Looking beyond the Standard Model with Third Generation Quarks at the LHC
Abstract
:1. Introduction
1.1. The Phenomenology of Vector-like Quarks
1.2. The Phenomenology of Leptoquarks
1.3. Other Relevant Phenomenology
1.4. Common Objects and Methods
- Leptons.
- Jets.
- Missing transverse momentum.
- Jet tagging.
- Monte Carlo samples.
- Statistical analysis.
2. Vector-like Quark Searches
- pair production through strong interaction;
- single production through electroweak interaction;
- “exotic” production involving other BSM particles.
2.1. Searches for the Pair Production of VLQs
2.2. Searches for the Single Production of VLQs
2.3. Searches for Exotic Production of VLQs
3. Leptoquark Searches
4. Other Resonance Searches
- resonances decaying into a pair;
- resonances decaying into (Used to refer both to both and );
- resonances decaying into any other final state including at least one top quark.
4.1. Searches for Resonances Decaying into Two Top Quarks
4.2. Searches for Resonances Decaying into One Top Quark and a b-Quark
4.3. Other Resonances Decaying into at Least One Top Quark
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Bryant, P. LHC Machine. JINST 2008, 3, S08001. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, S.; Preskill, J. Massless Composites with Massive Constituents. Nucl. Phys. B 1982, 199, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B.; Georgi, H. SU(2) × U(1) Breaking by Vacuum Misalignment. Phys. Lett. B 1984, 136, 183–186. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H.; Dimopoulos, S. Composite Higgs Scalars. Phys. Lett. B 1984, 136, 187. [Google Scholar] [CrossRef]
- Muller, D.J.; Nandi, S. Top flavor: A Separate SU(2) for the third family. Phys. Lett. 1996, B383, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Perelstein, M. Little Higgs models and their phenomenology. Prog. Part. Nucl. Phys. 2007, 58, 247–291. [Google Scholar] [CrossRef] [Green Version]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Grand unification at intermediate mass scales through extra dimensions. Nucl. Phys. 1999, B537, 47–108. [Google Scholar] [CrossRef] [Green Version]
- Burdman, G.; Dobrescu, B.A.; Pontón, E. Resonances from two universal extra dimensions. Phys. Rev. D 2006, 74, 075008. [Google Scholar] [CrossRef] [Green Version]
- Malkawi, E.; Tait, T.; Yuan, C.P. A model of strong flavor dynamics for the top quark. Phys. Lett. B 1996, 385, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.T. Topcolor assisted technicolor. Phys. Lett. B 1995, 345, 483–489. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST 2008, 3, S08003. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. The CMS experiment at the CERN LHC. JINST 2008, 3, S08004. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Phys. Rev. D 1979, 20, 2619. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.T.; Simmons, E.H. Strong dynamics and electroweak symmetry breaking. Phys. Rep. 2003, 381, 235. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B. Flavor at SSC energies: A New mechanism for dynamically generated fermion masses. Nucl. Phys. B 1991, 365, 259–278. [Google Scholar] [CrossRef]
- del Aguila, F.; Bowick, M.J. The Possibility of New Fermions with ΔI = 0 Mass. Nucl. Phys. B 1983, 224, 107. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A. Mixing with vector-like quarks: Constraints and expectations. EPJ Web Conf. 2013, 60, 16012. [Google Scholar] [CrossRef]
- Matsedonskyi, O.; Panico, G.; Wulzer, A. On the Interpretation of Top Partners Searches. JHEP 2014, 12, 097. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A. Identifying top partners at LHC. JHEP 2009, 11, 030. [Google Scholar] [CrossRef] [Green Version]
- Buchkremer, M.; Cacciapaglia, G.; Deandrea, A.; Panizzi, L. Model Independent Framework for Searches of Top Partners. Nucl. Phys. B 2013, 876, 376–417. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Combination of the searches for pair-produced vector-like partners of the third-generation quarks at = 13 TeV with the ATLAS detector. Phys. Rev. Lett. 2018, 121, 211801. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for the Single Production of Vector-like T Quarks Decaying into tH or tZ with the ATLAS Detector. ATLAS-CONF-2021-040. 2021. Available online: http://cds.cern.ch/record/2779174 (accessed on 31 October 2021).
- Chala, M. Direct bounds on heavy toplike quarks with standard and exotic decays. Phys. Rev. D 2017, 96, 015028. [Google Scholar] [CrossRef] [Green Version]
- Criado, J.C.; Perez-Victoria, M. Vector-like quarks with non-renormalizable interactions. JHEP 2020, 1, 57. [Google Scholar] [CrossRef] [Green Version]
- Chala, M.; Juknevich, J.; Perez, G.; Santiago, J. The Elusive Gluon. JHEP 2015, 01, 092. [Google Scholar] [CrossRef] [Green Version]
- Araque, J.P.; Castro, N.F.; Santiago, J. Interpretation of Vector-like Quark Searches: Heavy Gluons in Composite Higgs Models. JHEP 2015, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Georgi, H.; Glashow, S. Unity of All Elementary-Particle Forces. Phys. Rev. Lett. 1974, 32, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, S. Technicoloured signatures. Nucl. Phys. B 1980, 168, 69–92. [Google Scholar] [CrossRef]
- Buchmüller, W.; Wyler, D. Constraints on SU(5)-type leptoquarks. Phys. Lett. B 1986, 177, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Buchmüller, W.; Rückl, R.; Wyler, D. Leptoquarks in lepton - quark collisions. Phys. Lett. B 1987, 191, 442–448. [Google Scholar] [CrossRef]
- Blumlein, J.; Boos, E.; Kryukov, A. Leptoquark pair production in hadronic interactions. Z. Phys. C 1997, 76, 137–153. [Google Scholar] [CrossRef]
- Hiller, G.; Schmaltz, M. RK and future b→sℓℓ physics beyond the standard model opportunities. Phys. Rev. D 2014, 90, 054014. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Neubert, M. Minimal Leptoquark Explanation for the RD(*), RK and (g − 2)g Anomalies. Phys. Rev. Lett. 2016, 116, 141802. [Google Scholar] [CrossRef] [Green Version]
- Di Luzio, L.; Nardecchia, M. What is the scale of new physics behind the B-flavour anomalies? Eur. Phys. J. C 2017, 77, 536. [Google Scholar] [CrossRef] [Green Version]
- Buttazzo, D.; Greljo, A.; Isidori, G.; Marzocca, D. B-physics anomalies: A guide to combined explanations. JHEP 2017, 11, 044. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M. B decay anomalies and dark matter from vectorlike confinement. Phys. Rev. D 2018, 97, 015013. [Google Scholar] [CrossRef] [Green Version]
- Hiller, G.; Loose, D.; Nišandžić, I. Flavorful leptoquarks at hadron colliders. Phys. Rev. D 2018, 97, 075004. [Google Scholar] [CrossRef] [Green Version]
- Camargo-Molina, A.C.J.; Faroughy, D. Anomalies in bottom from new physics in top. Phys. Lett. B 2018, 784, 284–293. [Google Scholar] [CrossRef]
- Muon g-2 Collaboration. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Muon g-2 Collaboration. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 2006, 73, 072003. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. Test of lepton universality using B+→K+ℓ+ℓ− decays. Phys. Rev. Lett. 2014, 113, 151601. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P. Measurement of an Excess of →D(*)τ−τ Decays and Implications for Charged Higgs Bosons. Phys. Rev. D 2013, 88, 072012. [Google Scholar] [CrossRef]
- Greljo, A.; Isidori, G.; Marzocca, D. On the breaking of Lepton Flavor Universality in B decays. JHEP 2015, 07, 142. [Google Scholar] [CrossRef] [Green Version]
- Faroughy, D.A.; Greljo, A.; Kamenik, J.F. Confronting lepton flavor universality violation in B decays with high-pT tau lepton searches at LHC. Phys. Lett. B 2017, 764, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Backović, M.; Boveia, A.; Buchmueller, O.; Busoni, G.; De Roeck, A.; Doglioni, C.; DuPree, T.; Fairbairn, M.; Genest, M.-H.; et al. Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density. Phys. Dark Univ. 2019, 26, 100377. [Google Scholar] [CrossRef]
- Lillie, B.; Randall, L.; Wang, L.T. The Bulk RS KK-gluon at the LHC. JHEP 2007, 09, 074. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 565. [Google Scholar] [CrossRef] [Green Version]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012, 516, 1–102. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E. Light Pseudoscalars, Particle Physics and Cosmology. Phys. Rep. 1987, 150, 1–177. [Google Scholar] [CrossRef]
- Trodden, M. Electroweak baryogenesis: A Brief review. In 33rd Rencontres de Moriond: Electroweak Interactions and Unified Theories; Edition Frontieres: Paris, France, 1998; pp. 471–480. [Google Scholar]
- Haber, H.; Kane, G. The search for supersymmetry: Probing physics beyond the standard model. Phys. Rep. 1985, 117, 75–263. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A.; Maiani, L.; Moreau, G.; Polosa, A.; Quevillon, J.; Riquer, V. The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C 2013, 73, 2650. [Google Scholar] [CrossRef] [Green Version]
- Bagnaschi, E.; Bahl, H.; Fuchs, E.; Hahn, T.; Heinemeyer, S.; Liebler, S.; Patel, S.; Slavich, P.; Stefaniak, T.; Wagner, C.E.M.; et al. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2 and Beyond. Eur. Phys. J. C 2019, 79, 617. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for heavy Higgs bosons decaying to a top quark pair in proton–proton collisions at = 13 TeV. JHEP 2020, 4, 171. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at = 13 TeV. JHEP 2020, 7, 126. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at = 13 TeV. Eur. Phys. J. C 2020, 80, 75. [Google Scholar] [CrossRef]
- Altarelli, G.; Mele, B.; Ruiz-Altaba, M. Searching for New Heavy Vector Bosons in p Colliders. Z. Phys. C 1990, 45, 109, Erratum in Z. Phys. C 1990, 47, 676. [Google Scholar] [CrossRef]
- Harari, H. Composite models for quarks and leptons. Phys. Rep. 1984, 104, 159–179. [Google Scholar] [CrossRef]
- Andrea, J.; Fuks, B.; Maltoni, F. Monotops at the LHC. Phys. Rev. D 2011, 84, 074025. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for large missing transverse momentum in association with one top-quark in proton—Proton collisions at = 13 TeV with the ATLAS detector. JHEP 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. JINST 2017, 12, P10003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Jet reconstruction and performance using particle flow with the ATLAS Detector. Eur. Phys. J. C 2017, 77, 466. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Salam, G.P.; Soyez, G. The anti-kt jet clustering algorithm. JHEP 2008, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Salam, G.P.; Soyez, G. FastJet user manual. Eur. Phys. J. C 2012, 72, 1896. [Google Scholar] [CrossRef] [Green Version]
- GEANT4 Collaboration; Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asaigai, M.; Axenit, D.; Banerjee, S.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250. [Google Scholar] [CrossRef] [Green Version]
- Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 2011, 71, 1554. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.S. Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra. Phystat 2011, 2011, 115–120. [Google Scholar] [CrossRef]
- Read, A.L. Presentation of search results: The CLS technique. J. Phys. G 2002, 28, 2693. [Google Scholar] [CrossRef]
- O’Hagan, A.; Forster, J.J. Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian Inference, 2nd ed.; Arnold: London, UK, 2004; Volume 2B. [Google Scholar]
- ATLAS Collaboration. Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at = 8 TeV with the ATLAS detector. Phys. Rev. D 2015, 92, 112007. [Google Scholar] [CrossRef] [Green Version]
- Aad, G. Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at = 7 TeV with the ATLAS detector. Phys. Lett. B 2012, 712, 22–39. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for vectorlike light-flavor quark partners in proton–proton collisions at = 8 TeV. Phys. Rev. D 2018, 97, 072008. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for pair production of heavy vector-like quarks decaying to high-pTW bosons and b quarks in the lepton-plus-jets final state in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2017, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for pair production of vector-like quarks in the bWb¯W channel from proton–proton collisions at = 13 TeV. Phys. Lett. B 2018, 779, 82. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for pair production of heavy vector-like quarks decaying into high-pTW bosons and top quarks in the lepton-plus-jets final state in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in = 13TeVpp collisions with the ATLAS detector. JHEP 2017, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2018, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector. JHEP 2018, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for vector-like T and B quark pairs in final states with leptons at = 13 TeV. JHEP 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton–proton collisions at = 13 TeV. JHEP 2019, 3, 82. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for vector-like quarks in events with two oppositely charged leptons and jets in proton–proton collisions at = 13 TeV. Eur. Phys. J. C 2019, 79, 364. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Pair-Production of Vector-like Quarks in pp Collision Events at = 13 TeV with aT Least One Leptonically-Decaying Z Boson and a Third-Generation Quark with the ATLAS Detector. ATLAS-CONF-2021-024. 2021. Available online: http://cds.cern.ch/record/2773300 (accessed on 1 July 2021).
- ATLAS Collaboration. Measurement of the inclusive isolated prompt photon cross section in pp collisions at = 7 TeV with the ATLAS detector. Phys. Rev. D 2011, 83, 052005. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at = 13 TeV with the ATLAS detector. Phys. Rev. D 2018, 98, 092005. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for pair production of vector-like quarks in the fully hadronic final state. Phys. Rev. D 2019, 100, 072001. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton–proton collisions at = 13 TeV. Phys. Rev. D 2020, 102, 112004. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Benbrik, R.; Heinemeyer, S.; Pérez-Victoria, M. Handbook of vectorlike quarks: Mixing and single production. Phys. Rev. D 2013, 88, 094010. [Google Scholar] [CrossRef]
- De Simone, A.; Matsedonskyi, O.; Rattazzi, R.; Wulzer, A. A First Top Partner Hunter’s Guide. JHEP 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for single production of vector-like quarks decaying into Wb in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2019, 5, 164. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for single production of vector-like quarks decaying to a top quark and a W boson in proton–proton collisions at = 13 TeV. Eur. Phys. J. C 2019, 79, 90. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for Single Production of a Vector-like Quark T Decaying to a Top Quark and a Z Boson with the Z Boson Decaying to Neutrinos. CMS-PAS-B2G-19-004. 2021. Available online: https://cds.cern.ch/record/2754160 (accessed on 1 July 2021).
- ATLAS Collaboration. Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector. Phys. Rev. D 2018, 98, 112010. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton–proton collisions at = 13 TeV. Phys. Lett. B 2018, 781, 574. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for electroweak production of a vector-like T quark using fully hadronic final states. JHEP 2020, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for Single Production of a Vector-like B Quark Decaying into a Bottom Quark and a Higgs Boson Which Decays into a Pair of Photons. ATLAS-CONF-2018-024. 2018. Available online: https://cds.cern.ch/record/2628759 (accessed on 1 July 2021).
- ATLAS Collaboration. Search for Single Vector-like B Quark Production and Decay via B→bH(b) in pp Collisions at = 13 TeV with the ATLAS Detector. ATLAS-CONF-2021-018. 2021. Available online: https://cds.cern.ch/record/2760012 (accessed on 1 July 2021).
- CMS Collaboration. Search for single production of vector-like quarks decaying to a b quark and a Higgs boson. JHEP 2018, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton+jets final state in pp collisions at = 13 TeV. Eur. Phys. J. C 2019, 79, 208. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for W′ Decaying to a Vector-like Quark and a Top or Bottom Quark in the All-Jets Final State. CMS-PAS-B2G-20-002. 2021. Available online: http://cds.cern.ch/record/2756265 (accessed on 1 July 2021).
- CMS Collaboration. Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton–proton collisions at = 13 TeV. JHEP 2017, 5, 29. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for a scalar partner of the top quark in the all-hadronic t plus missing transverse momentum final state at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2020, 80, 737. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector. Phys. Rev. D 2021, 104, 112005. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for new phenomena in final states with b-jets and missing transverse momentum in = 13 TeVpp collisions with the ATLAS detector. JHEP 2021, 5, 93. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2021, 6, 179. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton–proton collisions at = 13 TeV. Phys. Lett. B 2021, 819, 136446. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for a singly produced third-generation scalar leptoquark decaying to a τ lepton and a bottom quark in proton–proton collisions at = 13 TeV. JHEP 2018, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 313. [Google Scholar] [CrossRef]
- CMS Collaboration. Inclusive Nonresonant Multilepton Probes of New Phenomena at = 13TeV. CMS-PAS-EXO-21-002. 2021. Available online: https://cds.cern.ch/record/2779120 (accessed on 1 July 2021).
- ATLAS Collaboration. Search for dark matter produced in association with a single top quark in = 13 TeVpp collisions with the ATLAS detector. Eur. Phys. J. C 2021, 81, 860. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for dark matter produced in association with a single top quark or a top quark pair in proton–proton collisions at = 13 TeV. JHEP 2019, 3, 141. [Google Scholar] [CrossRef]
- ATLAS Collaboration. A search for t resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at = 7 TeV with the ATLAS detector. JHEP 2012, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for t resonances in the lepton plus jets final state with ATLAS using 4.7fb−1 of pp collisions at = 7TeV. Phys. Rev. D 2013, 88, 012004. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. A search for t resonances using lepton-plus-jets events in proton—Proton collisions at = 8 TeV with the ATLAS detector. JHEP 2015, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for heavy Higgs bosons A/H decaying to a top quark pair in pp collisions at = 8 TeV with the ATLAS detector. Phys. Rev. Lett. 2017, 119, 191803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CMS Collaboration. Search for anomalous t production in the highly-boosted all-hadronic final state. JHEP 2012, 9, 029. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for Z′ resonances decaying to t in dilepton+jets final states in pp collisions at = 7TeV. Phys. Rev. D 2013, 87, 072002. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for resonant t production in lepton+jets events in pp collisions at = 7TeV. JHEP 2012, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Searches for new physics using the t invariant mass distribution in pp collisions at = 8TeV. Phys. Rev. Lett. 2013, 111, 211804. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for resonant t production in proton–proton collisions at = 8TeV. Phys. Rev. D 2016, 93, 012001. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Search for t resonances in highly-boosted lepton+jets and fully hadronic final states in proton–proton collisions at = 13 TeV. JHEP 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for t resonances in fully hadronic final states in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2020, 10, 61. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for resonant t production in proton–proton collisions at = 13 TeV. JHEP 2019, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for Heavy Resonances in Four-Top-Quark Final States in pp Collisions at = 13 TeV with the ATLAS Detector. ATLAS-CONF-2021-048. 2021. Available online: http://cds.cern.ch/record/2781173 (accessed on 1 July 2021).
- ATLAS Collaboration. Search for W′→t in the lepton plus jets final state in proton–proton collisions at a centre-of-mass energy of = 8 TeV with the ATLAS detector. Phys. Lett. B 2015, 743, 235. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for W′→tb→qqbb decays in pp collisions at = 8 TeV with the ATLAS detector. Eur. Phys. J. C 2015, 75, 165. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for W′→tb decays in the hadronic final state using pp collisions at = 13 TeV with the ATLAS detector. Phys. Lett. B 2018, 781, 327. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for a W′ boson decaying to a bottom quark and a top quark in pp collisions at = 7TeV. Phys. Lett. B 2013, 718, 1229. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for W′→tb decays in the lepton+jets final state in pp collisions at = 8TeV. JHEP 2014, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at = 13 TeV with the ATLAS detector. Phys. Lett. B 2019, 788, 347. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV. Phys. Lett. B 2018, 777, 39. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for W′ bosons decaying to a top and a bottom quark at = 13 TeV in the hadronic final state. Phys. Lett. B 2021, 820, 136535. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Vector Boson Resonances Decaying to a Top Quark and a Bottom Quark in the Hadronic Final State Using pp Collisions at = 13 TeV with the ATLAS Detector. ATLAS-CONF-2021-043. 2021. Available online: https://cds.cern.ch/record/2779178 (accessed on 1 July 2021).
- ATLAS Collaboration. Search for charged Higgs bosons decaying into a top quark and a bottom quark at = 13 TeV with the ATLAS detector. JHEP 2021, 6, 145. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at = 13 TeV. arXiv 2021, arXiv:hep-ex/2111.10216.
- CMS Collaboration. Search for a heavy resonance decaying to a top quark and a W boson at = 13 TeV in the fully hadronic final state. J. High Energy Phys. 2021, 2021, 1–46. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for pair production of excited top quarks in the lepton+jets final state. Phys. Lett. B 2018, 778, 349. [Google Scholar] [CrossRef]
- Lapsien, T.; Kogler, R.; Haller, J. A new tagger for hadronically decaying heavy particles at the LHC. Eur. Phys. J. C 2016, 76, 600. [Google Scholar] [CrossRef] [Green Version]
- Olive, K. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb−1 of proton–proton collision data at = 13 TeV with the ATLAS detector. Phys. Rev. D 2018, 98, 052008. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons. Phys. Lett. B 2019, 798, 134952. [Google Scholar] [CrossRef]
- Alvarez, E.; Estevez, M. tb as a probe of new physics at the LHC. Phys. Rev. D 2017, 96, 035016. [Google Scholar] [CrossRef] [Green Version]
- Apollinari, G.; Rossi, L.; Brüning, O.; Nakamoto, T. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1; CERN: Geneva, Switzerland, 2017. [Google Scholar] [CrossRef]
- CMS Collaboration. The Phase-2 Upgrade of the CMS Level-1 Trigger; Technical Report CERN-LHCC-2020-004, CMS-TDR-021, Final Version; CERN: Geneva, Switzerland, 2020. [Google Scholar]
- ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System; Technical Report CERN-LHCC-2017-020, ATLAS-TDR-029; CERN: Geneva, Switzerland, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Torre, H.; Farooque, T. Looking beyond the Standard Model with Third Generation Quarks at the LHC. Symmetry 2022, 14, 444. https://doi.org/10.3390/sym14030444
de la Torre H, Farooque T. Looking beyond the Standard Model with Third Generation Quarks at the LHC. Symmetry. 2022; 14(3):444. https://doi.org/10.3390/sym14030444
Chicago/Turabian Stylede la Torre, Hector, and Trisha Farooque. 2022. "Looking beyond the Standard Model with Third Generation Quarks at the LHC" Symmetry 14, no. 3: 444. https://doi.org/10.3390/sym14030444
APA Stylede la Torre, H., & Farooque, T. (2022). Looking beyond the Standard Model with Third Generation Quarks at the LHC. Symmetry, 14(3), 444. https://doi.org/10.3390/sym14030444