjk(t), ĝjk(t) := ρ2
12tjtk + (ρ2

12 − ρ2
14)tl − ρ2

14(tj + tk − 1), (73)

respectively, where {j, k, l} is a permutation of {1, 2, 3}.

Proof. Under the condition (H1), the following symbols become as

B
(

0 k j
0 l j

)
= ρ2

kj + ρ2
l j − ρ2

kj = ρ2
12,

B
(

0 k 4
0 j 4

)
= ρ2

k4 + ρ2
l4 − ρ2

kj = 2ρ2
14 − ρ2

12,

B
(

0 ? k
0 j 4

)
= ρ2

kj − r2
j − ρ2

k4 + r2
4 = ρ2

12 − ρ2
14 = ∆0,

where {j, k, l} is a permutation of {1, 2, 3}. Applying them to Proposition 2 and Lemma 10
in Section 3, we obtain (72) and (73).

Notice that g̃jk are independent of r2 under the condition (H1). For the succeeding
arguments we write g̃1 as polynomial in t2 and t3 explicitly as follows.

g̃1(t1, t2, t3)

=
[
(r2 − ρ2

12)t1 + ρ2
14 − r2

]
(t2

2 + t2
3) +

[
(2r2 − ρ2

12)t1 + 2ρ2
14 − ρ2

12 − 2r2
]
t2t3

+ 2
[
r2t2

1 − (ρ2
12 − ρ2

14)t1 − r2
]
(t2 + t3) + (t1 − 1)(r2t2

1 + (2r2 + ρ2
14)t1 + r2).

(74)

By definition, we have the identity

ĝ12(t)− ĝ13(t) = ρ2
12(t1 − 1)(t2 − t3). (75)
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We state a property of the set C̃ = {t ∈ X̃ | g̃1 = g̃2 = g̃3 = 0} as follows.

Lemma 18. There exists no point t = (t1, t2, t3) in C̃ ⊂ X̃ such that t1 6= t2, t2 6= t3, t1 6= t3.

Proof. Assume that t = (t1, t2, t3) ∈ C̃ satisfies t1 6= t2, t2 6= t3, t1 6= t3. If t1 6= 1, then
from Lemma 11 we see that t ∈ C̃ satisfies the system g̃1 = g̃12 = g̃13 = 0. Seeing (73)
and t1 6= t2, t1 6= t3 we have 0 = ĝ12 − ĝ13 = ρ2

12(t1 − 1)(t2 − t3), which contradicts the
assumption. If t1 = 1, then we have t2 6= t1 = 1, so that again from Lemma 11 we see
that t ∈ C̃ satisfies the system g̃2 = g̃12 = g̃23 = 0. In the same way as above we have a
contradiction again.

As a consequence of Lemma 18, the set C̃ is partitioned into the following:

C̃1 : t1 = t2 = t3, C̃2 : t1 = t2 6= t3, C̃3 : t1 = t3 6= t2, C̃4 : t2 = t3 6= t1. (76)

Denote Cj = ιC̃j ⊂ X, such that C is the disjoint union of Cj and that C̃ is the disjoint union
of C̃j:

C =
4⊔

j=1

Cj, C̃ =
4⊔

j=1

C̃j.

Remark 8. The number of the critical points is 23+1 − 1 = 15, i.e., |C̃| = 15. As we will see below,
it is confirmed that |C̃1| = 3 and |C̃2| = |C̃3| = |C̃4| = 4.

For the set C̃1, we immediately have the following:

Lemma 19. For (1, 1, 1) ∈ X̃ the polynomials g̃j (j = 1, 2, 3) are evaluated as

g̃1(1, 1, 1) = g̃2(1, 1, 1) = g̃3(1, 1, 1) = −8∆0,

where ∆0 := ρ2
12 − ρ2

14. In other words, the following equivalence holds:

∆0 = 0 ⇐⇒ (1, 1, 1) ∈ C̃1.

Our approach to study the structure of C̃ depends on whether we impose the condition
∆0 = 0 or not. In the following section, we first consider the case ∆0 6= 0, while we devote
Section 6 to the case ∆0 = 0, i.e., the case where4O1O2O3O4 is the regular tetrahedron.

5. Critical Points Under (H0), (H1) and ρ12 6= ρ14

Throughout this section, in addition to the imposed conditions (H0) and (H1), we
suppose further

∆0 := ρ2
12 − ρ2

14 6= 0. (77)

In this setting, the special parameter s introduced in (69) is given by

s := δ(t1 + t2)− t3, where δ =
ρ2

12 − ρ2
14

ρ2
14

, (78)

and (70) is reduced to
f3 − f4 = ρ2

14(s + 1)/t∞, (79)

where t∞ = 1 + t1 + t2 + t3. Thus, N (s + 1) will be used indirectly for calculation of
N ( f3 − f4) later.
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Lemma 20. Under the conditions (H0), (H1) and ∆0 6= 0, there exists no point t = (t1, t2, t3) in
C̃ ⊂ X̃ such that t1 = 1 if and only if ∆1 6= 0, where

∆1 := 4r2 − 3ρ2
12 − ρ2

14. (80)

Moreover, ∆1 = 0 if and only if {(t1, t2, t3) ∈ C̃ | t1 = 1} = {(1, 1,−1), (1,−1, 1)}.

Proof. If (1, t2, t3) ∈ C̃ then (1, t2, t3) satisfies the condition (76) and the equation

g̃1(1, t2, t3) = −∆0(t2 + t3)(t2 + t3 + 2) = 0. (81)

Then, under the assumption ∆0 6= 0, we need six possibilities for (1, t2, t3) ∈ C̃, i.e.,

(1, t2, t3) = (1, 1,−3), (1, 1,−1), (1,−3, 1), (1,−1, 1), (1,−1,−1), (1, 0, 0).

Under the condition (H0), for these points we have

g̃1(1, 1,−3) = g̃2(1, 1,−3) = 0, g̃3(1, 1,−3) = 4(5ρ2
12 + ρ2

14) > 0,

g̃1(1, 1,−1) = g̃2(1, 1,−1) = 0, g̃3(1, 1,−1) = −2∆1,

g̃1(1,−3, 1) = g̃3(1,−3, 1) = 0, g̃2(1,−3, 1) = 4(5ρ2
12 + ρ2

14) > 0,

g̃1(1,−1, 1) = g̃3(1,−1, 1) = 0, g̃2(1,−1, 1) = −2∆1,

g̃1(1,−1,−1) = 0, g̃2(1,−1,−1) = g̃3(1,−1,−1) = 2(ρ2
12 + ρ2

14) > 0,

g̃1(1, 0, 0) = 0, g̃2(1, 0, 0) = g̃3(1, 0, 0) = ρ2
14 − 4r2 =

2B(0 ? 14)
B(014)

6= 0,

so that we see
(1, 1,−3), (1,−3, 1), (1,−1,−1), (1, 0, 0) 6∈ C̃, (82)

and therefore obtain

∆1 6= 0 ⇐⇒ {(t1, t2, t3) ∈ C̃ | t1 = 1} = ∅,

∆1 = 0 ⇐⇒ {(t1, t2, t3) ∈ C̃ | t1 = 1} = {(1, 1,−1), (1,−1, 1)}.

This completes the proof.

Lemma 11 states the equivalence between the systems g̃1 = g̃2 = g̃3 = 0 and
g̃1 = g̃12 = g̃13 = 0 under t1 6= 1. If ∆1 6= 0, then we can omit the condition t1 6= 1 for this
equivalence, because Lemma 20 says that each point t ∈ C̃ = {t ∈ X̃ | g̃1 = g̃2 = g̃3 = 0}
satisfies t1 6= 1. Namely, C̃ coincides with {t ∈ X̃ | g̃1 = g̃12 = g̃13 = 0} if ∆1 6= 0. On the
other hand, if ∆1 = 0, then Lemma 20 implies that C̃ is expressed as

C̃ = {(1, 1,−1), (1,−1, 1)} ∪ {t ∈ X̃ | g̃1 = g̃12 = g̃13 = 0, t1 6= 1}.

However we eventually realize that this distinction is unnecessary whether ∆1 = 0 or not
(see explanation in Remark 10 after Lemma 21). Hereafter, we analyze the set C̃ regarded as
that of solutions of the system g̃1 = g̃12 = g̃13 = 0 without constraint t1 6= 1, i.e.,

C̃ = {t ∈ X̃ | g̃1 = g̃12 = g̃13 = 0}.

The aim of succeeding four subsections is to evaluate the norms N (tj), N (1− tj), N (t∞)

and N (s + 1) for each C̃j (j = 1, 2, 3, 4) given in (76). We denote Nj(ϕ) the partial product
of ϕ(t) (t ∈ C̃j), i.e.,

Nj(ϕ) := ∏
t∈C̃j

ϕ(t).
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5.1. The Set C̃1 : t1 = t2 = t3

In this subsection, we assume that t1 = t2 = t3 for the critical points. When t2 = t1
and t3 = t1, from (73) g̃12 = g̃13 = 0 is automatically satisfied. Then, the solutions of the
equation g̃1(t1, t1, t1) = 0 correspond to the critical points in C̃1. We define the characteristic
polynomial ψ1(t1) of the set C̃1 by

ψ1(t1) := g̃1(t1, t1, t1) = 3(3r2 − ρ2
12)t

3
1 + (9ρ2

14 − 5ρ2
12 − 3r2)t2

1 − (5r2 + ρ2
14)t1 − r2, (83)

which gives C̃1 = {(t1, t1, t1) ∈ X̃ |ψ1(t1) = 0}. We denote the roots of the equation
ψ1(t1) = 0 by ζ1, ζ2, ζ3, then the points corresponding to ζ j give the set of critical points C̃1
in the straight line t1 = t2 = t3. Let ψ1 be monic polynomial in t1 specified by

ψ1(t1) :=
3

∏
j=1

(t1 − ζ j) =
ψ1(t1)

h1
, (84)

where h1 = 3(3r2 − ρ2
12) is the coefficient of highest degree of ψ1. Then we obtain

the following.

Proposition 4.

N1(tj) =
r2

3(3r2 − ρ2
12)

=
2r2ρ4

12
3B(0 ? 123)

(j = 1, 2, 3),

N1(1− tj) = −
8∆0

3(3r2 − ρ2
12)

= −
16∆0ρ4

12
3B(0 ? 123)

(j = 1, 2, 3),

N1(t∞) = 4
ρ2

12 − 3ρ2
14

3r2 − ρ2
12

= −4
B(01234)
B(0 ? 123)

,

N1(s + 1) =
2∆0(ρ

2
12 − 3ρ2

14)(3ρ2
14 + 4r2ρ2

12 − 12r2ρ2
14)

3ρ6
14(3r2 − ρ2

12)
=

2∆0B(01234)B(0 ? 1234)
ρ6

14B(0123)B(0 ? 123)
.

Proof. Since t1 = t2 = t3, for 1 ≤ j ≤ 3 we have N1(tj) = N1(t1) and N1(1 − tj) =
N1(1− t1), which are evaluated as special values of ψ1(t), as follows:

N1(t1) = ζ1ζ2ζ3 = −ψ1(0) = −
ψ1(0)

h1
=

r2

3(3r2 − ρ2
12)

,

N1(1− t1) =
3

∏
j=1

(1− ζ j) = ψ1(1) =
ψ1(1)

h1
= − 8∆0

3(3r2 − ρ2
12)

.

In general, for arbitrary γ1, γ2 we can calculate the norm of γ1t1 − γ2 by

N1(γ1t1 − γ2) =
3

∏
j=1

(γ1ζ j − γ2) = −γ3
1

3

∏
j=1

(γ2

γ1
− ζ j

)
= −

γ3
1

h1
ψ1

(γ2

γ1

)
.

We can evaluate ψ1(γ2/γ1) by a direct calculation from (83). Using this formula, we obtain

N1(t∞) = N1(3t1 + 1) = −27
h1

ψ1

(
− 1

3

)
= 4

ρ2
12 − 3ρ2

14
3r2 − ρ2

12
,

N1(s + 1) = N1((2δ− 1)t1 + 1) = − (2δ− 1)3

h1
ψ1

( −1
2δ− 1

)
=

(3ρ2
14 − 2ρ2

12)
3

h1ρ6
14

ψ1

( ρ2
14

3ρ2
14 − 2ρ2

12

)
,

which coincides with the result for N1(s + 1) in Proposition 4.



Symmetry 2022, 14, 374 25 of 59

5.2. The Set C̃2 : t1 = t2 6= t3

We assume that t1 = t2 6= t3 for the critical points. From (73) t1 = t2 implies that
g̃12 = 0 is automatically satisfied. When t1 6= t3, according to (73) it is necessary for
g̃13 = 0 that

ĝ13(t1, t1, t3) = ρ2
12t1t3 + (ρ2

12 − ρ2
14)t1 − ρ2

14(t1 + t3 − 1) = 0

is satisfied. Solving this equation, with respect to t3, we have

t3 = ω3(t1) :=
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

. (85)

Hence, for the basic parameter t1 the rational curve (t1, t1, ω3(t1)) ∈ X̃ interpolates the set
of all critical points in C̃2.

Lemma 21. Let ψ2 be function specified by ψ2(t1) := g̃1(t1, t1, ω3(t1)). Then ψ2 has the factor
t1 − 1, namely it is written as

ψ2(t1) =
(t1 − 1)ψ̂2(t1)

(ρ2
12t1 − ρ2

14)
2

, (86)

where ψ̂2(t1) is a polynomial in t1 of degree 4. Moreover the explicit form of ψ̂2(t1) is

ψ̂2(t1) = ρ4
12(4r2 − ρ2

12)t
4
1 + 2ρ4

12(2ρ2
14 − ρ2

12)t
3
1 + ρ2

12ρ2
14(−8r2 + ρ2

12 − 3ρ2
14)t

2
1

+ 2ρ2
12ρ4

14t1 + ρ4
14(4r2 − ρ2

14). (87)

Proof. Since ω3(t1) is a ratio of two polynomials in t1 of degree 1 as (85), and g̃1(t1, t1, t3) is
a polynomial in t3 of degree 2 and in t1 of degree 3, ψ2(t1) = g̃1(t1, t1, ω3(t1)) can be written
as ψ2(t1) = (polynomial in t1 of degree 5)/(ρ2

12t1 − ρ2
14)

2. In particular, from (81) we have
ψ2(1) = g̃1(1, 1, ω3(1)) = g̃1(1, 1,−1) = 0, so that ψ2(t1) is divisible by t1 − 1. Therefore,
we obtain the expression (86). The explicit form (87) is obtained by direct calculation.

Remark 9. From Lemma 20, we see that (1, 1, ω3(1)) = (1, 1,−1) 6∈ C̃ if ∆1 6= 0. This means
that the root t1 = 1 of the equation ψ2(t1) = 0 does not correspond to any point in C̃2.

Since ψ̂2(t1) is evaluated at t1 = ρ2
14/ρ2

12 as ψ̂2(ρ
2
14/ρ2

12) = 4r2ρ4
14∆2

0/ρ4
12 6= 0, we have

the expression
C̃2 = {(t1, t1, ω3(t1)) ∈ X̃ | ψ̂2(t1) = 0},

where ω3(t1) is given by (85), and we call ψ̂2(t1) the characteristic polynomial of C̃2.

Remark 10. When ∆1 = 0, i.e., r2 = (3ρ2
12 + ρ2

14)/4, the characteristic polynomial ψ̂2(t1) is
expressed as ψ̂2(t1) = ρ2

12r2(t1 − 1)
(
ρ2

12(2ρ2
12 + ρ2

14)t
3
1 + 5ρ2

12ρ2
14t2

1 − 5ρ4
14t1 − 3ρ4

14
)
, which has

the factor (t1 − 1), so that t1 = 1 is the double root of ψ2(t1) = 0. The polynomial ψ̂2(t1) was
originally defined from the system g̃1 = g̃12 = g̃13 = 0 for t1 6= 1 under ∆1 6= 0. In this sense
t1 = 1 is meaningless as a solution of ψ̂2(t1) = 0, which corresponds to a point in C̃2. However,
the point (1, 1, ω3(1)) = (1, 1,−1) formally corresponding to t1 = 1 is indeed an element of ∈ C̃
when ∆1 = 0 (the fact (1, 1,−1) ∈ C̃2 if ∆1 = 0 was also confirmed in Lemma 20). This makes
sense even when t1 = 1, and eventually the imposed condition for t1 or ∆1 can be removed.

We denote the roots of the equation ψ̂2(t1) = 0 by ζ1, ζ2, ζ3, ζ4, then the points cor-
responding to ζ j give the set of critical points C̃2. Let ψ2 be monic polynomial in t1
specified by

ψ2(t1) :=
4

∏
j=1

(t1 − ζ j) =
ψ̂2(t1)

h2
,
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where h2 := ρ4
12(4r2 − ρ2

12) is the coefficient of highest degree of ψ̂2. Then we obtain
the following:

Proposition 5.

N2(t1) = N2(t2) =
ρ4

14(4r2 − ρ2
14)

ρ4
12(4r2 − ρ2

12)
= −

ρ2
14B(0 ? 14)

ρ2
12B(0 ? 12)

,

N2(1− t1) = N2(1− t2) =
∆2

0∆1

ρ4
12(4r2 − ρ2

12)
= −

∆2
0∆1

ρ2
12B(0 ? 12)

, (88)

N2(ρ
2
12t1 − ρ2

14) =
4r2ρ4

14∆2
0

4r2 − ρ2
12

= −
4r2ρ2

12ρ4
14∆2

0
B(0 ? 12)

, (89)

N2((2ρ2
14 − ρ2

12)t1 − ρ2
14)

=
4ρ4

14∆2
0(ρ

2
12 − 4ρ2

14)(ρ
4
14 + r2ρ2

12 − 4r2ρ2
14)

ρ4
12(4r2 − ρ2

12)
=

2ρ4
14∆2

0B(0124)B(0 ? 124)
ρ6

12B(0 ? 12)
,

N2(ρ
2
12t2

1 − ρ2
14) = −

4ρ6
14∆2

0(ρ
2
12 − 4ρ2

14)

(4r2 − ρ2
12)

2
= −

4ρ2
12ρ6

14∆2
0B(0124)

{B(0 ? 12)}2 , (90)

where ∆1 is given in (80).

Proof. Since t1 = t2, we have N2(t1) = N2(t2) and N2(1− t1) = N2(1− t2). Indeed one
can apply the formula

N2(γ1t1 − γ2) =
4

∏
j=1

(γ1ζ j − γ2) = γ4
1

4

∏
j=1

(γ2

γ1
− ζ j

)
= γ4

1ψ2

(γ2

γ1

)
=

γ4
1

h2
ψ̂2

(γ2

γ1

)
(91)

to every case except (90). ψ̂2(γ2/γ1) can be evaluated by a direct calculation from (87).
For an arbitrary quadratic polynomial c2t2

1 + c1t1 + c0 = c2(t1 − α)(t1 − β), there exist
polynomials P(t1) and q1t1 + q0 such that

ψ̂2(t1) = (c2t2
1 + c1t1 + c0)P(t1) + q1t1 + q0.

Then the norm of c2t2
1 + c1t1 + c0 is calculated by reciprocity law as

N2(c2t2
1 + c1t1 + c0) = c4

2

4

∏
j=1

(ζ j − α)(ζ j − β) = c4
2ψ2(α)ψ2(β)

=
c4

2
h2

2
ψ̂2(α)ψ̂2(β) =

c4
2

h2
2
(q1α + q0)(q1β + q0) =

c4
2

h2
2
(q2

1αβ + q0q1(α + β) + q2
0)

=
c4

2
h2

2
(q2

1
c0

c2
− q0q1

c1

c2
+ q2

0) =
c3

2
h2

2
(q2

1c0 − q0q1c1 + q2
0c2). (92)

For c2 = ρ2
12, c1 = 0, c0 = −ρ2

14, by Euclidean division we have

ψ̂2(t1) = (ρ2
12t2

1 − ρ2
14)P(t1) + q1t1 + q0,

where
P(t1) = ρ2

12(4r2 − ρ2
12)t

2
1 + 2ρ2

12(2ρ2
14 − ρ2

12)t1 − ρ2
14(4r2 − ρ2

14)

and q1 = 2ρ2
12ρ2

14(3ρ2
14 − ρ2

12), q0 = −4ρ6
14. Then, using (92) we obtain

N2(ρ
2
12t2

1 − ρ2
14) =

ρ6
12

ρ8
12(4r2 − ρ2

12)
2
{−4ρ4

12ρ6
14(3ρ2

14 − ρ2
12)

2 + 16ρ12
14ρ2

12},

which is factorized simply and coincides with (90).
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Corollary 1.

N2(t3) =
(ρ2

12 − 4ρ2
14)(ρ

4
14 + r2ρ2

12 − 4r2ρ2
14)

r2ρ4
12

= −B(0124)B(0 ? 124)
2r2ρ8

12
,

N2(1− t3) =
4∆2

0(4r2 − ρ2
14)

r2ρ4
12

= −4
∆2

0B(0 ? 14)
r2ρ4

12ρ2
14

,

N2(s + 1) = 4
∆2

0(4r2 − ρ2
14)

2

r2ρ4
14(4r2 − ρ2

12)
= −4

∆2
0ρ2

12{B(0 ? 14)}2

r2ρ8
14B(0 ? 12)

,

N2(t∞) = −16
ρ2

14(ρ
2
12 − 4ρ2

14)

r2(4r2 − ρ2
12)

= 16
ρ2

14B(0124)
r2B(0 ? 12)

.

Proof. Since parameters t3, 1− t3, s + 1 and t∞ are written as

t3 =
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

, 1− t3 =
2∆0 t1

ρ2
12t1 − ρ2

14
,

s + 1 = 2δt1 − t3 + 1 =
2ρ2

12∆0 t2
1

ρ2
14(ρ

2
12t1 − ρ2

14)
, t∞ = 1 + 2t1 + t3 =

2(ρ2
12t2

1 − ρ2
14)

ρ2
12t1 − ρ2

14
,

we obtain

N2(t3) =
N2((2ρ2

14 − ρ2
12)t1 − ρ2

14)

N2(ρ
2
12t1 − ρ2

14)
, N2(1− t3) =

24∆4
0N2(t1)

N2(ρ
2
12t1 − ρ2

14)
,

N2(s + 1) =
24ρ8

12∆4
0N2(t1)

2

ρ8
14N2(ρ

2
12t1 − ρ2

14)
, N2(t∞) =

24N2(ρ
2
12t2

1 − ρ2
14)

N2(ρ
2
12t1 − ρ2

14)
,

respectively. They are all combinations of factors evaluated in Proposition 5. We therefore
obtain the results.

5.3. The Set C̃3 : t1 = t3 6= t2

The case C̃3 : t1 = t3 6= t2 for the admissible parameter t1 is evaluated from that of
C̃2 : t1 = t2 6= t3 in previous subsection by the use of the transposition σ23 of the coordinates
t2 and t3. In fact, one may take as in (86) and (87), i.e.,

ψ3(t1) := ψ2(t1), ψ̂3(t1) := ψ̂2(t1), (93)

and for the basic parameter t1, the rational curve (t1, ω2(t1), t1) ∈ X̃ interpolates the set of
all critical points in C̃3, where

t2 = ω2(t1) =
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

, t3 = t1, (94)

so that we have the expression

C̃3 = {(t1, ω2(t1), t1) ∈ X̃ | ψ̂2(t1) = 0}.

Then the same assertion as the preceding proposition holds true.



Symmetry 2022, 14, 374 28 of 59

Proposition 6. The points in C̃3 consist of the four points corresponding to the solutions ζ j to the
equation ψ̂3(t1) = 0 with t2 = ω2(t1), t3 = t1, and we have

N3(t1) = N2(t1), N3(1− t1) = N2(1− t1),

N3(ρ
2
12t1 − ρ2

14) = N2(ρ
2
12t1 − ρ2

14),

N3((2ρ2
14 − ρ2

12)t1 − ρ2
14) = N2((2ρ2

14 − ρ2
12)t1 − ρ2

14),

N3(t∞) = N2(t∞)

and

N3(t2) = N2(t3), N3(1− t2) = N2(1− t3),

N3(t3) = N2(t2), N3(1− t3) = N2(1− t2).
(95)

These are explicitly given in Proposition 5 and Corollary 1.

Proof. Indeed t1, t∞ leave invariant under the transposition σ23. Therefore, Nj(t1), Nj(1−
t1), Nj(ρ

2
12t1 − ρ2

14), Nj{(2ρ2
14 − ρ2

12)t1 − ρ2
14} and Nj(t∞) are all invariant under the trans-

position σ23. The symmetry with respect to σ23 also implies (95).

Proposition 7. For the special parameter s, we have

N3(s + 1) =
∆2

0∆1(ρ
2
12 − 4ρ2

14)(ρ
4
14 + r2ρ2

12 − 4r2ρ2
14)

r2ρ8
14(4r2 − ρ2

12)
=

∆2
0∆1B(0124)B(0 ? 124)
2r2ρ8

14ρ2
12B(0 ? 12)

. (96)

Proof. From (94) the special parameter s + 1 is calculated as

s + 1 = δ(t1 + t2)− t3 + 1 =
ρ2

12 − ρ2
14

ρ2
14

(
t1 +

(2ρ2
14 − ρ2

12)t1 − ρ2
14

ρ2
12t1 − ρ2

14

)
− t1 + 1

=
ρ2

12
ρ2

14
(1− t1)

(2ρ2
14 − ρ2

12)t1 − ρ2
14

ρ2
12t1 − ρ2

14
=

ρ2
12

ρ2
14
(1− t1)t2,

so that, using (95) we have

N3(s + 1) =
ρ8

12
ρ8

14
N3(1− t1)N3(t2) =

ρ8
12

ρ8
14
N2(1− t1)N2(t3).

Since N2(1− t1) and N2(t3) are given in Proposition 5 and Corollary 1, respectively, we
obtain

N3(s + 1) =
ρ8

12
ρ8

14
×

∆2
0∆1

ρ4
12(4r2 − ρ2

12)
×

(ρ2
12 − 4ρ2

14)(ρ
4
14 + r2ρ2

12 − 4r2ρ2
14)

r2ρ4
12

,

which coincides with (96).

5.4. The Set C̃4 : t2 = t3 6= t1

We assume that t2 = t3 6= t1 for the critical points. Since t1 6= t2 and t2 = t3, from (73)
it is necessary for g̃12 = g̃13 = 0 that

ĝ12(t1, t2, t2) = ĝ13(t1, t2, t2) = ρ2
12t1t2 + (ρ2

12 − ρ2
14)t2 − ρ2

14(t1 + t2 − 1) = 0.

is satisfied. Solving this equation with respect to t2 we have

t2 = ω2(t1) :=
V(t1)

U(t1)
,
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where
U(t1) := ρ2

12t1 + ρ2
12 − 2ρ2

14, V(t1) := ρ2
14(t1 − 1). (97)

We may take the interpolating curve (t1, ω2(t1), ω3(t1)) ∈ X̃ of the set C̃4 satisfying

g̃1(t1, ω2(t1), ω3(t1)) = 0,

where
t2 = ω2(t1) =

V
U

, t3 = ω3(t1) :=
V
U

.

Furthermore

Lemma 22. Let ψ4 be function specified by ψ4(t1) := g̃1(t1,
V
U

,
V
U
). Then ψ4 has the factor t1− 1,

namely it is written as

ψ4(t1) =
(t1 − 1)ψ̂4(t1)

U2 , (98)

where ψ̂4(t1) is a polynomial in t1 of degree 4. Moreover the explicit form of ψ̂4(t1) is

ψ̂4(t1) =
(

r2t2
1 + (ρ2

14 + 2r2)t1 + r2
)

U2 + 4ρ2
14

(
r2t2

1 − (ρ2
12 − ρ2

14)t1 − r2
)

U

+ ρ4
14(t1 − 1)

(
(4r2 − 3ρ2

12)t1 + 4ρ2
14 − ρ2

12 − 4r2
)

(99)

= ρ4
12r2t4

1 + ρ4
12(ρ

2
14 + 4r2)t3

1 + ρ2
12(6ρ2

12r2 − 8ρ2
14r2 − 2ρ2

12ρ2
14 − 3ρ4

14)t
2
1

+ ρ2
12(4ρ2

12r2 − 16ρ2
14r2 − 3ρ2

12ρ2
14 + 10ρ4

14)t1

+ (ρ2
12 − 4ρ2

14)(ρ
4
14 + ρ2

12r2 − 4ρ2
14r2). (100)

Proof. By the definition (74) of g̃1, we have

U2ψ4(t1) = U2 g̃1(t1,
V
U

,
V
U
)

=
[
2
(
(r2 − ρ2

12)t1 + ρ2
14 − r2)+ ((2r2 − ρ2

12)t1 + 2ρ2
14 − ρ2

12 − 2r2)]V2

+ 4
[
r2t2

1 − (ρ2
12 − ρ2

14)t1 − r2
]
UV + (t1 − 1)

[
r2t2

1 + (ρ2
14 + 2r2)t1 + r2

]
U2,

= (t1 − 1)
[
ρ4

14(t1 − 1)
(
(4r2 − 3ρ2

12)t1 + 4ρ2
14 − ρ2

12 − 4r2
)

+ 4ρ2
14

(
r2t2

1 − (ρ2
12 − ρ2

14)t1 − r2
)

U +
(

r2t2
1 + (ρ2

14 + 2r2)t1 + r2
)

U2
]
,

which is a polynomial in t1 of degree 5. Thus, we obtain

U2ψ4(t1) = (t1 − 1)ψ̂4(t1),

where ψ̂4(t1) is a polynomial in t1 of degree 4 explicitly given by (99). We therefore
obtain (98). The explicit form (100) is obtained by direct calculation from (99).

Remark 11. From (82), we see that (1, ω2(1), ω3(1)) = (1, 0, 0) 6∈ C̃. This means that the root
t1 = 1 of the equation ψ4(t1) = 0 does not correspond to any point in C̃4.

Since ψ̂4(t1) is evaluated at t1 = (−ρ2
12 + 2ρ2

14)/ρ2
12 as

ψ̂4

(−ρ2
12 + 2ρ2

14
ρ2

12

)
=

4ρ4
14(4r2 − ρ2

12)∆
2
0

ρ4
12

= −
4ρ4

14B(0 ? 12)
ρ6

12
∆2

0 6= 0, (101)
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we have the expression

C̃4 = {(t1,
V
U

,
V
U
) ∈ X̃ | ψ̂4(t1) = 0},

where U(t1), V(t1) are given by (97), and we call ψ̂4(t1) the characteristic polynomial of C̃4. We
denote the roots of the equation ψ̂4(t1) = 0 by ζ1, ζ2, ζ3, ζ4, then the points corresponding
to ζ j give the set of critical points C̃4. Let ψ4 be monic polynomial in t1 specified by

ψ4(t1) :=
4

∏
j=1

(t1 − ζ j) =
ψ̂4(t1)

h4
,

where h4 := ρ4
12r2 is the coefficient of highest degree of ψ̂4. Due to Lemma 22 we obtain

the following.

Lemma 23. ψ̂4(t1) is a polynomial in t1 of degree 4 with the leading term

ψ̂4(t1) ≈ h4t4
1 (|t1| → ∞),

and the leading coefficient is given by h4 = ρ4
12r2. Furthermore we have

ψ̂4(0) = (ρ2
12 − 4ρ2

14)(ρ
4
14 + ρ2

12r2 − 4ρ2
14r2),

ψ̂4(1) = 4(4r2 − ρ2
14)∆

2
0,

ψ̂4(−1) = 4ρ4
14∆1,

and ψ̂4((−ρ2
12 + 2ρ2

14)/ρ2
12) is provided as (101).

Proof. The results are calculated directly using (99) or (100).

From the symmetry between C̃4 and C̃2, we immediately have the following:

Proposition 8.

N4(t1) = N2(t3), N4(1− t1) = N2(1− t3)

N4(t2) = N4(t3) = N2(t1), N4(1− t2) = N4(1− t3) = N2(1− t1)

N4(t∞) = N2(t∞).

These are explicitly given in Proposition 5 and Corollary 1.

Since s = δ(t1 + t2)− t3, from the symmetry between C̃4 and C̃3, we also immediately
have the following:

Proposition 9. N4(s + 1) = N3(s + 1). The explicit form is given in Proposition 7.

Remark 12. As a consequence of Lemma 23, we can explain another way to have the explicit forms
of N4(tj) (j = 1, 2, 3, ∞), N4(1− tj) (j = 1, 2, 3) and N4(s + 1) using special values of ψ̂4(t1)
as follows. The basic idea is to use the following formula for arbitrary γ1, γ2:

N4(γ1t1 − γ2) =
γ4

1
h4

ψ̂4

(γ2

γ1

)
,
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which is explained in (91). Then, using Lemma 23, we obtain

N4(t1) =
ψ̂4(0)

h4
, N4(1− t1) =

ψ̂4(1)
h4

, N4(t1 + 1) =
ψ̂4(−1)

h4
,

N4(U) = N4(ρ
2
12t1 + ρ2

12 − 2ρ2
14) =

ρ8
12

h4
ψ̂4

(−ρ2
12 + 2ρ2

14
ρ2

12

)
=

4ρ4
12ρ4

14(4r2 − ρ2
12)∆

2
0

h4
, (102)

N4(V) = N4(ρ
2
14(t1 − 1)) =

ρ8
14

h4
ψ̂4(1).

For our setting t2 = t3 = V/U, we have 1− t2 = 1− t3 = ∆0(t1 + 1)/U, so that

N4(t2) = N4(t3) =
N4(V)

N4(U)
, N4(1− t2) = N4(1− t3) = ∆4

0
N4(t1 + 1)
N4(U)

are simply calculated. Since s + 1 is written as

s + 1 = δ(t1 + t2)− t3 + 1 = δ
(

t1 +
V
U

)
− V

U
+ 1 =

ρ2
12∆0

ρ2
14

t1(t1 + 1)
U

,

we have

N4(s + 1) =
ρ8

12∆4
0

ρ8
14

N4(t1)N4(t1 + 1)
N4(U)

,

which is also simply calculated. Lastly, we evaluate N4(t∞). The parameter t∞ is written as

t∞ = 1 + t1 + t2 + t3 = 1 + t1 + 2
V
U

=
ρ2

12t2
1 + 2ρ2

12t1 + ρ2
12 − 4ρ2

14
U

,

so that we have

N4(t∞) =
N4(ρ

2
12t2

1 + 2ρ2
12t1 + ρ2

12 − 4ρ2
14)

N4(U)
.

To evaluate the above numerator we use another method. By Euclidean division, we have

ψ̂4(t1) = (c2t2
1 + c1t1 + c0)P(t1) + q1t1 + q0,

where, for setting c2t2
1 + c1t1 + c0 = ρ2

12t2
1 + 2ρ2

12t1 + ρ2
12 − 4ρ2

14, there exist

P(t1) = ρ2
12r2t2

1 + ρ2
12(ρ

2
14 + 2r2)t1 + ρ2

12r2 − 4ρ2
14r2 − 3ρ4

14 − 4ρ2
12ρ2

14

and q1 = 4ρ2
12ρ2

14(ρ
2
12 + 5ρ2

14), q0 = 4ρ2
14(ρ

2
12 − 4ρ2

14)(ρ
2
12 + ρ2

14). Using (92) we finally obtain

N4(ρ
2
12t2

1 + 2ρ2
12t1 + ρ2

12 − 4ρ2
14) =

c3
2

h2
4
(q2

1c0 − q0q1c1 + q2
0c2) =

64ρ6
14(4ρ2

14 − ρ2
12)∆

2
0

r4 .

5.5. Conclusions of This Section

In this subsection, we give a proof of Conjecture 2 under the conditions (H0), (H1)
and ∆0 6= 0. As we saw in (63), for a rational function ϕ on X̃, the norm of ϕ is defined by
the product of the values over the set of all critical points C̃, i.e.,

N (ϕ) := ∏
Q∈C̃

ϕ(Q) =
4

∏
j=1
Nj(ϕ).

Summing up Propositions 4–9 and Corollary 1, we have
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Theorem 2.

N (tj) = −
ρ8

14(ρ
2
12 − 4ρ2

14)(ρ
2
14 − 4r2)2(ρ4

14 + ρ2
12r2 − 4ρ2

14r2)

3ρ12
12(ρ

2
12 − 3r2)(ρ2

12 − 4r2)2
(103)

=
B(0124)B(0 ? 124){B(0 ? 14)B(014)}2

B(0123)B(0 ? 123){B(0 ? 12)B(012)}2 (j = 1, 2, 3),

N (1− tj) = −
32
3

∆7
0∆2

1(ρ
2
14 − 4r2)

r2ρ12
12(ρ

2
12 − 3r2)(ρ2

12 − 4r2)2
(104)

=
210

3
∆7

0∆2
1B(0 ? 14)

B(0 ? 1)B(014)B(0 ? 123){B(0 ? 12)B(012)}2 (j = 1, 2, 3),

N (t∞) = −
47 ρ6

14(ρ
2
12 − 3ρ2

14)(ρ
2
12 − 4ρ2

14)
3

r6(ρ2
12 − 3r2)(ρ2

12 − 4r2)3
= − 47 B(01234){B(014)B(0124)}3

B(0 ? 123){B(0 ? 1)B(0 ? 12)}3 , (105)

N (s + 1) =
8
3

∆7
0∆2

1(ρ
2
12 − 3ρ2

14)(ρ
2
12 − 4ρ2

14)
2(ρ2

14 − 4r2)2

r6ρ26
14(ρ

2
12 − 3r2)(ρ2

12 − 4r2)3

× (3ρ4
14 + 4ρ2

12r2 − 12ρ2
14r2)(ρ4

14 + ρ2
12r2 − 4ρ2

14r2)2 (106)

=
27

3
∆7

0∆2
1

ρ30
14

B(01234)B(0 ? 1234){B(0 ? 14)B(0 ? 124)B(0124)}2

B(0 ? 123){B(0 ? 1)B(0 ? 12)B(012)}3 .

Corollary 2.

N ( f j) =
r2ρ12

12(ρ
2
12 − 3r2)(ρ2

12 − 4r2)2(ρ2
14 − 4r2)

216ρ2
14(ρ

2
12 − 4ρ2

14)

× (3ρ4
14 + 4ρ2

12r2 − 12ρ2
14r2)(ρ4

14 + ρ2
12r2 − 4ρ2

14r2)2 (107)

= −B(0 ? 1)
2 · 48

B(0 ? 1234)B(0 ? 123)B(0 ? 14){B(0 ? 124)B(0 ? 12)}2

B(0124)B(012){B(014)}2

(j = 1, 2, 3),

N ( f4) = −
r2ρ6

14
3 · 48 (ρ

2
14 − 4r2)3(3ρ4

14 + 4ρ2
12r2 − 12ρ2

14r2)(ρ4
14 + ρ2

12r2 − 4ρ2
14r2)3 (108)

= −B(0 ? 1)
2 · 48

B(0 ? 1234){B(0 ? 124)B(0 ? 14)}3

B(0123){B(012)}3 ,

N ( f j − f4) = −
∆7

0∆2
1(ρ

2
14 − 4r2)2(3ρ4

14 + 4ρ2
12r2 − 12ρ2

14r2)(ρ4
14 + ρ2

12r2 − 4ρ2
14r2)2

3 · 211ρ2
14(ρ

2
12 − 4ρ2

14)
(109)

= −
∆7

0∆2
1

3 · 27
B(0 ? 1234){B(0 ? 14)B(0 ? 124)}2

B(0124){B(012)B(014)}3 (j = 1, 2, 3),

N ( f j − fk) = 0 (1 ≤ j, k ≤ 3), (110)

N
( 4

∑
j=1

1
f j

)
=

3 · 415 (ρ2
12 − 3ρ2

14)(ρ
2
12 − 4ρ2

14)
3

(ρ2
12 − 3r2)(ρ2

12 − 4r2)3(ρ2
14 − 4r2)3

× 1
(3ρ4

14 + 4ρ2
12r2 − 12ρ2

14r2)(ρ4
14 + ρ2

12r2 − 4ρ2
14r2)3

(111)

=
2 · 415 B(01234)B(0123){B(0124)B(012)B(014)}3

{B(0 ? 1)}4B(0 ? 1234)B(0 ? 123){B(0 ? 124)B(0 ? 12)B(0 ? 14)}3 ,

N (L123) =
{ B(01234)

8 } 15
2

N (t∞)
, N (Ljk4) = N (tl)N (L123), (112)

where {j, k, l} denotes a permutation of {1, 2, 3}.
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Proof. From (47) we have f j− f4 ≡ f4(1− tj)/tj mod Ann(C̃) (j = 1, 2, 3), so that we have
N ( f j − f4) = N ( f4)N (1− tj)/N (tj) for j = 1, 2, 3. Using (103) and (104) in Theorem 2,
we see that N ( f1 − f4) = N ( f2 − f4) = N ( f3 − f4). On the other hand, from (79) we have
N ( f3 − f4) = ρ30

14N (s + 1)/N (t∞), which coincides with the right-hand side of (109) by
using (105) and (106) in Theorem 2. We therefore obtain (109). From (47) we also have
N ( f j) = N ( f4)/N (tj) for j = 1, 2, 3, so that we have N ( f1) = N ( f2) = N ( f3). On the
other hand, using (47) again we have f3 − f4 ≡ (1− t3) f3 mod Ann(C̃), so that we obtain
N ( f3) = N ( f3 − f4)/N (1− t3), which is evaluated as the right-hand side of (107) by
using (104) in Theorem 2 and (109). We therefore obtain (107). Moreover, from (47) we
also obtain N ( f4) = N (t1)N ( f1), which is evaluated as (108) by using (103) in Theorem 2
and (107). From (76), we have tj − tk ≡ 0 mod Ann(C̃) for j, k ∈ {1, 2, 3}, so that we have
N (tj − tk) = 0, which implies

N ( f j − fk) = N ( f j fk)N ( f−1
k − f−1

j ) =
N ( f j)N ( fk)

N ( f4)
N (tk − tj) = 0 for j, k ∈ {1, 2, 3}.

We therefore obtain (110). From (71) we obtain N (∑4
j=1 f−1

j ) = N (t∞)/N ( f4), which
coincides with (111) by using (105) in Theorem 2 and (108). Lastly (112) follows from the
definition (44) of Ljkl and (38).

As we mentioned as Remark 2 of Conjecture 2 in the introduction, we have the
following:

Theorem 3. Under the conditions (H0), (H1), and ∆0 6= 0,

f1, f2, f3, f4,
4

∑
j=1

1
f j

, L123, L124, L134, L234

are all units.

Proof. From the product expressions for N ( f j), N (∑4
j=1 f−1

j ) and N (Ljkl) in Corollary 2
we see that there appears no factor of their numerators which vanishes.

6. Regular Tetrahedron Case (ρ12 = ρ14)

In this section, we impose the conditions (H0) and (H1) with ∆0 = ρ2
12 − ρ2

14 = 0,
which means 4O1O2O3O4 is a regular tetrahedron and all spheres Sj have the same
radius, i.e., ρ2

jk = ρ2 (1 ≤ j < k ≤ 4) and r2
j = r2 (1 ≤ j ≤ 4). Under this setting, we

present the explicit formulae forN ( f j),N (∑4
j=1 f−1

j ) andN (Hess(F)) using the admissible
parameters t1, t2, t3, and show that Conjectures 1 and 2 stated in the introduction hold true.

The polynomials g̃j (1 ≤ j ≤ 3) and g̃jk (1 ≤ j < k ≤ 3) defined in (72) and (73) are
simplified as

g̃j(t) = (tj − 1)
[
r2(tj + 1)2 + ρ2tj + 2r2(tj + 1)(tk + tl)

+ (r2 − ρ2)(t2
k + t2

l ) + (2r2 − ρ2)tktl

]
,

(113)

g̃jk(t) = (tk − tj)ĝjk(t), ĝjk(t) := ρ2(tj − 1)(tk − 1), (114)

respectively, where {j, k, l} is a permutation of {1, 2, 3}. Let C̃ = ι−1C be the set of critical
points characterized by C̃ = {t ∈ X̃ | g̃1(t) = g̃2(t) = g̃3(t) = 0}. By Lemma 11 if t1 6= 1 for
t ∈ C̃, then the system g̃1(t) = g̃2(t) = g̃3(t) = 0 is equivalent to

g̃1(t) = g̃12(t) = g̃13(t) = 0.
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We may use the same notation for the points corresponding to these points in X̃. As a
result, the set of 15 critical points are tabulated as W, Qj, Qjk, Qjkl . One can also classify
these points by the property (76). The set C̃ is partitioned into four parts, i.e., C̃ = ⊔4

j=1 C̃j.

6.1. The Set C̃1 : t1 = t2 = t3

The point (t1, t2, t3) = (1, 1, 1) ∈ X̃ satisfies the system g̃1(t) = g̃2(t) = g̃3(t) = 0, and
this point corresponds to the point W. Since g̃1(t1, t1, t1) = (t1 − 1)

[
3(3r2 − ρ2)t2

1 + (6r2 +
ρ2)t1 + r2], if t1 6= 1, then the two solutions of the quadratic equation

3(3r2 − ρ2)t2
1 + (6r2 + ρ2)t1 + r2 = 0,

correspond to the points Q123, Q4. We obtain C1 = {W, Q123, Q4}.

6.2. The Set C̃2 : t1 = t2 6= t3

If t3 = 1 for t ∈ C̃2, then t1 6= 1. Thus, t ∈ C̃2 satisfies g̃12(t1, t1, 1) = g̃13(t1, t1, 1) = 0
automatically. Since g̃1(t1, t1, 1) = (t1 − 1)[(4r2 − ρ2)t2

1 + 8r2t1 + (4r2 − ρ2)], the two
solutions of the quadratic equation

(4r2 − ρ2)t2
1 + 8r2t1 + (4r2 − ρ2) = 0 (115)

correspond to Q12, Q34. On the other hand, if t3 6= 1 for t ∈ C̃2, then t ∈ C̃2 satisfies
the system

g̃3(t1, t1, t3) = g̃31(t1, t1, t3) = g̃32(t1, t1, t3) = 0.

Since g̃31(t1, t1, t3) = g̃32(t1, t1, t3) = ρ2(t1 − 1)(t3 − 1)(t3 − t1), we need t1 = 1 for t ∈ C̃2.
Then we also need g̃3(1, 1, t3) = (t3 − 1)

[
r2t2

3 + (6r2 + ρ2)t3 + 3(3r2 − ρ2)
]
= 0. Thus, the

two solutions of the quadratic equation

r2t2
3 + (6r2 + ρ2)t3 + 3(3r2 − ρ2) = 0

correspond to Q3, Q124. We obtain C2 = {Q12, Q34, Q3, Q124}.

6.3. The Set C̃3 : t1 = t3 6= t2

This occurs from C̃2 by exchange of t2, t3. The cases t2 = 1 or t2 6= 1 correspond to
Q13, Q24 or Q2, Q134, respectively. We obtain C3 = {Q13, Q24, Q2, Q134}.

6.4. The Set C̃4 : t2 = t3 6= t1

If t1 = 1 for t ∈ C̃4, then t2 6= 1. Thus, t ∈ C̃4 satisfies g̃21(1, t2, t2) = g̃23(1, t2, t2) = 0
automatically. Since g̃2(1, t2, t2) = (t2 − 1)[(4r2 − ρ2)t2

2 + 8r2t2 + (4r2 − ρ2)], the two
solutions of the quadratic equation

(4r2 − ρ2)t2
2 + 8r2t2 + (4r2 − ρ2) = 0

correspond to Q14, Q23. On the other hand, if t1 6= 1 for t ∈ C̃4, then t ∈ C̃4 satisfies
the system

g̃1(t1, t2, t2) = g̃12(t1, t2, t2) = g̃13(t1, t2, t2) = 0.

Since g̃12(t1, t2, t2) = g̃13(t1, t2, t2) = ρ2(t1 − 1)(t2 − 1)(t2 − t1), we need t2 = 1 for t ∈ C̃4.
Then we also need g̃1(t1, 1, 1) = (t1 − 1)

[
r2t2

1 + (6r2 + ρ2)t1 + 3(3r2 − ρ2)
]
= 0. Thus, the

two solutions of the quadratic equation

r2t2
1 + (6r2 + ρ2)t1 + 3(3r2 − ρ2) = 0 (116)

correspond to Q1, Q234. We obtain C4 = {Q14, Q23, Q1, Q234}.
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6.5. Conclusions of This Section

We have the following two lemmas by a direct calculation:

Lemma 24.

f j(W) =
3ρ2 − 8r2

8
for j ∈ {1, 2, 3, 4},

f j(Qj) =
ρ(ρ−

√
24r2 + ρ2)

12
for j ∈ {1, 2, 3, 4},

fk(Qj) =
ρ(3ρ +

√
24r2 + ρ2)

4
for k 6= j,

f j(Qjkl) =
ρ(3ρ−

√
24r2 + ρ2)

4
for {j, k, l} ⊂ {1, 2, 3, 4},

fm(Qjkl) =
ρ(ρ +

√
24r2 + ρ2)

12
for m /∈ {j, k, l} ⊂ {1, 2, 3, 4},

f j(Qjk) =
ρ(ρ−

√
8r2 − ρ2)

4
for {j, k} ⊂ {1, 2, 3, 4},

fl(Qjk) =
ρ(ρ +

√
8r2 − ρ2)

4
for l /∈ {j, k}.

As a consequence

Corollary 3.

N ( f j) = N ( f1) = −
1

3 · 48 r2ρ14(3ρ2 − 8r2)(ρ2 − 3r2)3(ρ2 − 4r2)3

= − 2
49

B(0 ? 1){B(0 ? 12)B(0 ? 123)}3B(0 ? 1234)
{B(012)}3B(0123)

(1 ≤ j ≤ 4), (117)

N
( 4

∑
j=1

1
f j

)
=

2 · 34 · 415

r8(3ρ2 − 8r2)(ρ2 − 3r2)4(ρ2 − 4r2)6

= 2 · 415 B(01234){B(0123)}4{B(012)}6

B(0 ? 1234){B(0 ? 123)}4{B(0 ? 12)}6{B(0 ? 1)}4 . (118)

Proof. The above formulae are obtained by definition and from Lemma 24 in view of the
following identities: B(0 ? j) = 2r2, B(0 ? jk) = ρ2(ρ2 − 4r2), B(0 ? jkl) = 2ρ4(3r2 − ρ2),
B(0 ? 1234) = ρ6(3ρ2 − 8r2), B(0jk) = 2ρ2, B(0jkl) = −3ρ4, B(01234) = 4ρ6.

Lemma 25.

Hess(F)
∣∣
x=W = 49 (ρ2 − 8r2)3

(3ρ2 − 8r2)6 , (119)

Hess(F)
∣∣
x=Qj

×Hess(F)
∣∣
x=Qklm

= 47 (ρ2 + 24r2)(ρ2 − 8r2)3

r6ρ4(ρ2 − 3r2)5 , (120)

Hess(F)
∣∣
x=Qjk

×Hess(F)
∣∣
x=Qlm

= 413 (ρ2 − 8r2)4

ρ4(ρ2 − 4r2)8 (121)

for {j, k, l, m} a permutation of {1, 2, 3, 4}.

Proof. We prove (119) first. By the definition (113) of g̃j we have

∂(g̃1, g̃2, g̃3)

∂(t1, t2, t3)

∣∣∣∣
t1=t2=t3=1

=

∣∣∣∣∣∣
2(8r2 − ρ2)

2(8r2 − ρ2)

2(8r2 − ρ2)

∣∣∣∣∣∣ = 8(8r2 − ρ2)3. (122)
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By definition, we also have

t∞
∣∣
t1=t2=t3=1 = (1 + t1 + t2 + t3)

∣∣
t1=t2=t3=1 = 4. (123)

From Lemma 24, we obtain

f1 f2 f3 f 3
4
∣∣
x=W = (3ρ2 − 8r2)6/86. (124)

Applying (122)–(124) to the formula (61), we therefore obtain (119).
Next, we show (120). Without loss of generality, we prove the case Hess(F)

∣∣
x=Q1

×
Hess(F)

∣∣
x=Q234

only. We denote by τ1, τ2 the solutions of (116). Then Q1 and Q234 are
written as Q1 = ι(τ1, 1, 1) and Q234 = ι(τ2, 1, 1), respectively. From (62) of Lemma 13
we have

Hess(F)
∣∣
x=Q1

×Hess(F)
∣∣
x=Q234

= 26
2

∏
j=1

(
1

f1 f2 f3 f 3
4 t∞(1− t1)2

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)∣∣∣∣t1=τj
t2=1
t3=1

. (125)

We now calculate the right-hand side of (125) precisely. From Lemma 24 we have

( f1 f2 f3 f 3
4 )
∣∣
x=Q1

× ( f1 f2 f3 f 3
4 )
∣∣
x=Q234

= −ρ2r2

6

(ρ2(ρ2 − 3r2)

2

)5
= − r2ρ12(ρ2 − 3r2)5

263
.

(126)

From (68) in Lemma 14 we see that

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

∣∣∣t2=1
t3=1

=
dψ

dt1

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t2=1
t3=1

,

where ψ(t1) = g̃1(t1, 1, 1) = (t1 − 1)
[
r2t2

1 + (6r2 + ρ2)t1 + 3(3r2 − ρ2)
]
. This implies that

for the solution τ of (116), we have

dψ

dt1

∣∣∣
t1=τ

= (τ − 1)(2r2τ + (6r2 + ρ2)) = 2r2τ2 + (4r2 + ρ2)τ − (6r2 + ρ2)

= 2[−(6r2 + ρ2)τ − 3(3r2 − ρ2)] + (4r2 + ρ2)τ − (6r2 + ρ2)

= −(8r2 + ρ2)τ − (24r2 − 5ρ2),

so that we obtain

dψ

dt1

∣∣∣
t1=τ1

× dψ

dt1

∣∣∣
t1=τ2

= (8r2 + ρ2)2τ1τ2 + (8r2 + ρ2)(24r2 − 5ρ2)(τ1 + τ2) + (24r2 − 5ρ2)2

= (8r2 + ρ2)2 3(3r2 − ρ2)

r2 − (8r2 + ρ2)(24r2 − 5ρ2)
6r2 + ρ2

r2 + (24r2 − 5ρ2)2

= 2ρ2(ρ2 − 8r2)(ρ2 + 24r2)/r2. (127)

Since we can calculate

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t2=1
t3=1

=

∣∣∣∣ −ρ2(t1 − 1)2 0
0 −ρ2(t1 − 1)2

∣∣∣∣ = ρ4(t1 − 1)4,

we have
∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t1=τ1
t2=1
t3=1

× ∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t1=τ2
t2=1
t3=1

= ρ8(τ1 − 1)4(τ2 − 1)4. (128)
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Moreover, by definition we have

t∞
∣∣t2=1
t3=1

= (1 + t1 + t2 + t3)
∣∣t2=1
t3=1

= t1 + 3. (129)

Applying (126)–(129) to the Equation (125) we therefore obtain

Hess(F)
∣∣
x=Q1

×Hess(F)
∣∣
x=Q234

= −213 3(ρ2 − 8r2)(ρ2 + 24r2)

r4ρ2(ρ2 − 3r2)5
(τ1 − 1)2(τ2 − 1)2

(τ1 + 3)(τ2 + 3)
,

which coincides with (120) by calculating (τ1 − 1)(τ2 − 1) and (τ1 + 3)(τ2 + 3) as follows:

(τ1 − 1)(τ2 − 1) = τ1τ2 − (τ1 + τ2) + 1 =
3(3r2 − ρ2)

r2 +
6r2 + ρ2

r2 + 1 =
2(8r2 − ρ2)

r2 ,

(τ1 + 3)(τ2 + 3) = τ1τ2 + 3(τ1 + τ2) + 9 =
3(3r2 − ρ2)

r2 − 3
6r2 + ρ2

r2 + 9 = −6ρ2

r2 .

Finally, we show (121). Without loss of generality, we prove the case Hess(F)
∣∣
x=Q12

×
Hess(F)

∣∣
x=Q34

only. We denote by σ1, σ2 the solutions of (115). Then Q12 and Q34 are
written as Q12 = ι(σ1, σ1, 1) and Q34 = ι(σ2, σ2, 1), respectively. From (62) of Lemma 13,
we have

Hess(F)
∣∣
x=Q12

×Hess(F)
∣∣
x=Q34

= 26
2

∏
j=1

(
1

f1 f2 f3 f 3
4 t∞(1− t1)2

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)∣∣∣∣t1=σj
t2=σj
t3=1

. (130)

We now calculate the right-hand side of (130) precisely. From Lemma 24, we have

( f1 f2 f3 f 3
4 )
∣∣
x=Q12

× ( f1 f2 f3 f 3
4 )
∣∣
x=Q34

=
(ρ2(ρ2 − 4r2)

8

)6
=

ρ12(ρ2 − 4r2)6

218 . (131)

From (68) in Lemma 14, we see that

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

∣∣∣t2=t1
t3=1

=
dψ

dt1

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t2=t1
t3=1

,

where ψ(t1) = g̃1(t1, t1, 1) = (t1 − 1)
[
(4r2 − ρ2)t2

1 + 8r2t1 + (4r2 − ρ2)
]
. This implies that

for the solution σ of (115), we have

dψ

dt1

∣∣∣
t1=σ

= (σ− 1)(2(4r2 − ρ2)σ + 8r2) = 2[(4r2 − ρ2)σ2 + ρ2σ− 4ρ2]

= 2[−(8r2σ + 4r2 − ρ2) + ρ2σ− 4ρ2] = 2(ρ2 − 8r2)(σ + 1),

so that we obtain

dψ

dt1

∣∣∣
t1=σ1

× dψ

dt1

∣∣∣
t1=σ2

= 22(ρ2 − 8r2)2(σ1 + 1)(σ2 + 1). (132)

Since we can calculate

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t2=t1
t3=1

=

∣∣∣∣ ρ2(t1 − 1)2 0
0 ρ2(t1 − 1)2

∣∣∣∣ = ρ4(t1 − 1)4,

we have
∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t1=σ1
t2=σ1
t3=1

× ∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣t1=σ2
t2=σ2
t3=1

= ρ8(σ1 − 1)4(σ2 − 1)4. (133)
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Moreover, by definition, we have

t∞
∣∣t2=t1
t3=1

= (1 + t1 + t2 + t3)
∣∣t2=t1
t3=1

= 2(t1 + 1),

so that
t∞
∣∣t1=σ1
t2=σ1
t3=1

× t∞
∣∣t1=σ2
t2=σ2
t3=1

= 4(σ1 + 1)(σ2 + 1). (134)

Applying (131)–(134) to the Equation (130) we therefore obtain

Hess(F)
∣∣
x=Q12

×Hess(F)
∣∣
x=Q34

= 224 (ρ2 − 8r2)2

ρ4(ρ2 − 4r2)6 (σ1 − 1)2(σ2 − 1)2,

which coincides with (121) by calculating (σ1 − 1)(σ2 − 1) as follows:

(σ1 − 1)(σ2 − 1) = σ1σ2 − (σ1 + σ2) + 1 = 1 +
8r2

4r2 − ρ2 + 1 =
2(8r2 − ρ2)

4r2 − ρ2 .

This completes the proof.

From Lemma 25, we obtain:

Proposition 10.

N (Hess(F)) = 476 (ρ2 + 24r2)4(ρ2 − 8r2)27

r24ρ28(3ρ2 − 8r2)6(ρ2 − 3r2)20(ρ2 − 4r2)24 . (135)

If N (Hess F) = 0 then 8r2 = ρ2 and vice versa. This case occurs when all critical points
Qjk (j < k) and Qjkl (j < k < l) coincides with W the center of gravity.

Remark 13. If r2 > 1
8 ρ2, then all 15 critical points cν are real and distinct from each other.

If r2 > 3
8 ρ2, then D1 ∩ D2 ∩ D3 ∩ D4 6= ∅. If 3

8 ρ2 > r2 > 1
3 ρ2, then Dj ∩ Dk ∩ Dl ∩ D c

m 6= ∅.
If 1

3 ρ2 > r2 > 1
4 ρ2, then Dj ∩ Dk ∩ D c

l ∩ D c
m 6= ∅.

Let {j, k, l, m} be an arbitrary permutation of {1, 2, 3, 4}. Then gradReF preserves every
affine plane pjk,lm and the lines l(Wj, Wklm), l(Wjk, Wlm) are trajectories of gradReF.

If 1
4 ρ2 > r2 > 1

8 ρ2, then Dj ∩ Dk = ∅. The four points Qj lie one by one in the inside of each
ReSj. The remaining 11 points lie in the common part of the inside of the pyramid ∆O1O2O3O4

and the outside of all Dk. The values of ReF at ReSj, Qjk, Qjkl , W satisfy the ordering

ReF
∣∣
ReSj

= −∞ < ReF
∣∣
Qjk

< ReF
∣∣
Qjkl

< ReF
∣∣
W .

There exist the unique trajectories (separatrices) of the real vector field gradReF starting from
some point of ReSj and tending to Qj, starting from Qj and tending to Qjk, starting from Qjkl and
tending to W respectively.

We assume that ρ = 2. Take the axis y1 and the ordinate y2 to be the lines l(Wjk, Wlm)
and l(Oj, Ok) such that Wjk is the origin in the plane pjk,lm. The restriction of f j to the plane is
represented by

f j = y2
1 + (y2 + 1)2 − r2, fk = y2

1 + (y2 − 1)2 − r2, fl = fm = (y1 −
√

2)2 + y2
2 + 1− r2,

and the vector field gradReF on pjk.lm is defined by the differential equation

dy2

dy1
=

v2

v1
,
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where

v1 =
2y1

f j
+

2y1

fk
+

4(y1 −
√

2)
fl

, v2 =
2(y2 + 1)

f j
+

2(y2 − 1)
fk

+
4y2

fl
.

Then every trajectory in pjk,lm tending to the infinity has an asymptotic expansion

y2 ≈ C−1(y1 −
1√
2
) +

C2

y2
1
+

C3

y3
1
+ · · · (|y1| → ∞)

or

y1 ≈ C′−1y2 +
1√
2
+

C′2
y2

2
+

C′3
y3

2
+ · · · (|y2| → ∞).

where C−1 or C′−1 denotes an arbitrary real constant and the remaining Cν, C′ν (ν ≥ 2) are uniquely
determined in a successive way. The phase portrait of gradReF in pjk,lm is given as in the Figure 1.

O j

Ok

Q jk

Q j

Qk

Q lm

Qk lm

Q jlm

Wlm

Wjk

W 

Figure 1. Phase portrait of gradReF in pjk,lm.
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The real vector field gradReF preserves the two dimensional real plane pjk,lm, which contains
the critical points Qj, Qk, Qjk, Qlm, Qjlm and Qklm. The three straight lines QjW, QkW and
WjkWlm are trajectories themselves. Every trajectory starts from each point of the circles ReSj ∩
pjk,lm and ReSk ∩ pjk,lm in a perpendicular manner to the circles, or from the point Qlm (unstable
node). The points Qjk, Qjlm and Qklm are saddle points. Every trajectory finally tends to one of the
points Qj, Qk and W (stable nodes), or to the infinity.

7. Product of Hessians

In this section, we evaluate the norm of the Hessian of F under the same constraints
as Section 5, i.e., we still impose the conditions (H0), (H1) and ∆0 6= 0. From (64) of
Proposition 3 the Hessian of F satisfies that

N
( 1

23 Hess(F)
)
= − 1
N ( f1)N ( f2)N ( f3)N ( f4)3N (t∞)N (1− t1)2 N

(
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
.

Since we have already evaluated N (tj) (j = 1, 2, 3, ∞), N (1− tj) (j = 1, 2, 3) and N ( f j)
(j = 1, 2, 3, 4) in Section 5, our aim in this section is to study the remaining part

N
(

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
.

Since the set C̃ is separated into four parts, which are specified in (76), i.e., C̃ = ⊔4
j=1 C̃j, we

have

N
(

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
=

4

∏
j=1
Nj

(
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
.

Furthermore, from Lemma 14, it follows that

Nj

(
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

)
= Nj

(dψj

dt1

)
Nj

(
∂(g̃12, g̃13)

∂(t2, t3)

)
, (136)

where ψj(t1) = g̃1(ω(t1)) are the characteristic functions defined by the interpolation curve
ω : C→ X̃ associated with C̃j, respectively (see Section 5 for further detail on the functions
ψj(t1)). In the sequel, we shall abbreviate

Z =
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
, Z0 =

∂(g̃12, g̃13)

∂(t2, t3)

respectively.

Definition 4. Let ψ̂j(t1) (1 ≤ j ≤ 4) be the characteristic polynomials of C̃j defined in Section 4
(see (83), (87), (93) and (100) for explicit forms of ψ̂1(t1) = ψ1(t1), ψ̂2(t1), ψ̂3(t1) and ψ̂4(t1),
respectively). For the polynomial ψ̂j(t1) of degree m, let {ζk | 1 ≤ k ≤ m} be the set of roots of the
equation ψ̂j(t1) = 0.

ψj(t1) :=
m

∏
k=1

(t1 − ζk) =
ψ̂j(t1)

hj
,

where hj are the coefficients of the leading terms of ψ̂j(t1). We define the discriminant of the
polynomial ψj(t1) associated with each C̃j as follows:

Discrij := ∏
1≤k<l≤m

(ζk − ζl)
2. (137)

By definition, we can immediately confirm that

Discrij = (−1)(
m
2 )Nj(ψ

′
j(t1)) = (−1)(

m
2 )h−m

j Nj(ψ̂
′
j(t1)), (138)
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i.e., Discri1 = −h−3
1 N1(ψ

′
1(t1)) and Discrij = h−4

j Nj(ψ̂
′
j(t1)) (j = 2, 3, 4).

7.1. N1(Z)

In this subsection, we consider N1(Z) for the set C̃1. As we saw in Section 5.1, an
arbitrary critical point t = (t1, t2, t3) ∈ C̃1 is characterized as a point on the interpolation
curve ω : C→ X̃ defined by ω(t1) = (t1, ω2(t1), ω3(t1)) ∈ X̃, where

t2 = ω2(t1) := t1, t3 = ω3(t1) := t1,

and t = ω(t1) ∈ X̃ satisfies the equation g̃1(ω(t1)) = 0. Since g̃12 and g̃13 are expressed
as (73), g̃12 = g̃13 = 0 is automatically satisfied. The characteristic function ψ1 relative to
the parameter t1 is defined by

ψ1(t1) = g̃1(t1, t1, t1) = a0t3
1 + a2t2

1 + a3t1 + a3 = h1ψ1(t1),

where

h1 = a0 = 3(3r2 − ρ2
12), a2 = −3r2 + 9ρ2

14 − 5ρ2
12, a3 = −(5r2 + ρ2

14), a4 = −r2. (139)

Lemma 26. Let ĝ12 and ĝ13 be polynomials in t given by (73). Then we have

Z0 ≡ ĝ12 ĝ13 mod Ann(C̃1), (140)

namely
N1(Z0) = N1(ĝ12)N1(ĝ13). (141)

Proof. Since g̃12 = (t2 − t1)ĝ12 and g̃13 = (t3 − t1)ĝ13, the point on the interpolation line
t1 = t2 = t3 satisfies

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣∣t2=t1
t3=t1

= det

 ĝ12 + (t2 − t1)
∂ĝ12
∂t2

(t2 − t1)
∂ĝ12
∂t3

(t3 − t1)
∂ĝ13
∂t2

ĝ13 + (t3 − t1)
∂ĝ13
∂t3

∣∣∣∣∣t2=t1
t3=t1

= ĝ12(t1, t1, t1)ĝ13(t1, t1, t1),

which implies (140).

By definition, the polynomial ĝ12(t1, t1, t1) coincides with ĝ13(t1, t1, t1), and they are
written as

ĝ12(t1, t1, t1) = ĝ13(t1, t1, t1) = ρ2
12t2

1 + (ρ2
12 − 3ρ2

14)t1 + ρ2
14.

Lemma 27.

N1(ĝ12(t1, t1, t1)) = N1(ĝ13(t1, t1, t1)) =
2∆0∆2

h2
1

=
2∆0∆2

9(3r2 − ρ2
12)

2
, (142)

where ∆2 denotes

∆2 := 4r4(ρ2
12 − 9ρ2

14)
2 + r2(ρ2

12 − 9ρ2
14)(ρ

4
12 − 2ρ2

12ρ2
14 + 9ρ4

14) + 4ρ4
12ρ4

14. (143)
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Proof. For an arbitrary quadratic polynomial c2t2
1 + c1t1 + c0 = c2(t1 − α)(t1 − β), there

exist unique polynomials P(t1) and q1t1 + q0, such that ψ̂1(t1) = (c2t2
1 + c1t1 + c0)P(t1) +

q1t1 + q0. Then the norm of c2t2
1 + c1t1 + c0 is calculated by reciprocity law as

N1(c2t2
1 + c1t1 + c0) = c3

2

3

∏
j=1

(ζ j − α)(ζ j − β) = c3
2ψ1(α)ψ1(β)

=
c3

2
h2

1
ψ̂1(α)ψ̂1(β) =

c3
2

h2
1
(q1α + q0)(q1β + q0) =

c3
2

h2
1
(q2

1αβ + q0q1(α + β) + q2
0)

=
c3

2
h2

1
(q2

1
c0

c2
− q0q1

c1

c2
+ q2

0) =
c2

2
h2

1
(q2

1c0 − q0q1c1 + q2
0c2). (144)

By Euclidean division, we have

ψ̂1(t1) = (c2t2
1 + c1t1 + c0)P(t1) + q1t1 + q0,

where, for setting ĝ12(t1, t1, t1) = c2t2
1 + c1t1 + c0 = ρ2

12t2
1 + (ρ2

12 − 3ρ2
14)t1 + ρ2

14, there exist

P(t1) = 3ρ−2
12 (3r2 − ρ2

12)t1 + ρ−4
12 (27ρ2

14r2 − 12ρ2
12r2 − 2ρ4

12),

q1 = ρ−4
12 (2ρ6

12 − 4ρ2
14ρ4

12 + 7ρ4
12r2 − 72ρ2

12ρ2
14r2 + 81ρ4

14r2),

q0 = ρ−4
12 (2ρ4

12ρ2
14 − ρ4

12r2 + 12ρ2
12ρ2

14r2 − 27ρ4
14r2).

Using (144), we obtain

N1(ĝ12(t1, t1, t1)) = c2
2(q

2
1c0 − q0q1c1 + q2

0c2)h−2
1 = 2∆0∆2h−2

1 ,

which coincides with (142).

Lemma 28. The explicit form of Discri1 is given by

Discri1 = −
(ρ2

12 − 3ρ2
14)∆3

h4
1

, (145)

where ∆3 denotes

∆3 := 3072r6 − 64(13ρ2
12 − 3ρ2

14)r
4 + 4(125ρ4

12 − 430ρ2
12ρ2

14 + 309ρ4
14)r

2

− (25ρ2
12 − 27ρ2

14)ρ
4
14. (146)

The explicit form of N1(ψ
′
1) is also expressed as

N1(ψ
′
1) = −h3

1 Discri1 =
(ρ2

12 − 3ρ2
14)∆3

h1
=

(ρ2
12 − 3ρ2

14)∆3

3(3r2 − ρ2
12)

. (147)

Proof. The resultant of ψ1 and ψ′1 gives the discriminant of ψ1(t1), i.e.,

R(ψ1, ψ′1) :=

∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3
a0 a1 a2 a3

3a0 2a1 a2
3a0 2a1 a2

3a0 2a1 a2

∣∣∣∣∣∣∣∣∣∣
= −a5

0 ∏
1≤j<k≤3

(ζ j − ζk)
2 = −h5

1 Discri1,

where a0, a1,a2,a3 are given in (139). From direct calculation of the above determinant,
we obtain

R(ψ1, ψ′1) = 3(3r2 − ρ2
12)(ρ

2
12 − 3ρ2

14)∆3 = (ρ2
12 − 3ρ2

14)h1∆3,

which implies (145). Using (138) we obtain (147) from (145).
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Due to (145) we immediately have the following:

Corollary 4. There exists no double point in C̃1 if and only if ∆3 6= 0.

We conclude the following from (136) and Lemmas 26–28.

Proposition 11.

N1(Z0) =
4∆2

0∆2
2

h4
1

=
4∆2

0∆2
2

34(3r2 − ρ2
12)

4
, (148)

N1(Z) = −
4∆2

0∆2
2Discri1
h1

=
4(ρ2

12 − 3ρ2
14)∆

2
0∆2

2∆3

h5
1

. (149)

Proof. Applying (142) to (141) we have (148). Using (148) and (147), (136) implies (149).

7.2. N2(Z)

As we saw in Section 5.2, an arbitrary critical point t = (t1, t2, t3) ∈ C̃2 is characterized
as a point on the interpolation curve ω : C→ X̃ defined by ω(t1) = (t1, ω2(t1), ω3(t1)) ∈ X̃,
where

t2 = ω2(t1) := t1, t3 = ω3(t1) :=
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

, (150)

and t = ω(t1) ∈ X̃ satisfies the equation g̃1(ω(t1)) = 0. Since g̃12 are expressed as (73),
g̃12 = 0 is automatically satisfied when t2 = t1. The relation t3 = ω3(t1) in (150) is
determined by solving the equation ĝ13(t1, t1, t3) = 0, where

ĝ13(t1, t1, t3) = ρ2
12t1t3 + ∆0t1 − ρ2

14(t1 + t3 − 1).

In this setting,
ĝ12(t1, t1, ω3(t1)) = ρ2

12t2
1 + ∆0t3 − ρ2

14(2t1 − 1).

From (75), ĝ12 is also expressed as

ĝ12(t1, t1, ω3(t1)) = ĝ12(t1, t1, ω3(t1))− ĝ13(t1, t1, ω3(t1)) = ρ2
12(t1 − 1)(t1 − t3).

The characteristic function ψ2 relative to t1 is defined by ψ2(t1) = g̃1(t1, t1, ω3(t1)), and
from Lemma 21 ψ2(t1) is expressed as

ψ2(t1) =
(t1 − 1)ψ̂2(t1)

(ρ2
12t1 − ρ2

14)
2

. (151)

Here, ψ̂2(t1) is a polynomial in t1 of degree 4 given by

ψ̂2(t1) = a0t4
1 + a2t3

1 + a3t2 + a3t1 + a4 = h2ψ2(t1),

where

h2 = a0 = ρ4
12(4r2 − ρ2

12), a1 = 2ρ4
12(2ρ2

14 − ρ2
12),

a2 = ρ2
12ρ2

14(−8r2 + ρ2
12 − 3ρ2

14), a3 = 2ρ2
12ρ4

14, a4 = ρ4
14(4r2 − ρ2

14).
(152)

Lemma 29.
Z0 ≡ ρ2

12(ρ
2
12t1 − ρ2

14)(1− t1)(t1 − t3)
2 mod Ann(C̃2), (153)

namely
N2(Z0) = ρ8

12N2(ρ
2
12t1 − ρ2

14)N2(1− t1){N2(t1 − t3)}2. (154)
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Proof. Since g̃12 = (t2 − t1)ĝ12 and g̃13 = (t3 − t1)ĝ13, the point on the interpolation curve
t2 = t1, t3 = ω3(t1) satisfies

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣∣t2=t1
t3=ω3(t1)

= det

 ĝ12 + (t2 − t1)
∂ĝ12
∂t2

(t2 − t1)
∂ĝ12
∂t3

(t3 − t1)
∂ĝ13
∂t2

ĝ13 + (t3 − t1)
∂ĝ13
∂t3

∣∣∣∣t2=t1
t3=ω3(t1)

= ĝ12(t1, t1, t3)
[
(t3 − t1)

∂ĝ13

∂t3

]
= (ρ2

12t1 − ρ2
14)ρ

2
12(1− t1)(t1 − t3)

2,

which implies (153).

Lemma 30.
N2(t1 − t3) = N2(t2 − t3) =

∆2

r2h2
=

∆2

r2ρ4
12(4r2 − ρ2

12)
, (155)

where ∆2 is given by (143).

Proof. Since t1 − t3 on the curve ω is written as

t1 − t3 = t1 −ω3(t1) = t1 −
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

=
ĝ12(t1, t1, t1)

ρ2
12t1 − ρ2

14
,

where ĝ12(t1, t1, t1) = ρ2
12t2

1 + (ρ2
12 − 3ρ2

14)t1 + ρ2
14, we have

N2(t1 − t3) =
N2(ĝ12(t1, t1, t1))

N2(ρ
2
12t1 − ρ2

14)
. (156)

By Euclidean division, we have

ψ̂2(t1) = (c2t2
1 + c1t1 + c0)P(t1) + q1t1 + q0,

where, for setting ĝ12(t1, t1, t1) = c2t2
1 + c1t1 + c0 = ρ2

12t2
1 + (ρ2

12 − 3ρ2
14)t1 + ρ2

14, there exist

P(t1) = ρ2
12(4r2 − ρ2

12)t
2
1 + (12ρ2

14r2 − 4ρ2
12r2 + ρ2

12ρ2
14 − ρ4

12)t1

+ ρ−2
12 (36ρ4

14r2 − 36ρ2
12ρ2

14r2 + 4ρ4
12r2 − 2ρ4

12ρ2
14 − ρ6

12),

q1 = −ρ−2
12 ∆0(108ρ4

14r2 − 408ρ2
12ρ2

12r2 + 4ρ4
12r2 − 5ρ2

12ρ2
14 + ρ2

12),

q0 = ρ−2
12 ∆0ρ2

14(36ρ2
14r2 − 4ρ2

12r2 + ρ2
12ρ2

14 − ρ4
12).

Using (92), we obtain

N2(ĝ12(t1, t1, t1)) = c3
2(q

2
1c0 − q0q1c1 + q2

0c2)h−2
2 = 4ρ4

12ρ4
14∆2

0∆2h−2
2 .

Since N2(ρ
2
12t1 − ρ2

14) = 4r2ρ4
12ρ4

14∆2
0h−1

2 is presented in Proposition 5, using (156), we
therefore obtain N2(t1 − t3) = ∆2r−2h−1

2 , which coincides with (155).

Corollary 5.

N2(t1 − t3) =
9(3r2 − ρ2

12)
2

2r2ρ4
12∆0(4r2 − ρ2

12)
N1(ĝ12).

Proof. See (142) in Lemma 27.

Proposition 12. ∆2 = 0 if and only if C̃j ∩ C̃k 6= ∅ (1 ≤ j < k ≤ 4).
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Proof. By definition, the curve ω(t1) = (t1, t1, ω3(t1)) ∈ X̃ defined by (150) cross the line
t1 = t2 = t3, when ω3(t1) = t1, i.e., the parameter t1 satisfies

ĝ13(t1, t1, t1) = ρ2
12t2

1 + (ρ2
12 − 3ρ2

14)t1 + ρ2
14 = 0, (157)

which is equivalent to ĝ12(t1, t1, t1) = 0, since ĝ12(t1, t1, t1) = ĝ13(t1, t1, t1). This means
that C̃2 ∩ C̃1 6= ∅ if and only if there exists a solution t1 = ζ of the equation ψ̂2(t1) = 0
satisfying (157), also means that C̃2 ∩ C̃1 6= ∅ if and only if there exists a solution t1 = ζ
of ψ1(t1) = 0 satisfying (157). Hence, by definition, N2(t1 − t3) = 0 holds if and only if
there exists a solution t1 = ζ of the equation ψ̂2(t1) = 0, such that ζ −ω3(ζ) = 0, which is
equivalent to C̃1 ∩ C̃2 6= ∅. The evaluation (155) in Lemma 30 implies the following:

∆2 = 0 ⇐⇒ N2(t1 − t3) = 0 ⇐⇒ C̃1 ∩ C̃2 6= ∅. (158)

Due to the symmetry of C̃2, C̃3 and C̃4,

C̃1 ∩ C̃2 6= ∅, C̃1 ∩ C̃3 6= ∅ and C̃1 ∩ C̃4 6= ∅

occur at the same time. Hence, we see that ∆2 = 0 if and only if C̃1 ∩ C̃j 6= ∅ (j = 2, 3, 4).
Moreover, since N2(t2 − t3) = N2(t1 − t3), (158) implies that ∆2 = 0 if and only if N2(t2 −
t3) = 0, which means C̃2 ∩ C̃3 6= ∅. Due to the symmetry of C̃2, C̃3, and C̃4,

C̃2 ∩ C̃3 6= ∅, C̃2 ∩ C̃4 6= ∅ and C̃3 ∩ C̃4 6= ∅

occur at the same time. As a result, we therefore obtain Proposition 12.

Lemma 31. The explicit form of Discri2 is given by

Discri2 =
16ρ12

12ρ8
14∆2

0∆4

h6
2

=
16ρ8

14∆2
0∆4

ρ12
12(4r2 − ρ2

12)
6

, (159)

where ∆4 is the polynomial in r2, ρ2
12, ρ2

14 of degree 12 given by

∆4 := 16384ρ2
14(4ρ2

14 − ρ2
12)r

8 + 2048ρ2
14(3ρ4

12 − 12ρ2
12ρ2

14 + ρ4
14)r

6

− 48(9ρ8
12 − 56ρ6

12ρ2
14 + 122ρ4

12ρ4
14 − 177ρ2

12ρ6
14 + 69ρ8

14)r
4

+ 4∆0ρ2
14(35ρ6

12 − 141ρ4
12ρ2

14 + 9ρ2
12ρ4

14 + 81ρ6
14)r

2

+ ρ2
12ρ4

14(9ρ6
12 − 49ρ4

12ρ2
14 + 63ρ2

12ρ4
14 − 27ρ6

14). (160)

The explicit form of N2(ψ̂
′
2) is also expressed as

N2(ψ̂
′
2) = h4

2 Discri2 =
16ρ12

12ρ8
14∆2

0∆4

h2
2

=
16ρ4

12ρ8
14∆2

0∆4

(4r2 − ρ2
12)

2
. (161)

Proof. The resultant of ψ̂2 and ψ̂′2 gives the discriminant of ψ̂2(t1), i.e.,

R(ψ̂2, ψ̂′2) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4
a0 a1 a2 a3 a4

a0 a1 a2 a3 a4
4a0 3a1 2a2 a3

4a0 3a1 2a2 a3
4a0 3a1 2a2 a3

4a0 3a1 2a2 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a7

0 ∏
j<k

(ζ j − ζk)
2 = h7

2 Discri2,
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where a0, a1, a2, a3, a4 are given in (152). From direct calculation of the above determinant,
we obtain

R(ψ̂2, ψ̂′2) = 16ρ16
12ρ8

14(4r2 − ρ2
12)∆

2
0∆4 = 16ρ12

12ρ8
14h2∆2

0∆4,

which implies (159). Using (138) we therefore obtain (161) from (159).

Due to (159) we immediately have the following:

Corollary 6. There exists no double point in C̃2 if and only if ∆4 6= 0.

We conclude the following from Lemmas 30 and 31:

Proposition 13.

N2(Z0) =
4ρ4

14∆4
0∆1∆2

2

r2ρ4
12(4r2 − ρ2

12)
4

, (162)

N2(Z) =
ρ4

12h2

4r6ρ4
14

∆2
0∆2

1∆2
2 Discri2 = 4

ρ16
12ρ4

14

r6h5
2

∆4
0∆2

1∆2
2∆4. (163)

Proof. Applying (88), (89) in Proposition 5 and (155) in Lemma 30 to (154) we have (162).
Differentiating both sides of (151) with respect to t1 we have

ψ′2(t1) ≡
(t1 − 1)ψ̂′2(t1)

(ρ2
12t1 − ρ2

14)
2

mod Ann(C̃2),

so that

N2(ψ
′
2) =

N2(t1 − 1)
{N2(ρ

2
12t1 − ρ2

14)}2
N2(ψ̂

′
2). (164)

Using (164) and (154) in Lemma 29, (136) implies

N2(Z) = N2(Z0)N2(ψ
′
2) =

ρ8
12{N2(1− t1)N2(t1 − t3)}2

N2(ρ
2
12t1 − ρ2

14)
N2(ψ̂

′
2). (165)

According to Proposition 5, Lemma 30 and (161) in Lemma 31, the right-hand side of (165)
coincides with (163).

7.3. N3(Z)

An arbitrary critical point t = (t1, t2, t3) ∈ C̃3 is characterized as a point on the
interpolation curve ω : C→ X̃ defined by ω(t1) = (t1, ω2(t1), ω3(t1)) ∈ X̃, where

t2 = ω2(t1) :=
(2ρ2

14 − ρ2
12)t1 − ρ2

14
ρ2

12t1 − ρ2
14

, t3 = ω3(t1) := t1,

and t = ω(t1) ∈ X̃ satisfies the equation g̃1(ω(t1)) = 0. This situation is represented by
the transposition σ23 of the coordinates t2 and t3 from that of C̃2. Thus, the characteristic
function of C̃3 is the same as C̃2, i.e., ψ3(t1) = g̃1(t1, ω2(t1), ω3(t1)) = ψ2(t1). Hence, our
conclusion is:

Proposition 14. N3(Z0) = N2(Z0), N3(Z) = N2(Z). The explicit forms are given in
Proposition 13.
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7.4. N4(Z)

As we saw in Section 5.4, an arbitrary critical point t = (t1, t2, t3) ∈ C̃4 is characterized
as a point on the interpolation curve ω : C→ X̃ defined by ω(t1) = (t1, ω2(t1), ω3(t1)) ∈
X̃, where

t2 = ω2(t1) :=
V(t1)

U(t1)
, t3 = ω3(t1) :=

V(t1)

U(t1)
, (166)

U(t1) := ρ2
12t1 + ρ2

12 − 2ρ2
14, V(t1) := ρ2

14(t1 − 1),

and t = ω(t1) ∈ X̃ satisfies the equation g̃1(ω(t1)) = 0. The relation t2 = t3 = V(t1)/U(t1)
in (166) is determined by solving the equation ĝ12(t1, t2, t2) = 0, where

ĝ12(t1, t2, t2) = ĝ13(t1, t2, t2) = ρ2
12t1t2 + ∆0t2 − ρ2

14(t1 + t2 − 1) = t2U(t1)−V(t1).

The characteristic function ψ4 relative to t1 is defined by ψ4(t1) = g̃1(t1, ω2(t1), ω3(t1)),
and from Lemma 22 ψ4(t1) is expressed as

ψ4(t1) =
(t1 − 1)ψ̂4(t1)

U2 . (167)

Here ψ̂4(t1) is a polynomial in t1 of degree 4 given by

ψ̂4(t1) = a0t4
1 + a2t3

1 + a3t2 + a3t1 + a4 = h4ψ4(t1),

where

h4 = a0 = ρ4
12r2, a1 = ρ4

12(ρ
2
14 + 4r2),

a2 = ρ2
12(6ρ2

12r2 − 8ρ2
14r2 − 2ρ2

12ρ2
14 − 3ρ4

14),

a3 = ρ2
12(4ρ2

12r2 − 16ρ2
14r2 − 3ρ2

12ρ2
14 + 10ρ4

14),

a4 = (ρ2
12 − 4ρ2

14)(ρ
4
14 + ρ2

12r2 − 4ρ2
14r2).

(168)

Lemma 32.

Z0 ≡ ρ2
12(t1 − 1)(t1 − t2)

2U(t1) ≡
ρ2

12
ρ2

14
(t1 − t2)

2U(t1)V(t1) mod Ann(C̃4), (169)

namely

N4(Z0) = ρ8
12N4(1− t1){N4(t1 − t2)}2N4(U) =

ρ8
12

ρ8
14
{N4(t1 − t2)}2N4(U)N4(V). (170)

Proof. Since g̃12 = (t2 − t1)ĝ12 and g̃13 = g̃12, the point on the interpolation curve
t2 = t3 = V(t1)/U(t1) satisfies

∂(g̃12, g̃13)

∂(t2, t3)

∣∣∣∣t2=V/U
t3=V/U

= det

 ĝ12 + (t2 − t1)
∂ĝ12
∂t2

(t2 − t1)
∂ĝ12
∂t3

(t3 − t1)
∂ĝ13
∂t2

ĝ13 + (t3 − t1)
∂ĝ13
∂t3

∣∣∣∣t2=V/U
t3=V/U

=
{
(t2 − t1)

∂ĝ12

∂t2

}2
−
{
(t2 − t1)

∂ĝ13

∂t2

}2
= (t2 − t1)

2{(ρ2
12t1 − ρ2

14)
2 − ∆2

0}

= (t2 − t1)
2ρ2

12(t1 − 1)(ρ2
12t1 + ρ2

12 − 2ρ2
14),

which implies (169).

From the symmetry between C̃4 and C̃2, we immediately have N4(t1 − t2) = N2(t3 −
t1), which has already been evaluated as (155) in Lemma 30. Hence, we have the following:
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Lemma 33.
N4(t1 − t2) = N4(t1 − t3) =

∆2

r2ρ4
12(4r2 − ρ2

12)
. (171)

Lemma 34. The explicit form of Discri4 is given by

Discri4 =
16ρ12

12ρ8
14∆2

0∆4

h6
4

=
16ρ8

14∆2
0∆4

r12ρ12
12

, (172)

where ∆4 is the polynomial in r2, ρ2
12, ρ2

14 of degree 12 given by (160). N4(ψ̂
′
4) is also given as

N4(ψ̂
′
4) = h4

4 Discri4 =
16ρ12

12ρ8
14∆2

0∆4

h2
4

=
16ρ4

12ρ8
14∆2

0∆4

r4 . (173)

Proof. The resultant of ψ̂4 and ψ̂′4 gives the discriminant of ψ̂4(t1), i.e.,

R(ψ̂4, ψ̂′4) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4
a0 a1 a2 a3 a4

a0 a1 a2 a3 a4
4a0 3a1 2a2 a3

4a0 3a1 2a2 a3
4a0 3a1 2a2 a3

4a0 3a1 2a2 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a7

0 ∏
j<k

(ζ j − ζk)
2 = h7

4 Discri4,

where a0, a1, a2, a3, a4 are given in (168). From direct calculation of the above determinant,
we obtain

R(ψ̂4, ψ̂′4) = 16ρ16
12ρ8

14r2∆2
0∆4 = 16ρ12

12ρ8
14h4∆2

0∆4,

which implies (172). Using (138) we therefore obtain (173) from (172).

Due to (172) we immediately have the following:

Corollary 7. There exists no double point in C̃4 if and only if ∆4 6= 0.

We conclude the following from Lemmas 33 and 34:

Proposition 15.

N4(Z0) = 16
ρ4

14(4r2 − ρ2
14)∆

4
0∆2

2

r8ρ4
12(4r2 − ρ2

12)
, (174)

N4(Z) = 4
ρ4

12(4r2 − ρ2
14)

2

ρ4
14(4r2 − ρ2

12)
3

∆2
0∆2

2 h4Discri4 = 64
ρ16

12ρ4
14(4r2 − ρ2

14)
2

(4r2 − ρ2
12)

3

∆4
0∆2

2∆4

h5
4

. (175)

Proof. Applying (102) and (171) to (170) in Lemma 32 we have (174). Differentiating both
sides of (167), with respect to t1, we have

ψ′4(t1) ≡
(t1 − 1)ψ̂′4(t1)

U2 mod Ann(C̃4),

so that

N4(ψ
′
4) =

N4(t1 − 1)
{N4(U)}2 N4(ψ̂

′
4). (176)
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Using (136), (176) and (170) in Lemma 32, (173) in Lemma 34 and Proposition 5, we obtain

N4(Z) = N4(Z0)N4(ψ
′
4) =

ρ8
12N4(V)

ρ8
14N4(U)

N4(1− t1){N4(t1 − t2)}2N4(ψ̂
′
4)

=
ρ8

12
ρ8

14
N4(t2)N4(1− t1){N4(t1 − t2)}2N4(ψ̂

′
4)

=
ρ8

12
ρ8

14
N2(t1)N2(1− t3){N2(t1 − t3)}2 h4

4 Discri4

=
ρ8

12
ρ8

14
×

ρ4
14(4r2 − ρ2

14)

ρ4
12(4r2 − ρ2

12)
×

4∆2
0(4r2 − ρ2

14)

r2ρ4
12

×
[ ∆2

r2ρ4
12(4r2 − ρ2

12)

]2
h4

4 Discri4,

which coincides with (175).

7.5. Conclusions of This Section

In this subsection, we give a proof of Conjecture 1 under the conditions (H0) and
(H1). And we try to prove Conjecture 1 without the constraint (H1) in Appendix A.

Theorem 4. Under the conditions (H0) and (H1) the norm of the Hessian of F relative to C is
expressed as

N (Hess(F)) = 2129 ∆8
2∆3∆3

4
r24ρ24

12ρ6
14(ρ

2
12 − 4r2)12(ρ2

14 − 4r2)12(3r2 − ρ2
12)

5

× 1
(ρ4

14 + ρ2
12r2 − 4ρ2

14r2)15(3ρ4
14 + 4ρ2

12r2 − 12ρ2
14r2)6

,
(177)

where ∆2, ∆3 and ∆4 are the polynomials in r2, ρ2
12, ρ2

14 given by (143), (146), and (160), respec-
tively. The right-hand side is written in terms of the Cayley–Menger determinants as

2161 ρ74
12ρ18

14
{B(0 ? 1)}12

∆8
2∆3∆3

4
{B(0 ? 12)B(0 ? 14)}12{B(0 ? 123)}5{B(0 ? 124)}15{B(0 ? 1234)}6 .

Proof. From Propositions 11, 13, 14, and 15, we obtain

N (Z) =
4

∏
j=1
Nj(Z) =

212

35
ρ12

14(ρ
2
12 − 3ρ2

14)(4r2 − ρ2
14)

2∆14
0 ∆4

1∆8
2∆3∆3

4
r22ρ12

12(3r2 − ρ2
12)

5(4r2 − ρ2
12)

13
. (178)

Since we already had

N (Hess(F)) = 245 −N (Z)
N ( f1)N ( f2)N ( f3){N ( f4)}3N (t∞){N (1− t1)}2 (179)

by Proposition 3, using (178) and the results for N ( f j), N (t∞) and N (1− t1) stated in
Theorem 2 or Corollary 2, we therefore see that (179) coincides with (177).

Remark 14. While Theorem 4 was proved under ∆0 6= 0 in the above proof, the formula (177) is
also valid for ∆0 = 0. When ∆0 = 0, i.e., ρ2

12 = ρ2
14 the invariants ∆2, ∆3 and ∆4 degenerate to

∆2 = 4ρ4(ρ2 − 8r2)2, ∆3 = 2(ρ2 − 8r2)2(ρ2 + 24r2) and ∆4 = −4ρ4(ρ2 − 8r2)3(ρ2 + 24r2),

respectively, so that we can confirm that the right-hand side of (177) degenerates to (135) in
Proposition 10, which is the result proved independently under ∆0 = 0.

Remark 15. The factors ∆0 and ∆1 do not appear in the expression (177) of N (Hess(F)), while
N (Z) in (178) is divisible by ∆14

0 ∆4
1. Since N (1− t1) given in Theorem 2 is also divisible by



Symmetry 2022, 14, 374 50 of 59

∆7
0∆2

1, the factor ∆14
0 ∆4

1 in the numerator and that in denominator of (179) are cancelled. For
the right-hand side of the formula (177) as a meromorphic function of r2, we see that the point
r2 = (3ρ2

12 + ρ2
14)/4 for ∆1 = 0 is a removable singularity.

Corollary 8. Under the conditions (H0) and (H1)

N (Hess(F)) 6= 0

if and only if every critical point in C is different from each other.

Proof. By (177) in Theorem 4 we haveN (Hess(F)) 6= 0 if and only if ∆8
2∆3∆3

4 6= 0. Accord-
ing to Proposition 12, Corollaries 4, 6 and 7, we see that ∆2∆3∆4 6= 0 if and only if every
critical point in C̃ = t4

j=1C̃j is different from each other.

8. Conclusions

We discussed the norm of the Hessian of the level function F at critical points C
involved in asymptotic behaviors of hypergeometric integrals associated with a symmetric
arrangement of three-dimensional spheres. We also provided two conjectures (Conjectures 1
and 2) relevant to this topic. We provide a proof in a special symmetric case where
4O1O2O3O4 is a pyramid with the axis of symmetry, whose base triangle 4O1O2O3 is
regular and all spheres have the same radius.
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Appendix A. Further Reduction and an Associated Characteristic Function

As we saw in Section 7.5 (Theorem 4), we calculated N (Hess(F)) explicitly under the
conditions (H0) and (H1), and we consequently confirmed that Conjecture 1 holds true
under the conditions (H0) and (H1). However, we want to prove Conjecture 1 without the
constraint (H1), if possible. For that purpose, we show a way to compute the part

∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)

in the expression (62) of Hess(F) under a more general setting.

Appendix A.1. Step 1

We fix the admissible parameter t1. Then g̃1 given in Proposition 2 is polynomial in
t2, t3 whose coefficients are explicitly written using the parameter t1 as follows:

g̃1 = β1,22t2
2 + 2β1,23t2t3 + β1,33t2

3 + 2β1,2t2 + 2β1,3t3 + β1,∅, (A1)
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where the coefficients β1,∗ are polynomials in t1 of, at most, second degree:

β1,22 = (r2
1 − ρ2

12)t1 + ρ2
24 − r2

4,

β1,33 = (r2
1 − ρ2

13)t1 + ρ2
34 − r2

4,

2β1,23 =
{

2r2
1 − B

(
0 2 1
0 3 1

)}
t1 − 2r2

4 + B
(

0 2 4
0 3 4

)
,

2β1,2 = 2
{

r2
1t2

1 + B
(

0 ? 2
0 4 1

)
t1 − r2

4

}
,

2β1,3 = 2
{

r2
1t2

1 + B
(

0 ? 3
0 4 1

)
t1 − r2

4

}
,

β1,∅ = r2
1t3

1 + (ρ2
14 − r2

4 + 2r2
1)t

2
1 + (−ρ2

14 + r2
1 − 2r2

4)t1 − r2
4.

Moreover, g̃12 and g̃13 given in Lemma 10 are also polynomials in t2, t3, whose coefficients
are explicitly written using the parameter t1 as follows:

g̃1j = β1j,jjt2
j + 2β1j,jktjtk + β1j,kkt2

k + 2β1j,jtj + 2β1j,ktk + β1j,∅ (j = 2, 3), (A2)

where {j, k} is a permutation of {2, 3} and the coefficients β1j,∗ are polynomials in t1 of at
most second degree:

β1j,jj = t1B
(

0 ? j
0 1 j

)
− B
(

0 ? j
0 4 j

)
, β1j,kk = 0,

2β1j,jk = t1B
(

0 k ?
0 j 1

)
+ B
(

0 ? k
0 j 4

)
,

2β1j,j = −t2
1B
(

0 ? 1
0 j 1

)
+ B
(

0 ? 4
0 j 4

)
,

2β1j,k = −t1B
(

0 ? k
0 1 4

)
,

β1j,∅ = t2
1B
(

0 ? 1
0 4 1

)
− t1B

(
0 ? 4
0 1 4

)
(j = 2, 3).

Appendix A.2. Step 2

We modify g̃1 as

g̃′1 := g̃1 −
β1,22

β12,22
g̃12 −

β1,33

β13,33
g̃13,

which can be represented as

g̃′1 = 2β′1,23t2t3 + 2β′1,2t2 + 2β′1,3t3 + β′1,∅,

where

2β′1,23 = 2β1,23 −
β1,22

β12,22
2β12,23 −

β1,33

β13,33
2β13,23,

2β′1,2 = 2β1,2 −
β1,22

β12,22
2β12,2 −

β1,33

β13,33
2β13,2,

2β′1,3 = 2β1,3 −
β1,33

β13,33
2β13,3 −

β1,22

β12,22
2β12,3,

β′1,∅ = β1,∅ −
β1,22

β12,22
β12,∅ −

β1,33

β13,33
β13,∅.
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We also modify g̃1j as

g̃′12 := g̃12 −
β12,23

β′1,23
g̃′1 = β′12,22t2

2 + 2β′12,2t2 + 2β′12,3t3 + β′12,∅,

g̃′13 := g̃13 −
β13,23

β′1,23
g̃′1 = β′13,33t2

3 + 2β′13,2t2 + 2β′13,3t3 + β′13,∅,

where

β′12,22 = β12,22, β′13,33 = β13,33,

2β′12,2 = − β12,23

β′1,23
2β′1,2 + 2β12,2, 2β′13,3 = − β13,23

β′1,23
2β′1,3 + 2β13,3,

2β′12,3 = − β12,23

β′1,23
2β′1,3 + 2β12,3, 2β′13,2 = − β13,23

β′1,23
2β′1,2 + 2β13,2,

β′12,∅ = − β12,23

β′1,23
β′1,∅ + β12,∅, β′13,∅ = − β13,23

β′1,23
β′1,∅ + β13,∅.

Remark that 2β′1j,jk = 0 for j = 2, 3 and j 6= k. According to Lemma 11, we may conclude

Lemma A1. Suppose that β12,22β13,33 6= 0. Then under the condition (H0) the system (57) holds
if and only if

g̃′1 = g̃′12 = g̃′13 = 0. (A3)

In this case, the identity

dg̃′1 ∧ dg̃′12 ∧ dg̃′13 ≡ dg̃1 ∧ dg̃12 ∧ dg̃13 mod Ann(C̃)

holds, i.e.,
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
≡

∂(g̃′1, g̃′12, g̃′13)

∂(t1, t2, t3)
mod Ann(C̃).

Appendix A.3. Step 3

In this subsection, we want to express

∂(g̃′1, g̃′12, g̃′13)

∂(t1, t2, t3)

explicitly in terms of the resultant of g̃′1, g̃′12 and g̃′13. We assume that the monomials in
t2, t3, of at most fourth degree, are arranged in the following order:

t4
2 � t3

2t3 � t2
2t2

3 � t2t3
3 � t4

3 � t3
2 � t3

3 � t2
2t3 � t2t2

3 � t2
2 � t2

3 � t2t3 � t2 � t3 � 1. (A4)

Three fundamental linear relations among g̃′1, g̃′12, g̃′13 over the coefficients of quadratic
polynomials are given as follows:

(β′12,22t2
2 + 2β′12,2t2 + 2β′12,3t3 + β′12,∅)g̃′13 − (β′13,33t2

3 + 2β′13,2t2 + 2β′13,3t3 + β′13,∅)g̃′12 = 0,

(β′12,22t2
2 + 2β′12,2t2 + 2β′12,3t3 + β′12,∅)g̃′1 − (2β′1,23t2t3 + 2β′1,2t2 + 2β′1,3t3 + β′1,∅)g̃′12 = 0,

(β′13,33t2
3 + 2β′13,2t2 + 2β′13,3t3 + β′13,∅)g̃′1 − (2β′1,23t2t3 + 2β′1,2t2 + 2β′1,3t3 + β′1,∅)g̃′13 = 0.

As a result t2
2 g̃′13 is a linear combination of

t2
3 g̃′12, t2 g̃′12, t3 g̃′12, g̃′12, t2 g̃′13, t3 g̃′13, g̃′13,
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and t2
2 g̃′1 is a linear combination of

t2 g̃′1, t3 g̃′1, g̃′1, t2t3 g̃′12, t2 g̃′12, t3 g̃′12, g̃′12.

Moreover, t2
3 g̃′1 is also a linear combination of

t2 g̃′1, t3 g̃′1, g̃′1, t2t3 g̃′13, t2 g̃′13, t3 g̃′13, g̃′13.

One can see:

Lemma A2. The system of (ordered) 15 polynomials (denoted by X )

x1 = t2
2 g̃′12 � x2 = t2t3 g̃′12 � x3 = t2

3 g̃′12 � x4 = t2t3 g̃′13 � x5 = t2
3 g̃′13

� x6 = t2 g̃′12 � x7 = t3 g̃′13 � x8 = t3 g̃′12 � x9 = t2 g̃′13,� x10 = g̃′12

� x11 = g̃′13 � x12 = g̃′1 � x13 = t2 g̃′1 � x14 = t3 g̃′1 � x15 = t2t3 g̃′1

are linearly independent and span the linear space of polynomials at most fourth degree.

Definition A1. The Macaulay’s diagram X 15× 15 associated with the ordered basis xj with
respect to the monomials in the ordering (A4) is defined by the following equation:

X : T(x1, x2, . . . , x15) = X T(t4
2, t3

2t3, . . . , t2, t3, 1),

where X is the 15× 15 matrix given by

X =



β′12,22 2β′12,2 2β′12,3 β12,∅
β′12,22 2β′12,2 2β′12,3 β′12,∅

β′12,22 2β′12,3 2β′12,2 β′12,∅
β′13,33 2β′13,2 2β′13,3 β′13,∅

β′13,33 2β′13,3 2β′13,2 β′13,∅
β′12,22 2β′12,2 2β′12,3 β′12,∅

β′13,33 2β′13,3 2β′13,2 β′13,∅
β′12,22 2β′12,3 2β′12,2 β′12,∅

β′13,33 2β′13,2 2β′13,3 β′13,∅
β′12,22 2β′12,2 2β′12,3 β′12,∅

β′13,33 2β′13,2 2β′13,3 β′13,∅
2β′1,23 2β′1,2 2β′1,3 β′1,∅

2β′1,23 2β′1,2 2β′1,3 β′1,∅
2β′1,23 2β′1,3 2β′1,2 β′1,∅

2β′1,23 2β′1,2 2β′1,3 β′1,∅



.

The resultant of g̃′12, g̃′13, g̃′1, which we denote by R(g̃′12, g̃′13, g̃′1) is related to detX
as follows:

detX = (β′12,22)
2(β′13,33) R(g̃′12, g̃′13, g̃′1), (A5)

where

R(g̃′12, g̃′13, g̃′1) = (β′12,22β′13,33)
3(β′1.∅)

2{β′12,22β′13,33(β′1,∅)
2 − 4(β′1,23)

2β′12,∅β′13,∅}+ · · · .
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See [15] and W. Gröbner : Moderne Algebraische Geometrie [16] (pp. 70–71). Using (A1)
and (A2), we first define

g̃′′12 := t2 g̃′1 −
2β′1,23

β′12,22
t3 g̃′12 = ξ11t2

2 + ξ12t2
3 + ξ13t2t3 + ξ14t2 + ξ15t3 + ξ16,

g̃′′13 := t3 g̃′1 −
2β′1,23

β′13,33
t2 g̃′13 = ξ21t2

2 + ξ22t2
3 + ξ23t2t3 + ξ24t2 + ξ25t3 + ξ26,

where

ξ11 = 2β′1,2, ξ12 = −
4β′12,3β′1,23

β′12,22
, ξ13 = 2β′1,3 −

4β′12,2β′1,23

β′12,22
,

ξ14 = β′1,∅, ξ15 = −
2β′12,∅β′1,23

β′12,22
, ξ16 = 0,

ξ21 −
4β′13,2β′1,23

β′13,33
, ξ22 = 2β′1,3, ξ23 = 2β′1,2 −

4β′13,3β′1,23

β′13,33
,

ξ24 = β′1,∅, ξ25 = −
2β′13,∅β′1,23

β′13,33
, ξ26 = 0.

Then we have
T(g̃′′12, g̃′′13, g̃′1, g̃′12, g̃′13) = Ξ T(t2

2, t2
3, t2t3, t2, t3, 1),

where the 5× 6 matrix Ξ is given by

Ξ :=


ξ11 ξ12 ξ13 ξ14 ξ15 ξ16
ξ21 ξ22 ξ23 ξ24 ξ25 ξ26
0 0 ξ33 ξ34 ξ35 ξ36

ξ41 0 0 ξ44 ξ45 ξ46
0 ξ52 0 ξ54 ξ55 ξ56

. (A6)

Here, the entries ξij of the matrix Ξ can be expressed as

ξ33 = 2β′1,23, ξ34 = 2β′1,2, ξ35 = 2β′1,3, ξ36 = β′1,∅,

ξ41 = β′12,22, ξ44 = 2β′12,2, ξ45 = 2β′12,3, ξ46 = β′12,∅,

ξ52 = β′13,33, ξ54 = 2β′13,2, ξ55 = 2β′13,3, ξ56 = β′13,∅.

Define further

g̃′′′12 := g̃′′12 −
ξ13

ξ33
g̃′1 −

ξ11

ξ41
g̃′12 −

ξ12

ξ52
g̃′13 = ξ ′14t2 + ξ ′15t3 + ξ ′16, (A7)

g̃′′′13 := g̃′′13 −
ξ23

ξ33
g̃′1 −

ξ21

ξ41
g̃′12 −

ξ22

ξ52
g̃′13 = ξ ′24t2 + ξ ′25t3 + ξ ′26, (A8)

where ξ ′jk can be expressed more concretely

ξ ′14 = β′1,∅ − 2
β′1,2β′1,3

β′1,23
+ 8

β′1,23β′12,3β′13,2

β′12,22β′13,33
, (A9)

ξ ′15 = −
4β′1,2β′12,3 + 2β′1,23β′12,∅

β′12,22
+ 8

β′1,23β′12,3β′13,3

β′12,22β′13,33
− 2

β′1,3(β′1,3β′12,22 − 2β′1,23β′12,2)

β′1,23β′12,22
,

ξ ′16 = −
β′1,3β′1,∅

β′1,23
+ 2
−β′1,2β′12,∅ + β′1,∅β′12,2

β′12,22
+ 4

β′1,23β′12,3β′13,∅

β′12,22β′13,33
,
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and likewise ξ ′24 = σ23(ξ
′
15), ξ ′25 = σ23(ξ

′
14) = ξ ′14, ξ ′26 = σ23(ξ

′
16), where σ23 denotes the

transposition between the subscript {2, 3}. The polynomials g̃′′′12 and g̃′′′13 are linear in t2, t3.
Using the matrix Ξ′ := (ξ ′jk)1≤j≤2,1≤k≤3 we have

(
g̃′′′12
g̃′′′13

)
= Ξ′

 t2
t3
1

.

Lemma A3. Under the condition

(H2) : β′12,22 6= 0, β′13,33 6= 0, ξ ′14 6= 0,

the system (A3) are equivalent to
g̃′1 = g̃′′′12 = g̃′′′13 = 0. (A10)

Proof. It is obvious from (A7) and (A8) that (A3) implies (A10). Conversely suppose that
(A10) holds true. Then from (A7) and (A8) we have

0 =
(2β′1,23

β′12,22
t3 +

ξ11

ξ41

)
g̃′12 +

ξ12

ξ52
g̃′13, 0 =

ξ21

ξ41
g̃′12 +

(2β′1,23

β′13,33
t2 +

ξ22

ξ52

)
g̃′13.

Since t2, t3 satisfies g̃′1 = 0, the determinant∣∣∣∣∣∣∣
2β′1,23
β′12,22

t3 +
ξ11
ξ41

ξ12
ξ52

ξ21
ξ41

2β′1,23
β′13,33

t2 +
ξ22
ξ52

∣∣∣∣∣∣∣ ≡ −
2β′1,23ξ ′14

β′12,22β′13,33
(A11)

does not vanish by hypothesis. Hence, we obtain g̃′12 = g̃′13 = 0.

One can also express t3 g̃′′′12 and t3 g̃′′′13 as linear combination of the basis X :

Lemma A4.

t3 g̃′′′12 = t3(ξ
′
14t2 + ξ ′15t3 + ξ ′16)

= t2t3 g̃′1 −
2β′1,23

β′12,22
t2
3 g̃′12 −

ξ13

ξ33
t3 g̃′1 −

ξ11

ξ41
t3 g̃′12 −

ξ12

ξ52
t3 g̃′13,

t3 g̃′′′13 = t3(ξ
′
24t2 + ξ ′25t3 + ξ ′26)

= t2
3 g̃′1 −

2β′1,23

β′13,33
t2t3 g̃′13 −

ξ23

ξ33
t3 g̃′1 −

ξ21

ξ41
t3 g̃′12 −

ξ22

ξ52
t3 g̃′13

= −
{2β′13,2

β′13,33
t2 +

(2β′13,3

β′13,33
+

ξ23

ξ33

)
t3 +

β′13,∅

β′13,33

}
g̃′1 −

ξ21

ξ41
t3 g̃′12

+
2β′1,2t2 + (2β′1,3 − ξ22)t3 + β′1,∅

β′13,33
g̃′13.

Definition A2. Macaulay’s diagram Y 5× 5 corresponding to g̃′1, g̃′′′12, g̃′′′13, t3 g̃′′′12, t3 g̃′′′13, is
defined by

g̃′1
g̃′′′12
g̃′′′13

t3 g̃′′′12
t3 g̃′′′13

 = Y


t2
3

t2t3
t2
t3
1

, where Y =


0 ξ33 ξ34 ξ35 ξ36
0 0 ξ ′14 ξ ′15 ξ ′16
0 0 ξ ′24 ξ ′25 ξ ′26

ξ ′15 ξ ′14 0 ξ ′16 0
ξ ′25 ξ ′24 0 ξ ′26 0

.
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Let U1 be function specified by

U1 :=
∂(g̃′′′12, g̃′′′13)

∂(t2, t3)
=

∣∣∣∣ ξ ′14 ξ ′15
ξ ′24 ξ ′25

∣∣∣∣ = Ξ
(

1 2 3 4 5
1 2 3 4 5

)
ξ33ξ41ξ52

,

where the minor determinants of order l for the matrix Ξ = (ξ jk) given in (A6) are defined as

Ξ
(

j1 j2 · · · jl
k1 k2 · · · kl

)
:= det

(
ξ jpkq

)
p,q=1,2,...,l

for 1 ≤ j1 < j2 < · · · < jl ≤ 5 and 1 ≤ k1 < k2 < · · · < kl ≤ 6.

Lemma A5. Suppose that U1 never vanishes at any point of C̃. Then the equations

g̃′′′12 = g̃′′′13 = 0

concerning t2, t3 can be uniquely solved by

(ω2, ω3) : t2 =
U2

U1
, t3 =

U3

U1
,

which defines a rational curve interpolating C̃, where

U2 =

∣∣∣∣ ξ ′15 ξ ′16
ξ ′25 ξ ′26

∣∣∣∣ = Ξ
(

1 2 3 4 5
1 2 3 5 6

)
ξ33ξ41ξ52

,

U3 = −
∣∣∣∣ ξ ′14 ξ ′16

ξ ′24 ξ ′26

∣∣∣∣ = −Ξ
(

1 2 3 4 5
1 2 3 4 6

)
ξ33ξ41ξ52

.

The associated characteristic function ψ = ψ(t1) given by

ψ := g̃′1
(
t1,

U2

U1
,

U3

U1

)
U2

1

equals
ψ = −det Y = ξ33U2U3 + ξ34U2U1 + ξ35U3U1 + ξ36U2

1 . (A12)

Furthermore Lemma A3 shows that if U1 is finite and U1 6= 0 at all points of C̃ then (A3)
holds if and only if ψ(t1) = 0.

Lemma A6. The system of (ordered) polynomials (denoted by Y) is obtained from X after exchang-
ing {x3, x11, x13, x14} for {y12, y13, y14, y15}

Y :=
(
X − {x3, x11, x13, x14}

)
∪ {y12, y13, y14, y15} =

{
y1, y2, . . . , y15

}
,

where
y12 := g̃′′′12, y13 := g̃′′′13, y14 := t3 g̃′′′12, y15 := t3 g̃′′′13
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and yj are connected with xk by the matrix T :

T :



yj = xj (1 ≤ j ≤ 2),
yj = xj+1 (3 ≤ j ≤ 9),
y10 = x15,
y11 = x12
y12 ≡ c2x11 + x13 mod (x8, x10, x12),
y13 ≡ c3x11 + x14 mod (x9, x10, x12),
y14 ≡ c1x3 + x15 mod (x7, x8, x14),
y15 ≡ c4x11 + c5x13 + c6x14 mod (x7, x8, x9, x12)

such that

c1 = −
2β′1,23

β′12,22
, c2 = − ξ12

ξ52
, c3 = − ξ22

ξ52
, c4 =

β′1,∅

β′13,33
, c5 = −

2β′13,2

β′13,33
, c6 =

2β′13,3

β′13,33
+

ξ23

ξ33
,

and

det T = c1(c4 − c2c5 − c3c6) = −
2β′1,23ξ ′14

β′12,22β′13,33
. (A13)

In other words,
Y = T X

and hence
detY = det T detX . (A14)

The ordered system
(
yj
)

1≤j≤15 are linearly independent and span the linear space of polynomials at
most fourth degree.

On the other hand

Lemma A7. Macaulay’s diagram associated with the system Y

Y := T(y1, y2, . . . , y15)

is given as follows (each sum is expressed in the ordering (A4)):

y1 = t2
2 g̃′12 = β′12.22t4

2 + · · · (lower order terms),

y2 = t2t3 g̃′12 = β′12,22t3
2t3 + · · · ,

y3 = t2t3 g̃′13 = β′13,33t2t3
3 + · · · ,

y4 = t2
3 g̃′13 = β′13,33t4

3 + · · · ,

y5 = t2 g̃′12 = β′12,22t3
2 + · · · ,

y6 = t3 g̃′13 = β′13,33t3
3 + · · · ,

y7 = t3 g̃′12 = β′12,22t2
2t3 + · · · ,

y8 = t2 g̃′13 = β′13,33t2t2
3 + · · · ,

y9 = g̃′12 = β′12,22t2
2 + · · · ,

y10 = t2t3 g̃′1 = 2β′1,23t2
2t2

3 + 2β′1,2t2
2t3 + 2β′1,3t2t2

3 + β′1,∅t2t3,

y11 = g̃′1 = 2β′1,23t2t3 + 2β′1,2t2 + 2β′1,3t3 + β′1,∅,

y12 = g̃′′′12 = ξ ′14t2 + ξ ′15t3 + ξ ′16,

y13 = g̃′′′13 = ξ ′24t2 + ξ ′25t3 + ξ ′26,

y14 = t3 g̃′′′12 = ξ ′15t2
3 + ξ ′14t2t3 + ξ ′16t3,

y15 = t3 g̃′′′13 = ξ ′25t2
3 + ξ ′24t2t3 + ξ ′26t3.
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so that
detY = 2β′1,23(β′12,22)

5(β′13,33)
4 det Y. (A15)

Hence, (A5), (A13), (A14) and (A15) imply the following identity:

Proposition A1. ψ is related with the resultant R(g̃′12, g̃′13, g̃′1) as follows:

ψ = −
ξ ′14

(β′12,22β′13,33)
4 R(g̃′12, g̃′13, g̃′1),

where ξ ′14 is given by (A9).

The determinant identity (A11) in the proof of Lemma A3 shows

Lemma A8.

dg̃′1 ∧ dg̃′′′12 ∧ dg̃′′′13 ≡ −
2β′1,23ξ ′14

β′12,22β′13,33
dg̃′1 ∧ dg̃′12 ∧ dg̃′13 mod Ann(C̃). (A16)

Proof. Indeed in view of (A7)–(A9)

The left-hand side of (A16)

≡ 1
β′12,22β′13,33

∣∣∣∣ 2β′1,23t3 + ξ11 ξ12
ξ21 2β′1,23t2 + ξ22

∣∣∣∣dg̃′1 ∧ dg̃′12 ∧ dg̃′13

≡ −
2β′1,23ξ ′14

β′12,22β′13,33
dg̃′1 ∧ dg̃′12 ∧ dg̃′13 mod Ann(C̃)

since g̃′1 ≡ 0.

We now assume that

(H3) : U1 =
∂(g̃′′′12, g̃′′′13)

∂(t2, t3)
does not have any zero or pole at C̃.

Then, we finally obtain the following fundamental equality:

Proposition A2. Suppose that the conditions (H0), (H2) and (H3) are satisfied. Then,

t = (t1,
U2

U1
,

U3

U1
) ∈ C̃ if and only if ψ(t1) = 0,

and
∂(g̃1, g̃12, g̃13)

∂(t1, t2, t3)
≡ −

β′12,22β′13,33

2β′1,23ξ ′14

∂(g̃′1, g̃′′′12, g̃′′′13)

∂(t1, t2, t3)
mod Ann(C̃), (A17)

where
∂(g̃′1, g̃′′′12, g̃′′′13)

∂(t1, t2, t3)
≡ 1

U1

dψ

dt1
mod Ann(C̃). (A18)

Proof. Equation (A17) is a direct consequence of Lemmas A1 and A8. On the other hand,
by a direct calculation, we have the identity

∂(g̃′1, g̃′′′12, g̃′′′13)

∂(t1, t2, t3)
≡ 1

U2
1

dψ

dt1
·

∂(g̃′′′12, g̃′′′13)

∂(t2, t3)
mod Ann(C̃).

This means (A18) in view of (A12).
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