
����������
�������

Citation: Yadav, Y.; Samal, A.; Saucan,

E. A Poset-Based Approach to

Curvature of Hypergraphs. Symmetry

2022, 14, 420. https://doi.org/

10.3390/sym14020420

Academic Editors: Serge

Lawrencenko and Alice Miller

Received: 1 January 2022

Accepted: 17 February 2022

Published: 20 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Poset-Based Approach to Curvature of Hypergraphs
Yasharth Yadav 1, Areejit Samal 1,2 and Emil Saucan 3,*

1 The Institute of Mathematical Sciences (IMSc), Chennai 600113, India; yasharthby@imsc.res.in (Y.Y.);
asamal@imsc.res.in (A.S.)

2 Homi Bhabha National Institute (HBNI), Mumbai 400094, India
3 Department of Applied Mathematics, ORT Braude College of Engineering, Karmiel 2161002, Israel
* Correspondence: semil@braude.ac.il

Abstract: In this contribution, we represent hypergraphs as partially ordered sets or posets, and
provide a geometric framework based on posets to compute the Forman–Ricci curvature of vertices
as well as hyperedges in hypergraphs. Specifically, we first provide a canonical method to construct
a two-dimensional simplicial complex associated with a hypergraph, such that the vertices of the
simplicial complex represent the vertices and hyperedges of the original hypergraph. We then
define the Forman–Ricci curvature of the vertices and the hyperedges as the scalar curvature of the
associated vertices in the simplicial complex. Remarkably, Forman–Ricci curvature has a simple
combinatorial expression and it can effectively capture the variation in symmetry or asymmetry over
a hypergraph. Finally, we perform an empirical study involving computation and analysis of the
Forman–Ricci curvature of hyperedges in several real-world hypergraphs. We find that Forman–Ricci
curvature shows a moderate to high absolute correlation with standard hypergraph measures such as
eigenvector centrality and cardinality. Our results suggest that the notion of Forman–Ricci curvature
extended to hypergraphs in this work can be used to gain novel insights on the organization of
higher-order interactions in real-world hypernetworks.

Keywords: hypergraph; poset; simplicial complex; Forman–Ricci curvature; higher-order interactions

1. Introduction

Networks provide a powerful framework for modelling interactions within systems
composed of a large number of components [1–3]. A network description of any real-world
system consists of a collection of vertices or nodes representing the constituents of the
system, and edges or links indicating the presence of interactions between pairs of vertices
or nodes. For certain systems, the underlying network could also provide additional
information in the form of directed edges, weighted edges or signed edges. However,
a fundamental limitation of all network representations is that they can only be used to
model pairwise interactions within a system, whereas many real-world complex systems
display higher-order interactions between three or more components [4,5]. One possible
framework to model such higher-order interactions within complex systems is through the
use of hypergraphs [6].

In the past two decades it has become trendy to establish discrete analogs of classical
theorems in geometry [7,8]. Especially in recent years there has been an increasing inter-
est in characterizing networks as discrete geometric objects, which has led to significant
developments in the field of network geometry [9]. Various complementary approaches
to network geometry are currently being explored, including hyperbolic network geom-
etry and emergent network geometry [10], and topological data analysis [11]. A notable
direction of research in network geometry involves the study of discrete Ricci curvatures
for complex networks [12]. Forman–Ricci curvature and Ollivier–Ricci curvature are the
two widely-used notions of discrete Ricci curvature that have also found several practical
applications, including detection of crashes and bubbles in financial markets [13] and
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community identification in complex networks [14]. While the geometric and topological
properties of complex networks are being extensively analyzed, studies involving the geo-
metric and topological characterisation of hypergraphs are rare. Nevertheless, there have
been a few attempts at extending the notion of discrete Ricci curvature to the framework of
hypergraphs [15,16].

The present work is dedicated to the proposition that hypergraphs can be naturally
construed as partially ordered sets or posets, which in turn, have an innate interpretation
as simplicial complexes. Posets exhibit a strict partial order relation, which is a homoge-
neous, transitive and asymmetric relation. However, it is important to note that the Hasse
diagrams representing posets can be quite symmetrical, even though they are directed
graphs. Following the above mentioned properties of hypergraphs and posets, we pro-
vide a canonical method to construct two-dimensional simplicial complexes associated
with hypergraphs. Two-dimensional simplicial complexes are endowed with intrinsic
topological and geometric properties, which allow us to easily compute the Euler charac-
teristic of hypergraphs. Notably, the interpretation of hypergraphs as two-dimensional
simplicial complexes also allows us to define the Forman–Ricci curvature for hypergraphs.
Subsequently, we performed an empirical study of real-world hypergraphs, where we
computed and analyzed the Forman–Ricci curvatures of hyperedges in several real-world
hypergraphs. Specifically, we compared the Forman–Ricci curvature of hyperedges with
two standard hyperedge measures, namely eigenvector centrality [17] and cardinality.

2. Preliminaries

A hypergraph is defined as a pair H = (V, A), where V is a finite set of elements
called vertices or nodes and A is a set of non-empty subsets of V called hyperedges. Note
that hypergraphs are a generalization of graphs or networks. In contrast to graphs where
an edge can connect only two vertices, hyperedges in hypergraphs can connect a group (or
a set) of two or more vertices together.

2.1. Posets

We briefly summarize here the minimal definitions and properties of posets that we
have used in this work. Further, we presume the reader is familiar with the basic definition
of posets.

Definition 1 (Coverings). Let (P ,<) be a poset, where < denotes the partial order relation on P ,
and let p, q be elements of P . We say that p covers q if q < p and there does not exist r ∈ P , such
that q < r < p. We denote the fact that p covers q by q ≺ p.

Definition 2 (Ranked posets). Given a poset (P ,<), a rank function for P is a function ρ:
P → N such that

1. If q is a minimal element of P , then ρ(q) = 0;
2. If q ≺ p, then ρ(p) = ρ(q) + 1. A poset P is called ranked if there exists a rank

function for P . The maximal value of ρ(p), p ∈ P is called the rank of P , and it is
denoted by r(P).
Note that for the definition of ranked posets we essentially (but not strictly) follow the

one provided by Bloch [18] and, while other terminologies exist [19,20], we prefer the one
above for the sake of clarity and concordance with Bloch’s paper. Let us also note that if a
poset is ranked, then the rank function is unique. Furthermore, if P is a ranked poset of
rank r, and if j ∈ {0, . . . , r}, we denote Pj = {p ∈ P | ρ(p) = j}, and by Fj the cardinality
of Pj, i.e., Fj = |Pj|.

While a variety of examples of posets pervade mathematics, a basic example is that of
the set of subsets, i.e., the power set 2X of a given set X. Here, the partial order relation
< is defined by the inclusion relation ⊂. Note that the hypergraph H = (V, A) defined
on the vertex set V is essentially a subset of 2V , and therefore, can also be regarded as a
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poset. As for the case of posets in general, (2X,⊂) represents the archetypal example of
ranked posets. Thus, hypergraphs represent, in essence, ranked posets, which is essential
for the sequel. Many of the hypergraphs arising in real-world datasets are actually directed
in nature [15,21]. For such hypergraphs, the poset structure is even more evident, as the
order relation is emphasized by the directionality. Moreover, if there are no loops in such a
hypergraph, the resulting poset is also ranked.

2.2. Simplicial Complexes and the Euler Characteristic

For this work on posets, rather than providing the full technical definition of a simpli-
cial complex, we refer the reader to classic references (see e.g., [22,23]).

Given a poset P , there exists a canonical way of producing an associated simplicial
complex ∆(P), by considering a vertex for each element p ∈ P and an m-simplex for each
chain p0 ≺ p1 ≺ . . . ≺ pm of elements of P .

If the poset P is finite, we can define its Euler characteristic as being equal to that of
the associated simplicial complex ∆(P), i.e.,

χ(P) = χ(∆(P)). (1)

Note that the hypergraph H = (V, A) defined previously is a finite hypergraph. Thus,
we can define the Euler characteristic of the simplicial complex ∆(H) associated with H.

Equation (1) enables us to define the Euler characteristic of any poset, even if it is
not ranked, due to the fact that the associated simplicial complex is naturally ranked by
the dimension of the simplices (faces). However, if P is itself ranked—as indeed it is in
our setting—then there exists a direct, purely combinatorial way of defining the Euler
characteristic of P that emulates the classical one, in the following manner:

χg(P) =
r

∑
j=0

(−1)jFj. (2)

While in general χ(P) and χg(P) do not coincide, they are identical in the case of
CW complexes, thus in particular for polyhedral complexes, hence a fortiori for simplicial
complexes. In particular, we shall obtain the same Euler characteristic irrespective of the
model of hypergraph that we choose to operate with: the poset model P , its associated
complex ∆(P), the geometric view of posets as simplicial complexes attached to each subset
of cardinality k (i.e., to each vertex a k-simplex), or the more general polyhedral model that
we considered in Ref. [15]. Thus, the Euler characteristic of a hypergraph is a well defined
invariant, independent of the chosen hypergraph model, and as such captures the essential
topological structure of the network.

In this work, we provide a slightly modified procedure for obtaining a simplicial
complex from a poset P . Specifically, we considered a vertex for each element in P and a
2-simplex (triangle) for chains consisting of at most 3 elements. This allows us to produce
a two-dimensional simplicial complex associated with P , and we denote such a complex
as ∆2(P). Figure 1 is a graphical illustration summarizing the construction of ∆(P) and
∆2(P) for an example poset. The Euler characteristic χ of ∆2(P) is given by the following
simple expression:

χ = |V| − |E|+ |F| (3)

where |V|, |E| and |F| are the number of vertices, number of edges and number of triangular
faces, respectively, in ∆2(P). In the succeeding sections, we shall show that χ(∆2(P)) is
not just a topological invariant, but it is also closely related to the geometry of ∆2(P).
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Figure 1. Schematic figure illustrating the construction of simplicial complexes associated with the
poset P = {p1, p2, p3, p4, p5, p6, p7}. (a) Construction of ∆(P), where simplices of any dimension
may appear. (b) Construction of ∆2(P), where only simplices of dimension ≤ 2 can appear.

2.3. Forman–Ricci Curvature

Forman introduced a discretization of the notion of Ricci curvature [24], by adapting
the Bochner–Weizenböck formula [25] to the quite general setting of CW complexes. Some
of us have expatiated on the geometric content of Forman’s discretization of Ricci curvature
elsewhere [12]. Therefore, to avoid repetition, we refer the reader to [12]. Note that
in [12], Forman’s original notion of Ricci curvature is referred to as the augmented Forman–
Ricci curvature. Moreover, we had introduced a one-dimensional notion of Forman–Ricci
curvature and employed it for the study of complex networks in [26].

While Forman–Ricci curvature applies to both vertex- and edge-weighted complexes,
(a feature which makes it suitable for broad range of applications), we concentrate here on
the combinatorial case, wherein all vertex as well as edge weights are equal to 1. In this
combinatorial case, Forman–Ricci curvature has the following simple and appealing form:

RicF(e) = #{t2 : t2 > e} − #{ê : ê‖e}+ 2. (4)

Here, # denotes the number of elements in a set, t2 denotes triangles and e denotes
edges, while {t2 : t2 > e} denotes the set of triangles that consist of the edge e. Moreover,
“||” denotes parallelism, where two faces of the same dimension (e.g., edges) are said to
be parallel if they share a common parent (i.e., a higher dimensional face containing the
edges, in this case, a triangle), or a common child (i.e., a lower dimensional face, in this
case a vertex), but not both.

Note that for “shallow” real-world hypergraphs, like the metabolic networks considered
in [21], both Forman–Ricci curvature and the Euler characteristic are readily computable.

2.4. The Gauss–Bonnet Formula

In the smooth setting, there exists a strong connection between curvature and the Euler
characteristic, that is captured by the classical Gauss–Bonnet formula [25]. However, the
Forman–Ricci curvature as defined in [24] does not satisfy a Gauss–Bonnet type theorem,
since no counterparts in dimensions 0 and 2, essential in the formulation of the Gauss–
Bonnet theorem, are defined therein. Interestingly, Bloch defined these necessary curvature
terms and was thus able to formulate [18] an analogue of the Gauss–Bonnet theorem
in the setting of ranked posets. While in general the one-dimensional curvature term
has no close classical counterpart, in the particular case of cell complexes (and thus of
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simplicial complexes), Euler characteristic and Forman–Ricci curvature are intertwined in
the following discrete version of the Gauss–Bonnet theorem:

∑
v∈F0

R0(v)− ∑
e∈F1

RicF(e) + ∑
f∈F2

R2(t) = χ(X). (5)

Here, F0, F1, and F2 denote the sets of vertices, edges and faces (triangles), respectively,
and R0 and R2 denote the respective zero-dimensional and two-dimensional curvature
terms required in a Gauss–Bonnet type formula. These curvature functions are defined via
a number of auxiliary functions, as follows:

R0(v) = 1 +
3
2

A0(v)− A2
0(v) , R2(t) = 1 + 6B2(t)− B2

2(t), (6)

where A0, B2 are the aforementioned auxiliary functions, which are defined in the following
simple and combinatorially intuitive manner:

A0(x) = #{y ∈ F1, x < y} , B2(x) = #{z ∈ F1, z < x}. (7)

Since we consider only triangular 2-faces, the formulas for the curvature functions
reduce to the following very simple and intuitive ones:

R0(v) = 1 +
3
2

deg(v)− deg2(v) , R2(t) = 1 + 6 · 3 + 32 = 28, (8)

where deg(v) denotes, conform to the canonical notation, the degree of the vertex v, i.e.,
the number of its adjacent vertices.

From these formulas and from the general expression of the Gauss–Bonnet formula
(Equation (5)), we obtain the following combinatorial formulation of the noted formula in
the setting of the two-dimensional simplicial complexes:

χ(X) = ∑
v∈F0

(
1 +

3
2

deg(v)− deg2(v)
)
− ∑

e∈F1

RicF(e) + 28, (9)

or, after taking into account also Equation (9), and some additional manipulations:

χ(X) = ∑
v∈F0

(
1 +

3
2

deg(v)− deg2(v)
)
− ∑

e∈F1

(
4 + 9 · #{t > e}+ ∑

v<e
deg(v)

)
+ 28. (10)

Note that for unity of notation throughout the paper, we preferred to write in the
formulas above, F0 rather than V, and F2 instead of F, as commonly used. Equation (5) and
its variations also allow for studying the long time behaviour of evolving (hyper-)networks
via the use of prototype networks of given Euler characteristic [27].

3. Hypergraph Datasets

For our empirical study, we applied the poset-based construction on 12 real-world
hypergraphs spanning multiple domains. Table 1 provides the summary statistics for these
12 hypergraphs.

First, we considered three hypergraphs derived from biological datasets, namely
biogrid [28], protein-complex [29], and disease-gene [30]. In the biogrid hypergraph,
vertices are chemicals and a hyperedge is a set of chemicals that interact with a given gene.
In the protein-complex hypergraph, vertices are proteins and a hyperedge corresponds
to a set of proteins contained in a particular complex. In the disease-gene hypergraph,
vertices correspond to diseases and a hyperedge consists of a set of diseases associated
with a particular gene.

Second, we acquired four hypergraphs based on affiliation networks, namely corporate-
memberships [31,32], senate-committees [33], norwegian-directorate [34], and youtube-
groups [35]. In the corporate-memberships hypergraph, vertices correspond to corporate
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executive officers and a hyperedge consists of members of a particular social organization.
The senate-committees hypergraph is derived from Congressional data [36], where vertices
are members of the US Senate and hyperedges correspond to committee memberships. The
norwegian-directorate hypergraph is based on an interlocking directorate among public
limited companies in Norway, wherein the vertices are directors and hyperedges comprise
of directors affiliated to boards. In the youtube-groups hypergaph, vertices are YouTube
users and a hyperedge is a set of users in a given group.

Table 1. Summary statistics for 12 real-world hypergraphs considered in this study. For each
hypergraph, the table lists the labels corresponding to the vertices (V) and hyperedges (H), as well as
the number of vertices |V| and hyperedges |H|.

Hypergraph Vertex (V ) Hyperedge (A) |V | |A|
biogrid chemical gene 2138 4455
protein-complex protein complex 3639 2848
disease-gene disease gene 13,074 8948
corporate-memberships officer organization 25 15
senate-committees US senate member committee 282 315
norwegian-directorate director board 1495 367
youtube-groups user group 30,087 94,238
facebook-forum user forum topic 899 522
enron-email email sender/recipient 10,915 58,575
contact-highschool student students in proximity 327 7818
github-projects user project 120,867 56,519
cond-mat-publications author scientific paper 16,726 22,016

Third, we considered 2 hypergraphs based on communication networks, namely
facebook-forum [37], enron-email [38], and one hypergraph contact-highschool [39] which
is based on proximity data. The facebook-forum hypergraph is based on users’ activity
in a Facebook forum, wherein the vertices represent Facebook users and a hyperedge
corresponds to the users that have participated in a given topic of the forum. In the enron-
email hypergraph, vertices correspond to emails at Enron and a hyperedge consists of the
sender and all the recipients of an email. The hypergraph contact-highschool is based on
close-proximity human interactions [40], obtained from sensor data worn by students at a
high school, wherein vertices represent students and each hyperedge is a group of students
that were in close proximity of one another.

Finally, we acquired two hypergraphs, github-projects [31] and cond-mat-publications [3]
that are based on collaboration networks and co-authorship networks, respectively. In the
github-projects hypergraph, vertices correspond to GitHub users and a hyperedge consists
of users which have contributed to a project. The cond-mat-publications hypergraph is
based on preprints posted to Condensed Matter section of arXiv E-Print Archive between
1995 and 1999, wherein the vertices correspond to authors and a hyperedge represents a
scientific paper, which comprises of co-authors of that paper.

4. Results

For each real-world hypergraph H, we obtained the associated two-dimensional sim-
plicial complex ∆2(H) by the canonical construction procedure described in Section 2.2.
Note that the vertices (0-simplices) of ∆2(H) are comprised of the vertices V and hyper-
edges A of the original hypergraph H, and the edges (1-simplices) and triangular faces
(2-simplices) are defined by the partial order relation (see Figure 1). To investigate the
topological properties of the hypergraphs, we computed the Euler characteristic of the
associated complex χ(∆2(H)) as defined in Equation (3). The computed Euler characteristic
corresponding to each of the 12 hypergraphs considered in this study is reported in Table 2.
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Table 2. Euler characteristic of the two-dimensional simplicial complexes χ(∆2(H)) associated with
the 12 real-world hypergraphs.

Hypergraph Euler Characteristic χ

biogrid −1806
protein-complex −690
disease-gene −26,305
corporate-memberships −31
senate-committees −4370
norwegian-directorate 48
youtube-groups −152,325
facebook-forum −5546
enron-email −9977
contact-highschool −3184
github-projects − 210,323
cond-mat-publications −6560

To study the geometrical properties of the hypergraphs, we computed the Forman–
Ricci curvature RicF(e) of the edges in ∆2(H) (see Equation (4)). For all the 12 hypergraphs,
we found that the Forman–Ricci curvature was negative for most of the edges in ∆2(H),
indicating a strong prevalence of partial order relation in all the hypergraphs. Moreover,
negative edge curvatures indicate a rarity of triangular faces in ∆2(H). Recall that the
Forman–Ricci curvature of an edge depends on the degrees of the anchoring vertices as
well as the triangular faces in which this edge belongs.

Forman–Ricci curvature is a discrete analogue of the classical Ricci curvature [25]
and is fundamentally defined on edges. However, it is also possible to define the scalar
curvature for a vertex or a node as the sum of the curvatures of all edges incident to
that vertex:

F(v) = ∑
e∼v

RicF(e) . (11)

The above definition was previously used to analyse the curvatures of vertices in
complex networks [12]. In the present work, we have extended this definition to the case
of two-dimensional simplicial complexes ∆2(H) associated with hypergraphs. We found
that the scalar curvature is also negative for most of the vertices in ∆2(H). Figure 2 shows
the distribution of the scalar curvatures of those vertices in ∆2(H) that correspond to the
hyperedges A of the original hypergraph.

While edges and triangular faces in the poset transformation ∆2(H) starting from the
original hypergraph do not have direct correspondence to real-world data, the vertices
in the transformed poset or two-dimensional simplicial complex ∆2(H) represent the
vertices and hyperedges of the original hypergraph. Hence, the notion of scalar curvature
makes it possible to extend the definition of Forman–Ricci curvature to vertices as well
as hyperedges in hypergraphs, and also allows for a comparative analysis with existing
hypergraph measures. In the present work, we compute the correlation between Forman–
Ricci curvature of hyperedges and two standard hyperedge measures, namely eigenvector
centrality and cardinality. A brief description of both these measures is provided in
Appendix A.

Eigenvector centrality was first introduced by Bonacich [17] as a measure to quantify
the important individuals in the context of social networks. Since then, it has become a
standard tool for network analysis with a wide range of applications including Google’s
PageRank [41] and as a means to predict neuron’s firing rate [42]. It is based on the idea that
the centrality score of a vertex depends on the centrality score of its neighbours. Moreover,
Bonacich [17] generalised this concept to two-mode data such as hypergraphs, which allows
one to compute the centralities of not only the vertices, but also the hyperedges. It follows
from the definition of eigenvector centrality (see Appendix A) that central vertices or nodes
belong to central hyperedges and central hyperedges contain central nodes.
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Figure 2. Distribution of the scalar curvature of the vertices in the two-dimensional simplicial
complexes ∆2(H) associated with the 12 real-world hypergraphs. The plots display the scalar
curvatures of only those nodes in ∆2(H) that correspond to hyperedges in the original hypergraph H.

Figure 3 is a scatter plot between Forman–Ricci curvature and eigenvector centrality of
the hyperedges for the 12 hypergraphs considered in this study. Table 3 shows the Pearson
correlation between Forman–Ricci curvature and eigenvector centrality of the hyperedges
for the hypergraphs. We found that most real hypergraphs show a moderate to high
negative correlation between Forman–Ricci curvature and eigenvector centrality, regardless
of the domain that they belong to. However, we should emphasize that 3 hypergraphs,
namely norwegian-directorate, enron-email and cond-mat-publications display a weak
correlation between Forman–Ricci curvature and eigenvector centrality. On the other
hand, affiliation hypergraphs such as corporate-memberships, senate-committees, and
youtube-groups have a very high absolute correlation (≥0.9) between the two measures.
Additionally, we found that hypergraphs representing biological datasets show moderate
correlation between Forman–Ricci curvature and eigenvector centrality.

Figure 4 is a scatter plot between Forman–Ricci curvature and cardinality of the
hyperedges for the 12 hypergraphs considered in this study. Table 3 shows the Pearson
correlation between Forman–Ricci curvature and cardinality of the hyperedges for the
hypergraphs. The Forman–Ricci curvature of hyperedges in all the hypergraphs display a
high negative correlation with their cardinalities. Similar to the results of correlation with
eigenvector centrality, we found that affiliation hypergraphs such as hypergraphs of senate-
committees, corporate-memberships and norwegian-directorate show a very high absolute
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correlation of 0.94, 0.95 and 0.95, respectively. The affiliation hypergraph youtube-groups
also shows a high absolute correlation of 0.81. Moreover, we found that hypergraphs
representing biological datasets display a moderate to high absolute correlation between
the two measures.

Figure 3. Scatter plots displaying the correlation between Forman–Ricci curvature and eigenvector
centrality of the hyperedges for the 12 real-world hypergraphs. The Forman–Ricci curvature of
an hyperedge is equal to the scalar curvature of the representative vertex in the two-dimensional
simplicial complex ∆2(H) associated with the hypergraph H.



Symmetry 2022, 14, 420 10 of 13

Figure 4. Scatter plots displaying the correlation between Forman–Ricci curvature and cardinality of
the hyperedges for the 12 real-world hypergraphs. The Forman–Ricci curvature of an hyperedge is
equal to the scalar curvature of the representative vertex in the two-dimensional simplicial complex
∆2(H) associated with the hypergraph H.

Table 3. Pearson correlation between Forman–Ricci curvature (FRC) and two traditional hyperedge
measures, namely eigenvector centrality (EVC) and cardinality.

Hypergraph Correlation between FRC and
EVC Cardinality

biogrid −0.55 −0.88
protein-complex −0.79 −0.78
disease-gene −0.57 −0.63
corporate-memberships −0.9 −0.95
senate-committees −0.95 −0.94
norwegian-directorate −0.25 −0.95
youtube-groups −0.97 −0.81
facebook-forum −0.88 −0.92
enron-email −0.08 −0.69
contact-highschool −0.49 −0.51
github-projects −0.6 −0.73
cond-mat-publications −0.18 −0.71
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5. Discussion

In this contribution, we present a canonical method to construct two-dimensional sim-
plicial complexes from hypergraphs. Such a construction allows for an easy investigation
of the topological and geometric properties of hypergraphs. Specifically, by employing
Gauss–Bonnet formula, we have shown that the Euler characteristic of the transformed
poset or two-dimensional simplicial complex is mathematically related to the Forman–Ricci
curvature of its edges. Additionally, representing hypergraphs as two-dimensional simpli-
cial complexes allows us define Forman–Ricci curvature for vertices or nodes as well as
hyperedges. Finally, representing hypergraphs as two-dimensional simplicial complexes
could help extend our previously proposed method for persistent homology of complex
networks [43–45] to the case of hypergraphs.

Subsequently, we applied the poset transformation to 12 real-world hypergraphs and
computed the Forman–Ricci curvature of the hyperedges in the real-world hypergraphs.
We have also compared Forman–Ricci curvature of the hypergraphs with two standard
hyperedge measures, namely eigenvector centrality and cardinality. We found that Forman–
Ricci curvature shows a moderate to high negative correlation with both eigenvector
centrality and cardinality. Notably, eigenvector centrality was introduced to quantify the
importance of individuals as well as groups in the context of social networks [17]. We
found that Forman–Ricci curvature shows a high negative correlation with eigenvector
centrality for three affiliation hypergraphs considered in our empirical analysis. These
results suggest that Forman–Ricci curvature could also be used to identify important
vertices or hyperedges in hypergraphs.
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Appendix A. Traditional Hypergraph Measures

Appendix A.1. Eigenvector Centrality

For the definition of eigenvector centrality of hypergraphs, we follow the one provided
by Bonacich [17].

Consider a hypergraph H with n vertices and m hyperedges. Let A be a n×m matrix
such that Aij = 1 if vertex i belongs to hyperedge j and Aij = 0 otherwise. Let p and g be n
and m dimensional vectors of vertex and hyperedge centrality scores, respectively. Then
the following matrix equations hold true, where λ is a singular value of the matrix A:

Ag = λp, (A1)

ATp = λg. (A2)

Alternatively, we can consider the hypergraph H as a bipartite graph G with n + m
vertices, where the n vertices and m hyperedges of H are the two sets of vertices in G, and
define an edge between node i and hyperedge j if aij = 1. We can also define a n × m
adjacency matrix for G. Equations (A1) and (A2) are then equivalent to the following
matrix equation:
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λ

(
p
g

)
=

(
0 A

AT 0

)(
p
g

)
. (A3)

We remark that Bonacich has also provided a means to correct for the eigenvector
centrality depending on the size of the hypergraphs [17]. However, the need to correct
for hypergraph size is not always evident. Therefore, in order to keep our analysis sim-
ple, we restrict ourselves to the standard form of eigenvector centrality as described by
Equations (A1)–(A3).

Appendix A.2. Cardinality

Consider a hypergraph H = (V, A) and a hyperedge e ∈ A. The cardinality of e
is defined as the number of elements in the set e. A hypergraph H = (V, A) is called
k-uniform if all hyperedges have cardinality k. Thus, a graph is equivalent to a 2-uniform
hypergraph.
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