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Abstract: The relevance of convex and non-convex functions in optimization research is well known.
Due to the behavior of its definition, the idea of convexity also plays a major role in the subject
of inequalities. The main concern of this paper is to establish new integral inequalities for newly
defined left and right convex interval-valued function on coordinates through pseudo order relation
and double integral. Some of the Hermite-Hadamard type inequalities for the product of two left
and right convex interval-valued functions on coordinates are also obtained. Moreover, Hermite—
Hadamard-Fejér type inequalities are also derived for left and right convex interval-valued functions
on coordinates. Some useful examples are also presented to prove the validity of this study. The
proved results of this paper are generalizations of many known results, which are proved by Dragomir,
Latif et al. and Zhao, and can be vied as applications of this study.

Keywords: double integral; left and right convex interval-valued function on coordinates; Hermite—
Hadamard inequality; Hermite-Hadamard-Fejér inequality

1. Introduction

Convex analysis has made major contributions to the improvement of various fields
of applied and pure study. In recent decades, there has been a lot of interest in the study
and differentiation of many directions of the traditional idea of convexity. There have
lately been a slew of convex function extensions and modifications developed. Because the
functions discovered in a large number of theoretical and practical economics problems
are not classical convex functions, many scholars have been interested in the sweeping
generalisation of function convexity in past few decades, such as h-convex functions [1-5],
log-convex functions [6-9], log-h-convex functions [10], and especially coordinated convex
functions [11]. Many authors have proposed different expansions and generalizations
of integral inequalities for coordinated convex functions since 2001 (see [12-17] and the
references therein).

Moore’s interval analysis theory, which he proposed in a numerical analysis in [18],
has advanced rapidly in recent decades. In computational problems, a computer can be
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programmed to discover an interval that contains the precise solution. Interval analysis
also ensures that the solution to the model equation is tightly contained. Interval analysis
is also commonly used in chemical and structured engineering, economics, control circuitry
design, robotics, beam physics, behavioural ecology, constraint satisfaction, computer
graphics, signal processing, asteroid orbits and global optimization and neural network
output optimization [19], and many other fields.

Many writers have merged integral inequalities with interval-valued functions
(I-V-Fs) in recent decades, and many great findings have resulted. Costa proposed Opial-
type disparities for I-V-Fs in [20]. Chalco-Cano et al. used the generalized Hukuhara deriva-
tive to examine Ostrowski-type inequalities for I-V-Fs in [20]. The Minkowski-type inequal-
ities and Beckenbach-type inequalities for I-V-Fs were developed by Roman-Flores et al.
in [21,22]. Zhao et al. [23] discovered the Hermite-Hadamard type inequalities for interval-
valued coordinated functions very recently.

In a literature review, we noted that most of authors used inclusion relation to obtain
different types of inequalities for interval-valued functions, such as Zhao et al. [24] who,
in 2008, developed h-convex I-V-Fs (h-convex I-V-Fs) and demonstrated the following
Hermite-Hadamard type inequality (HH type inequality) for hi-convex I-V-Fs, based on the
above literature.

Theorem 1. [24] Let ¥:[u, v] CR — R be an h-convex I-V-F given by ¥(w) =
[Yi(w), ¥*(w)] for all w € [u, v], with h: [0, 1] = R* and h(%) # 0, where ¥y (w) and

¥*(w) are h-convex and h-concave functions, respectively. If ‘¥ is interval Riemann integrable (in
sort, IR-integrable), then

1 4+ 1 v 1
2h<%) 11U<‘u 2 ) 2 (IR)/M ¥(w)dw 2 [¥(p) +?(U)]/O h(¢)dg, 1)

v—H
where ¢ € [0, 1].

Yanrong An et al. [25] took a step forward by introducing the class of (h1, hy)-convex
I-V-Fs and establishing interval-valued Hermite-Hadamard type inequality for (h;, hy)-
convex I-V-Fs. We suggest that readers consult [26-28] and the references therein for more
examination of the literature on the applications and properties of generalized convex
functions and HH type integral inequalities.

On the other hand, recently, Zhang et al. [29] introduced pseudo order relation on the
space of interval and proposed the new class of convex functions in interval-valued settings
by using pseudo order relation, which is known as left and right convex I-V-Fs (LR-convex
I-V-Fs). By using this class, they established continuous Jensen’s inequalities and proved
that Jensen’s inequality defined by Costa and Roman-Flores [30] is a special case of these
inequalities. Khan et al. went a step further by providing new convex and extended
LR-convex I-V-F classes, as well as a new fractional HH type and HH type inequalities
for LR-(hy, hy)-convex I-V-F [31], LR-p-convex [-V-F [32], and LR-log-h-convex I-V-F [33],
and the references therein. We refer the readers to [31-40] and the references therein for a
further analysis of the literature on the applications and properties of fuzzy Riemannian
integrals, and inequalities and generalized convex fuzzy mappings.

Motivated and inspired by the research work of Dragomir [11], Latif et al. [16],
Hao et al. [23] and Zhang et al. [29], this paper is organized as follows: Section 2 con-
sist of some preliminary notions, and some new definitions and results. Section 3 obtains
Hermite-Hadamard and Hermite-Hadamard-Fejér inequalities for left and right convex
interval-valued functions (LR-convex I-V-Fs) on coordinates, and some related inequalities
via pseudo order relation and interval double integrals. We finalise with Section 4 of
conclusion and future plan.
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2. Preliminaries

Let R be the set of real numbers and R be the space of all closed and bounded intervals
of R, such that @ € R; is defined by

@ = [0y, @] ={w € R| 0y < w < @*},(04, @* € R).

If @, = @*, then @ is said to be degenerate. If @, > 0, then [@., @*] is called positive
interval.  The set of all positive interval is denoted by R; and defined as
R} = {[@s, @*]: [@«, @*] € R; and @, > 0}. Let ¢ € R and ¢ be defined by

lows, 0@*]if >0,
0.0= {0}ife=0, )
[e@*, 0+] if ¢ <O0.

Then, the Minkowski difference —@ , addition @ + ¢ and @ x ¢ for @, € R; are
defined by

[Csr §7] = [@4, @] = [0 — @, § — @], ®)
[ﬁ*, é*] + [CO*, (D*] = [5* +CD*, C* +(O*],

and
[Cx, C7] X @4, @] = [min{Cs@s, T @y, §:@*, @}, max{C:@«, @, +@", @™ }].
The inclusion “ O ” means that

@ D ¢ if and only if, [@,, @*] D [§+, ¢*], and if and only if @, < {4, " < @".

Remark 1. [29] (i) The relation ” <, " is defined on R by
[Es, TF] <p [@, @*|if and only if {, < w,, " < @, 4)

forall [C«, C*], [@x«, @*] € Ry, and it is a pseudo order relation. The relation G, ¢*| <p [@+, @]
coincident to [Gx, §*] < [@«, @] on Ry when itis” <, ”

(i) It can be easily seen that “ <, " looks like “left and right” on the real line R, so we call
“ <y 7 is “left and right” (or “LR” order, in short).

For [C«, C*], @+, @*| € Ry, the Hausdorff-Pompeiu distance between intervals G, ¢*| and
[, @*]is defined by

d([6+, &7, [@«, @7]) = max{|¢ — @], |¢" — @7} ®)
It is a familiar fact that (Ry,d) is a complete metric space.

Now, we recall the same concept of interval integral operators.
Theorem 2. [18] If ¥ : [u,v] C R — Ry is an I-V-F given by (x) = [¥i(x), ¥*(x)], then ¥ is

Riemann integrable over [u, v] if and only if, ¥y and ¥* both are Riemann integrable over [u,v),
such that

umf#wwz(mfﬁwwwmévwmw. ©)

The collection of all Riemann integrable real valued functions and Riemann integrable I-V-F is
denoted by Ry, o) and TRy, ), respectively.
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Note that Theorem 3 is also true for interval double integrals. The collection of all
double integrable I-V-F is denoted TO,, respectively.

Theorem 3. [35] Let A = [c, d] X [u, v] . If ¥ : A — Ry is an interval-valued double integrable
(ID-integrable) on A , then we have

(ID)/Cd /: ¥ (x, w)dwdx = (IR) /Cd(IR) /: ¥ (x, w)dwdx.

Definition 1. [11] The non-negative real valued function ¥ : A = [c, d] X [u, v] = R" is said
to be convex function on coordinate A if

Y(¢x+ (1-¢w, gy +(1-¢)z)
<&Y¥(xy) +5(1—-0)¥(xz) + (1 -8)¢¥(w,y) +(1-8)(1-¢)¥(w,2),

forall (x, y), (w,z) € A, Cand §,¢ € [0, 1]. If inequality (7) is reversed, then ¥ is called concave
function on coordinate A.

@)

Definition 2. [24] The I-V-F ¥ : [u,v] — R is said to be convex I-V-F on [, v] if
F(lx+ (1-w) 20 (x) + (1 - 0¥ (w), ®)

forall x, w € [p,v], ¢ €0, 1]. If ¥ is concave I-V-F on [y, v] , then inclusion operation in (8)
is reversed.

Definition 3. [35] The I-V-F ¥ : A — R is said to be LR-convex I-V-F on coordinate A if

Y(¢x+ (1-Qw, gy +(1-¢)z)
D5¥(xy) +E(1—-0)¥(xz2) +(1-8)c¥(w,y) +(1-8)(1-¢)¥(w,z2),

forall (x, y), (w,z) € A, and §,¢ € [0, 1]. If inequality (9) is reversed, then ¥ is called concave
I-V-F on coordinate A.

©)

Definition 4. [29] The I-V-F ¥ : [u,v] — R is said to be LR-convex I-V-F on [u, v] if
F(x+(1-0)w) <p &¥(x) + (1 - ¥(w), (10)
forall x, w € [u,v], ¢ €0, 1]. If ¥ is concave I-V-F on [u,v] , then inequality (10) is reversed.

Definition 5. [31] Let hy, hy: [0, 1] C [, v] = R, such that hy, hy0. Then, I-V-F
¥ : [u,0] — R} is said to be (hy, hy)-convex I-V-F on [u,v] if

F(Cx+(1-0w) <p h(h(1- 0¥ (x) +hi(l—Eha(5)¥ (w), (11)
forall x, w € [u,0), & € [0, 1]. If ¥ is (h1, hy)-concave on [, 0], then inequality (11) is reversed.
Remark 2. [31] If hy(Z) = 1, then (hy, hy)-convex I-V-F becomes hy-convex I-V-E, which is

F(Gx+(1-8w) <pm(O¥(x) +m(1-0)¥(w), Vx, weluo], €0, 1. (12)

If 11 () = & () = 1, then (hy, hy)-convex I-V-F becomes convex I-V-E, which is
Y(@x+(1-0w) <pf¥(x) +(1-0¥(w), Vx, we [uo], €0, 1. (13)

If 1y (&) = (&) = 1, then (I, hy)-convex I-V-F becomes P-convex I-V-F, which is

Y(ix+(1-Q)w) <p ¥(x) +¥(w), Vx, we [u0], €0, 1] (14)
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Theorem 4. [31] Let ¥, H : [u, v] — R} be two LR-(hy, hy)-convex I-V-Fs with hy, hy : [0, 1]
— R* and hy (z)hz( ) # 0, such that ¥ (x) = [ (x), ¥*(x)] and H(x) = [H.(x), H*(x)]
forall x € [y, v]. If ¥ x H is interval Riemann integrable, then

i (IR) [ ¥(x) x H(x )dx< M (u,0) [ [ (E)ha (1 — &)]%dE

(15)
+N (4,0 fo h1(&)ha(8)h (1 — §)ha(1 — ¢)dg,
and,
1 +ov +v
sy ) ) 2
<p 527 (IR) [ ¥ () H(x)dx + N (1, 0) [y [ (§)ha(1 = &))dE (16)

(x
+M(p,0) fy (&) (1= Eha(1 = §)dg

where M(p,v) = ¥(p) x ( ) +¥(0) x H(v), N(1,0) = ¥(u) x H(o) +¥(v) x H(p),
and M(p,0) = [Mu(p,0), M*(,0)] and N (p,0) = [Ni(u,0), N*(n,0)].

Remark 3. If h1(¢) = ¢ and hy(&) = 1, then (15) reduces to the result for convex I-V-F:

1 v 1 1
- UR)/V ¥(x) x H(x)dx <p 3 M(,0) + 2N (1,0), (17)
and
If h1 (&) = € and hy(&) = 1, then (16) reduces to the result for convex I-V-F:
+ 1 v 1 1
¥ ) x H(” . U) <5 (IR)/H ¥ () x H(x)dx + 2 M(p,0) + 3N (). (18)

Theorem 5. [31] Let ¥ : [y, v] = R} be a convex I-V-F with y < v, such that ¥(x) =
[Fi(x), ¥*(x)] forall x € [u, v]. If ‘I’( ) is znterwl Riemann integrable and ® : [u, v] — R,
D(x) > 0, symmetric with respect to 157, and f x)dx > 0, then

YO YR g,

Y(V+v> e _(IR) Klff(x)@(x)dx <,

If ¥ is concave I-V-F, then inequality (19) is reversed. If ®(x) = 1, then inequality (19)
reduces to the following inequality:

Y(V"zf"‘)) <p Ui]/l (IR) /:Y(x)dx <p w 20)

LR-Convex Interval-Valued Functions on Coordiantes

Definition 6. The I-V-F ¥ : A — R} is said to be LR-convex I-V-F on coordiante A if

F(x+(1=C)w, ey + (1-¢)2) 1)
<p Ge¥(x,y) +¢(1—6)¥(x,2) + (1 =¥ (w,y) + (1= 8)(1 - ¢)¥(w,2),

forall (x, y), (w,z) € A, and &, ¢ € [0, 1]. If inequality (21) is reversed, then ¥ is called concave
I-V-F on coordinate A.

The proof of Lemma 1 is straightforward and will be omitted in this case.
Lemma 1. Let ¥: A — Rff be an I-V-F on coordinate A. Then, ¥ is LR-convex I-V-F on

coordinate A, if and only if there exist two LR-convex I-V-Fs ¥y : [u,v] — R}, ¥x(w) = ¥ (x, w)
and ¥y, : [c,d) = R, Yo (y) = ¥(y, w).
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Proof. From the definition of coordinated I-V-F, it can be easily proved. [

From Lemma 1, we can easily note each LR-convex I-V-F is an LR-convex I-V-F on the
coordinate. However, the converse is not true (see Example 1)

Theorem 6. Let ¥ : A — R} bea I-V-F on A, such that

¥(x,w)=[¥(x,w), ¥'(x,w)], (22)

forall (x,w) € A. Then, ¥ is LR-convex I-V-F on coordinate A, if and only if, ¥, (x, w) and
¥*(x, w) are convex functions on coordinate A.

Proof. Assume that ¥, (x, w

) and ¥*(x, w) are convex functions on coordinate A. Then,
from (7), for all (x, y), (w

,z) €A, and ¢ € [0, 1], we have

Ye(x+(1—-¢)w, gy + (1 —¢)z)
<Ge¥e(vy) +8(1—¢)¥i(x,2) +6(1 = &) ¥e(w,y) + (1= &) (1 —¢)¥u(w, 2)
and

Y (fx+ (1 -Qw, ¢y +(1-¢)z)
<GYi(xy) +E(1—g)¥* (x,2) +¢(1 = Q) ¥ (w,y) + (1

—0)(1—¢)¥"(w,z2),
Then, by (22), (2) and (3), we obtain

Y((Gx+(1-¢Qw, gy +(1-¢)z))
= [Fu(Gx+ (1 - C) cy+(1-¢)z), ¥*(Cx+ (1 - Qw, ¢y + (1 -¢)z)],
<p Go[¥e(x,y), ¥ (x, N+ ¢(1—¢)[Fe(x,2), Tx(x,2)]
+¢(1 =) [Fe(w,y), ¥ (w,y)] + (1 =¢)(1 —g)[¥u(w,z), ¥*(w,z)].
That is

Y(¢x+(1-Qw, gy + (1-¢)z)

<p &t (0 y) +E(1=¢)¥(x,2) + (1= )c¥(w,y) + (1 = &)1 - ) ¥(w, 2),

and hence, ¥ is LR-convex I-V-F on coordinate A.Conversely, let ¥ be LR-convex I-V-F on
coordinate A. Then, for all (x, y), (w,z) € A,and &, ¢ € [0, 1], we have

Y(x+(1-0w, cy+(1-¢)z)

<p ¥ (v y) +¢(1—¢)¥(x,z) + (1 - Qc¥(wy) + (1

Therefore, again from (22), we have

-1 -g)¥(w,2).

F((lx+ (1 -8)w, cy+ (1—¢)z))
=[x+ (10w, cy+(1—¢)z), ¥*(x+ (1 -Ew, cy+ (1 —¢)z)].
From (11) and (13), we obtain

Se¥(xy) +C(1—¢)¥(x,2) + (1 = &)c¥(w,y) + (1 - &) (1 - ) ¥ (w,2)
= G6[Ye(x,y), ¥ (x,y)] +8(1 = ¢)[Fu(x, 2), ¥ (x,2)]
+(1=O[¥Fe(w,y), T (o y)] + (1 =) (1 = ¢)[Fu(w, 2), ¥7(x,2)],

for all ¢,¢ € [0, 1]. Then, by LR-convexity on coordinate of ¥, we have for all ¢,{ €
[0, 1], such that

Ye(x+(1-Q)w, sy + (1 —¢)z)

<EHe(xy) +C(1 =) ¥u(x,2) + (1 = O)c¥u(w,y) + (1 = §) (1 — ¢)¥u(w, 2),
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and

Y (Cx+ (1-Qw, gy +(1-¢)z)
<&V (v y) +6(1— o) ¥ (x,2) + (1= 8)g¥* (w,y) + (1 -)(1 —¢)¥*(w,2),

Hence, the result follows. I

Remark 4. If one takes ¥, (x,w) = ¥*(x,w) , then ¥ is known as a function on the coordinate if
Y satisfies the coming inequality

Y(¢x+(1-Qw, gy +(1—¢)z)
<EH(xy) +6(1—-60)¥(x,2) + (1 - Q¥ (w,y) + (1= 8)(1 —¢)¥(w,2),

is valid which is defined by Dragomir [11].

Let one take Y. (x,w) # ¥*(x,w) and ¥, (x, w) is an affine function and ¥*(x, w) is a
concave function. If coming inequality,

Y(x+ (1-Qw, gy +(1—-¢)z)
D&Y (xy)+¢(1—g)¥(x,z2) + (1 -8V (w,y) +(1-8)(1—¢)¥(w,2),

is valid, then ¥ is named as IVF on the coordinate, which is defined by Zhao et al. ([23],
Definition 2 and Example 2).

Example 1. We consider the I-V-Fs ¥ : [0, 1] x [0, 1] — R} defined by,
¥(x,w) = [xw, (6+e)(6+e)]

Since end point functions ¥ (x, w), ¥*(x, w) are convex functions on the coordinates.
Hence ¥ (x, w) is convex I-V-F on the coordinate.

From Example 1, it can be easily seen that each LR-convex I-V-F on the coordinates is
not a LR-convex I-V-F.

Theorem 7. Let A be a coordinated convex set, and let ¥ : A — ]RI+ be a I-V-F such that

¥(x,w) = [Fe(x, w), ¥*(x,w)], (23)
forall (x,w) € A. Then, ¥ is LR-concave I-V-F on coordinate A, if and only if, ¥y (x, w) and

¥*(x, w)are concave function on coordinate A.

Proof. The demonstration of proof of Theorem 7 is similar to the demonstration proof of
Theorem 6. [

Example 2. We consider the I-V-Fs ¥ : [0, 1] x [0, 1] — R;" defined by,
¥(x,w)=1[2(6—€")(6—¢e"),4(6—e")(6—¢")]

Since end point functions ¥ (x, w), ¥*(x, w) are concave functions on the coordinate. Hence,
¥ (x,w) is concave I-V-F on the coordinate.

3. Hermite-Hadamard Inequalities on Coordinates

In this section, we propose HH and HH-Fejér inequalities for LR-convex I-V-Fs on
coordinates, and verify with the help of some nontrivial example. Throughout in this
section, we will not include the symbols (R), (IR), and (ID) before the integral sign.

Theorem 8. Let ¥ : A — R} C Ry be a LR-convex I-V-F on coordinate A such that ¥ (x, w) =
[Fi(x, w), ¥*(x,w)] forall (x,w) € A. Then, following inequality holds:
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w550, 147) <p [t S (0 5 v 51 29 (44 ) do]
< f ¥ (x, w)dwdx

1 (24)
< g [ ¥ G [ (00

F(c,u)+¥

+4(7;17—y) Lf; ¥ (c,w)dw + f: ‘F(d,w)dw}
(d,p)+¥ (c,0)+¥(d,0)
SP 1 .

if ¥(x,w) concave I-V-F then,

()2 e S (e

(25)

1
Zp a0 [fcd ¥ (x, p)dx + fcd ¥ (x, v)dx]

+401H) f ¥ (c,w) da)+f ¥(d, w)dw}
> F(c,u +‘F(d w+¥(c, U)+‘F(d )
— 4 .

Proof. Let ¥ : A — R} be a LR-convex I-V-F on coordinate. Then, by hypothesis, we have

4?(6 ; 4 ; v) <p F(Gc+ (1 =8)d, cp+(1-8)o) +¥((1—E)e+¢d, (1-E)u+Ev).

by using Theorem 6, we have

4%, (S, 152) < ¥a(@e+ (1-8)d, gu+ (1 8)o) + (1= E)e+8d, (1- &)+ o)
4 (41,150 ) < ¥ (Ge+ (1- 0, Gt (1-8)o) +¥* (1= Qe +&d, (1- 8+ o)

By using Lemma 1, we have

2%( m) <Y, Eu+(1=8)v) + ¥ulx, (1—=8)u+3o),

. (26)
29 (3, 157) < ¥, Gt (1= 8)0) + ¥ (x, (1= )+ o),

and
2%, (%2, w) < ¥u(@e+ (1-)d, @)+ ¥a((1 - Qe +&d, w),

ZY*(T' ) S ¥ e+ (1-8)d, w) +¥*((1—&)c+¢d, w).

From (26) and (27), we have

(27)

2 (x 152) ¥ (5,157
<, ¥, 2 (1 8J0), ¥ (x, & (1~ D))
(e -2+ 20), ¥, (- + 20),

and
o (440). (48
<p [Fe(@e+ (1=08)d, w), ¥ (Gc+ (1 - 8)d, w)]
¥ (Ge+ (1= 0)d, w), ¥*(Ge+ (1 - 8)d, w)],
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it follows that
¥ (5 E50) <5 s gt (1= 800+ ¥, (1= O+ €0), )

and

¥ () <) Y+ (1=0d, @)+ ¥iee+ (1= 04, ) )

Since ¥(x,.) and ¥(., w), both are LR-convex- I-V-Fs on coordinate, then from inequal-
ity (20), inequality (28) and (29) we have

oy, 1 L ¥+ (o)
‘P(x, 7 > ST ] ¥(x,w)dw <p 5 . (30)
e d d (c,w) +¥(d, )
c+ 1 Y(c,w)+¥(dw
< <
‘I’( 5 ,w) <p d—c/c Y(x,w)dx <p > . (31)

Dividing double inequality (30) by (d — ¢), and integrating with respect to x over
[c, d], we have
d +
ﬁf ‘F(x,%)dx <, m f f Y (x, w)dwdx
(32)
<p 2d o) U ‘f’xydx—l—f ‘f’xv)dx}

Similarly, dividing double inequality (31) by (v — ), and integrating with respect to x
over [, v], we have

ﬁf:‘f’(%,w)dwg (dci f f ¥ (x, w)dwdx
(33)
§p2v ) [f ‘chdw+f ‘f’dw)dw}
By adding (32) and (33), we have
1 d +
T[d%cfc ¥ (x, 152 )dx + 5Ly [7¥ (S w)dw] < gy S S ¥ () 34)
<p g U‘I’xydx—O—f‘I’xv)dx}—l—4 U‘Pcwdw%—f‘f’dw)dw}
From the left side of inequality (20), we have
c+d u+vo 1 d p+o
<
11/( u >_pd_c/CY<x, =2 )dx, (35)
c+d p+vo 1 vofc+d
< .
‘P( ) )‘pv—y/yqj< 5 ,w)dw (36)
Taking addition of inequality (35) with inequality (36), we have
c+d p+vo 1 1 p+o 1 o (c+d
<
?(2, 2)_,,2{[1_6/6?%2 dx+v_y/y‘f’ @) dw (37)
now from right side of inequality (20), we have
1o Yl p) +¥(dp)
_— <
d—c./c Y(x, u)dx <, 7 (38)
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d d
dic/c ¥(x,v)dx <, #(c,0) —;Y( ) (39)
1 v ¥(c,v)+¥(c, )
- /ﬂ ¥(e w)dw <p 5 (40)
1 v ¥(d,v)+¥(d,u)
- /y ¥(d,w)dw <, ; 41)

—(41), we have

\/

By adding inequalities (38

1%) [fcd Y (x, u)dx + fcd 1F(x,v)alx} + ﬁ {f:‘f’(c,w)dw + f; Y(d,w)dw} (42)

Feu)+¥(dpu)+¥(co)+¥(do)
4

<p

By combining inequalities (34), (37) and (42), we obtain the desired result. [J

Remark 5. Let one take ¥, (x,w) as an affine function and ¥*(x,y) as a convex function. If
Y (x,w) # ¥*(x,w), then from Remark 4 and (24), we acquire the following inequality (see [23]):

(st 25) 2 F 5o o ()]
> 1 [ f:‘f’(x w)dwdx

D ! [fd‘f’(x,y)dx+fcd‘f’(x,v)dx}

+ 1= [f ¥ (c,w)dew + [ ¥(d, w)doo]
- Flew+¥(d, y)z‘f’(c v)-l—‘l’(d v) )

If ¥i(x, w) = ¥*(x,w), then from (24), we acquire the coming inequality (see [11]):

(e, 10) < g [ [ (o 250 e+ oy 7 (4 0) ]
< 4 Ji ¥ (x, w)dwdx

< ! Ud‘f’(x,y)dx—l—fcd‘f’(x,v)dx}

T U cwdw—i—f”‘f’dw}dw}

< Feu)+¥(dpu)+¥(co)+¥(d, v)
4

Example 3. We consider the I-V-Fs ¥ : [0, 1] x [0, 1] — R;" defined by,
¥(x) =2, 6](6+e")(6+e)

Since end point functions ¥, (x, w), ¥* (x, w) are convex functions on the coordinate, then
¥ (x, w) is convex I-V-F on the coordinate.
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HECUE 2(5+e%)2,6(6+e%) z,

1
2

(2o g (]~ o) 50, )
(dci f f ¥ (x, w)dwdx = [2(5+€) ,6(5+¢)

4(d1—c) [fcd ¥ (x, p)dx + [ ¥ (x, U)dx}

+4 {f ‘Ifcwdw+f ‘Pdw)dw} =[(5+e)(13+¢),3(5+¢)(13+¢)]
¥(c, u)-&-‘f’(d W+Y(c,0)+¥(do) _ [ (6+e)(20+e)+49 6((6+e)(20+e)+49):|
4 - 2 4 2 .

That is

2(5+e2) 2 ,6(6+e%)2 <p [4(6+et)B5+e)12(6+ 1) (5+e) |

< [26+02% 66+ ]
<p [(5+e)(13+e),3(5+¢)(13+e)]
<p [CHALE 5((6 1 ¢)(20 + ) +49)].

Hence, Theorem 8 is verified.

We now give the HH-Fejér inequality for the LR-convex I-V-Fs on the coordinate via
the pseudo order relation in the following result.

Theorem 9. Let ¥ : A = [¢, d] X [u, v] — R} bea LR-convex I-V-F on coordinate with ¢ < d
and p < v such that ¥ (x,w) = [¥i(x,w), ¥*(x,w)] forall (x,w) € A. Let D :[c, d] = R
with ®(x) > 0, deCD(x)dx > 0and W : [u, v] - R with W(w) > 0, f:W(w)da) > 0,

be two symmetric functions with respect to # and 57 H’ , respectively. Then, the following
inequality holds:

ctd pto 1 1 d o 1 [(Vy(cd
qj( 5 ) v 2[[ D(x)dx Je Yj(x’ 2 ) (x)dzx + I (ai)dai Ju HV( b ’w)W(w)dw]
f f ¥ (x,w)D(x)W(w)dwdx

Sp 7
- j@x)dxj W(w

1

<p T [fcd ¥(x, u)dx + fcd LF(x,v)dx] (43)

1

+W {f; ¥(c,w)dw + f: ‘I’(d,w)dw}

Y(cu)+¥(dp)+¥(cv)+¥(do)
v .

<p

Proof. Since ¥ both is an LR-convex I-V-Fs on coordinate A, it follows, then by Lemma 1,
that functions there exist:

Ye: o] > R, Ye(w) =¥(x,w), Yoo d = RS, ¥ulx) = ¥(x,w).
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Thus, from inequality (19), for each, we have

1I,)((V—i—v

2 ) = f:WEw)dw/y

Fx (1) + ¥x(v)

[
Fr(w)W(w)dw <, > ,

and

c+d 1 d Yow(c) + Yu(d)
Iffw( . > <, Wc/c ¥ (1) D ()dx <, ~0D T2,

The above inequalities can be written as

p+o 1 v ¥(x, ) +¥(x, 0)
(5 17) S T T <, TEEETEE,

and

c+d 1 d ¥(c,w)+¥(d w)
‘f’( 5 ,w) <p deCD(x)dx/C ¥ (x,w)D(x)dx <p > (45)

Multiplying (44) by ©(x) and then integrating the resultant with respect to x over
[c, d], we have

1T0 1 0
fcdll’(x,%)@(x)dx <p TWw)de fcd fy ¥ (x,w)D(x)W(w)dwdx (46)

Sp fd ‘f’(x,y);‘i’(x, v)g(x)dx

[

Now, multiplying (45) by W(w) and then integrating the resultant with respect to w
over [y, v], we have

v c 1 v
fy T(#,w)W(w)daJ <p o fcd fy ¥(x,w)D(x)W(w)dxdw (47)

<p f: 711/“’“});?(01’“) W(w)dw.

Since [ D (x)dx > 0and [ W(w)dw > 0, then dividing (46) and (47) by [ D (x)dx >
Oand | Cd W(w)dw > 0, respectively, we obtain

1 1 d pto 1 v c+d
2 {f;’wm I8 (x 15 )0 () + i, ‘F(?fw)w“")d“’}

<r 772 (x)dx}dw(w)dw JE LT (2, 0)D ()W (w)dwdx.

(48)
1 d ¥(x,u)+¥(x, v) 1 v ¥(cw)+¥(dw)
<p e J: T D(x)dx + W@ fy o, W(w)dw | .
Now, from the left part of double inequalities (44) and (45), we obtain
c+d y+v) 1 /” (c+d )
b4 , < Y| ——, w | W(w)dw, 49
(515 = JoW@yde o T\ e )

and

() [T
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Summing the inequalities (49) and (50), we obtain

c+d p+vo 1 1 d p+o 1 vofc+d
‘F( =B >§p2 fd’D(x)dx/c 'f’(x,z )@(x)derf:W(w)dw/y sv( . ,w)W(w)daJ G

[

Similarly, from the right part of (44) and (45), we can obtain

1 v
T, P 5 T ©2)
M
1 v Y(d, ¥(d,
W, T (oo <, TEHEE, 3)
iz
and
1 d
ot . ¥R <, TSR o
aa L TR <, TETE =
Adding (52)-(55) and dividing by 4, we obtain
1 v v
W [ ¥ (e wW(w)dw + [ ?(d,w)W(w)dw]
(56)
1 d d
+WUC Y (x, 1) (x)dx + | ‘P(x,v)i)(x)dx}

<p

Feu)+¥(c, v)+¥(dp)+¥(d, v)
7 .

Combing inequalities (48), (51) and (56), we obtain

1 d 1
‘P(#, HTJFU) <p3 o Je T("r HTH)Q("M" + Yiw f;qf(%,w)W(w)dw

TTW(w

1 d o
=r JE D (@)dx [ W (w)dew Jo [ ¥ (x, @)D ()W (w)dwdx

= W i ¥l @MW (@)dew + [1(d, @)W (w)de)

+ﬁ [ I (x, 1) D (x)dx + [ W(x,v)@(x)dx}

¥(c, Y¥(c, v ¥(d, ¥(d, v ¥ (c, ¥(d, ¥(co)+¥(d,
<, Pl ¥ ) | YUY o) | Fen i) | ¥eo) ¥ (do)

Hence, this concludes the proof. [

Remark 6. If one takes W(w) =1 = D(x) , then from (43), we achive (24).
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Let one take ¥ (x, w) is an affine function and ¥*(x,y) is a convex function. If ¥.(x, w) #
¥Y*(x,w), then from Remark 4 and (43), we obtain the coming inequality (see [23]):

1 d 1
‘f’(%,’%v) D3 (s Je ‘f/(gg#)@(x)dx—i— JiW(w)dew f:w(%,w>W(w)dw

f f ¥ (x, w)D(x)W(w)dwdx

- f D(x W(w)dw
1 v o
2 Wi Uﬂ ¥(c, w)W(w)dw + fy ‘P(d,w)W(w)dw]
1

d d
ETTT [ [ (x, 0)D (x)dx + [ sv(x,v)@(x)dx]
5 Ve P ¥lo0) | P E¥(d o) | ¥ien) ¥ | ¥ieo)+¥(do)

If ¥ (x,w) = ¥*(x, w), then from (43), we obtain the coming inequality (see [11]):

¥4 5°) < 4| o (1) <>d"+ﬁf ¥ (Fw e

IN

e dxj e f f ¥ (x, w)D(x)W(w)dwdx

= W W ¥ (e, w)W(w)dw + [} ‘P(d,w)ww)dw]

1

4de D (x)dx
< ‘f'(C/#)‘g‘f’(C/ v) 4

[fcd Y (x, u)D(x)dx + fcd ¥(x, v)@(x)dx}
¥(du)+¥(d, v) + Yieu)+¥(du) | ¥(cov)+¥(dv)
2 2 2

+

We now obtain some HH inequalities for the product of LR-convex I-V-Fs on the coor-
dinates. These inequalities are refinements of some known inequalities (see [11-13,16,23]).

Theorem 10. Let ¥, : A = [c, d] x [u, v] C R*> = R} be two LR-convex I-V-Fs on coordi-
nate A, such that ¥ (x, w) = [ (¥, w), ¥*(x,w)] and H(x,w) = [H«(x,w), H*(x,w)] for all
(x,w) € A. Then, the following inequality holds:

Ty S (@) x H(x, w)dwdx

1 1 (57)
<p 5P(c,d, u,v) + 18./\/l(c d, 1w, 0) + 5 N(c,d, pu,0).

where

P(c,d,u,v) =¥ (c,u) x H(c,u) +¥(c,v) x H(c,v)

+¥(d,u) x H(d, u) +¥(d,v) x H(d,v),

M(c,d, p,v) =¥(c, 1) x H(c,v) +¥(c,v) x H(c,u) +¥(d, u) x H(d,v)+
¥(d,v) x H(d,u) +¥(c,p) x H(d, u) +¥(d,0) x H(c,v) +¥(d, ) x H(c, )+
¥(c,v) x H(d,v),

N(c,d, u,v) =¥(c, ) x H(d,v) + ¥ (d, u) x H(c,0) +¥(d,v) x H(c,u)+
¥(d, u) x H(c,v)
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and P(c,d, u,v) , M(c,d, u,v) and N (c,d, u,v) are defined as follows:

P(c,d, u,v) = [P«(c,d, u,v), P*(c,d,u,v)],
M(c,d, u,v) = [Mul(c,d, u,v), M*(c,d,u,0)],
N(c,d, pu,v) = [Ni(c,d,u,v), N*(c,d, u,0)].
Proof. Let ¥ and # both are LR-convex I-V-Fs on coordinate [c, d] x [y, v]. Then

Y(gc+ (1—-¢)d, gu+(1—¢)v)
<p &e¥(epu) +E(1—¢)¥(c,v) +(1-¢)e¥(d )+ (1-8)(1-¢)¥(d,v),

and

H(Ge+ (1=¢8)d, gp+ (1—¢)v)
<p GeH(c,u) +E(1—g)H(c,v) + (1= &)cH(d, u) + (1 —-&)(1 —¢)H(d,v).

Since ¥ and H both are LR-convex I-V-Fs on coordinate then by Lemma 1, there exist
Yo [1,0] > R, ¥e(w) = ¥(x,w), He: [1,0] = R, He(w) = H(x,w),
and
Yo :lo,d = RS, Yo(x) =¥ (x,w), Ho:[c,d] = R}, Ho(x) = Hix,w).
Since Yy, Hy, Yw and H,, are I-V-Fs, then by inequality (17), we have

7 [H ¥ (x) X Heo(x)dx <p 3% (c) X Heo(€) + Farld) X Heo(d)]
+3[ Yole) x Hw(>+%()x%w(c) ],

and

ﬁ f: Fr(w) x Hy(w)dw <p 3[Fx (1) x Ha(p) + ¥x(0) X H(0)]
+o[ W) x Ha(0) + ¥a(u) x Ha(0) |.

The above inequalities can be written as

-+ fcd‘F(x,w) x H(x,w)dx <p 2[¥F(c,w) x H(c,w) + ¥(d,w) x H(d,w)] (58)
+i[ ¥(c,w) x H(d,w) +¥(d,w) x H(c,w) |,
and
z/%y f: ¥(x,w) x H(x,w)dw <, 2[¥(x, 1) x H(x, 1) + ¥(x,0) x H(x,0)] (59)

+1[ F(x, 1) x H(x, 1) + ¥(x,0) x H(x,0) |

Firstly, we solve inequality (58), taking integration on the both sides of inequality with
respect to w over interval [, v] and dividing both sides by v — y, we have

(dci f f ¥ (x,w) x H(x,w)dwdx
<p 3 S [¥ (0 @) x H(c,w) + ¥(d, w) x H(d, w)]dw (60)
+5m f: [‘F(aw) x H(d,w) + ¥ (d,w) x H(c,w)]dw.

Now, again by inequality (17), we have

f ‘Pcw)x?—[(c w)dw<p 3f [‘I’cy)x?—t(c 1)+ ¥(c,v) x H(c,v)]dw
+g f ) x H(c, v) (c,u) x H(c,v)|dw.

vy

(61)

Ly [ ¥ (d,w) x H(d,w)dw < 5 [[1¥(d, 1) x H(d, p) +¥(d,0) x H(d,v))dw

o)
M +g [, [¥(d, 1) x H(d,v) +‘P(d 1) x H(c,v)]dw. (62)
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(ﬁmﬁ?<)XHWWWU<%ﬁ (e,0) x H(d, 1) + ¥(e,0) x H(d,0)ldew

+% f H(d,v) +¥(c,v) x H(d, u)]dw. (63)

(viy) f ¥(d,w) x H(c,w)dw <, 3 f Y(d,u) x Hic,u) +¥(d,v) x H(c,v)]dw (64)

+6f Y(d,u) x Hc, v)+‘1”(d v) x H(c, p)]dw.
From (61)—(64), inequality (60), we have
d
GEnIcEm) /. f: Y¥(x,w) x H(x,w)dwdx
<p $P(c,d, 1, v) + 5 M(c,d, 1, 0) + %N (c,d, 1,0).
Hence, this concludes the proof of the theorem. UJ
Remark 7. Let one take ¥y (x,w), H.(x,w) are an affine function and ¥*(x,y), H*(x,y) are

convex function. If ¥, (x,w) # ¥*(x,w) and H(x,w) # H*(x,w), then from Remark 4 and
(57), we obtain the coming inequality (see [23]):

@=(o—n) f f Y(x,w) x H(x, w)dwdx
%(d%)+wM@d%)+%Nud%y

If Yo (v, w) = ¥*(x,w) and H«(x,w) = H*(x,w), then from (57), we obtain the coming
inequality (see [16]):

= C)l f f ¥(x,w) x H(x,w)dwdx
%P(C,d,y, )+ 18M(c d, 1, 0) + 5N (c,d, p,0).
Theorem 11. Let ¥, H : A = [c, d] x [u, v] C R> = R} be two d LR-convex I-V-Fs on the

coordinate, such that ¥ (x) = [¥i(x, w), ¥*(x,w)] and H(x) = [H«(x,w), H*(x, w)] for all
(x,w) € A. Then, the following inequality holds:

() (st 22)

d
<p ety S I ¥ w) X Hx w@)dedx + §Ple,d, 1, 0) )
+£M(c,d, u,v) + 3N (c,d,p,v).

where P(c,d, u,v) , M(c,d, u,v) and N (c,d, u,v) are given in Theorem 10.

Proof. Since ¥, H : A — ]RI+ be two LR-convex I-V-Fs, then from inequality (18), we have

2w (o4, 15 (o4, 150)
<p ﬁ fcd‘f’(x, ”erv) X "H(x,”TJ”U)dx
+1lw (e, 1o ch¢¥)+W@ﬂ¥)xﬂd¢¥ (66)
39 (e 1) x m(4,150) + ¥ (d, 152 x H (e 152)],
and
2w (5,457 (25,14
<p ot S (L w) < H(SE w)dw
"% ¥ %rﬂ X H %zﬂ)—k‘f’(%m) XH(Cerd,v (67)
LY (S u) x| %,0)4—‘1’(%,0) x?—l(%,y
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Summing the inequalities (66) and (67), then taking the multiplication of the resultant
one by 2, we obtain

o (e, 152) (55,15

<y e S (0 150) s M (3 152 )t 2y [ (S5 ) s (S50
527 (e 157) x H(e 157 ) + 2 (4,15 XHéMm (68)
1oy (ctd H(EL, ) + 29 (4, H (e,

+z 2% c,zﬂ;’l :H d,i‘;’l% +2¥ d/Z”;)ZH<C'ZMZZ))

A or(50) < {c) o 2(50.5) (5]

Now, with the help of integral inequality (18) for each integral on the right-hand side
of (68), we have

Z‘I’(c ”erv> X H(c, ”;v)
o Jy ¥lew) x H(c,w)dw + LW (e, u) x Hic,u) +¥(c,v) x H(c,v)] (69)

¥(d,w) x H(d,w)dw + L[¥(d,u) x H(d, ) + ¥(d,0) x H(d,0)]  (70)
[¥(d,p) x H(d,v)+¥(d,v) x H(d, )]
2¥ (¢, B2 x H (d, 12
<012f}‘:lf(c,cg) xz”;’-[?d,w)dw +
Ji) X H(d,v) +¥(c,0) x H

2% (d,15%) x H (e, 152)

ot i Y(d,w) x H(e,w)dw + §[¥(d, 1) x H(c, p) + ¥ (d,0) x H(c,0)] (72)
X H(c,v) +¥(d,v) x H(c,u)].

2% (<, ) < H (% n)
<p gee Jo Yo < Hxpdx + g [¥ (e, p) x Hie,p) + ¥(d,p) x H{d,p)]  (73)
() ) o] ()

t[¥(c,u) x H(d,p) +¥(c,0) x H(d,0)]  (71)
(d, u)]-

+ 1A
ey
~
o

<p gt [T (x0) X Hx0)dx + L[¥(c,0) x H(e,0) + ¥(d,o) x H(d,0)]  (74)
c+d
2
<p 7= fcd ¥(x, 1) x H(x,0)dx + L[¥(c, ) x H(c,v) + ¥(d, u) x H(d,0)] (75)
X

<p 7= [TW(x,0) X H(x, p)dx + L[¥(c,0) x Hic, w) + ¥ (d,0) x H(d, )] (76)
) ou(e5t) v (30) < (s50)]

+
Wl
~
"
o
+
&
(s
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From (69)—(76), we have

8‘1"(%,%” ><3’-£(ﬂ ”—Jrv)

<p d% fd‘f’(x,@) X H( Vﬂ)dx—l-% f:‘f’(%,w) X H(%,w)dx

+6(v1 m f: ¥(c,w) x Hc,w)dw + = [ ¥(d,w) X

L [Ty, 1) X H(x, p)dx + 6(d 9 fd‘f’(x,v) X H(x,v)dx (77)

+3(vl_y) fy F(e,w) x H(d, w)dw + 55—
‘P(x,y) X H(x,0)dx + ﬁ

1,v) + gM(c,d, o) + FN (e,

b@
~&
=
£
X
*
=
£
[
I

LU,0).

Now, again with the help of integral inequality (18) for first two integrals on the

right-hand side of (77), we have the following relation

2 v (x ”“’) H(x, 152 dx
mf f ¥(x,w) x H(x,w)dwdx
1

S d (78)
+aa=a Je (¥ (1) x Hx,u) + ¥(x,0) x H(x,0)]dx
[

(

)

50 fcd Y(p,x) x H(x,0) +¥(x,0) x H(x,u)]dx
b4 ,

l—C
a—
o ¥ (55h) (e )i
p(di_f f Y(x,w) x H(x, w)dwdx
f:[ ) X H(c,w) +¥(d,w) x H(d, w)]dw
=L ) X H(d, w) +¥(d,w) x H(c,w)]dw.

From (78) and (79), we have

81F(c+d u;v) % H(c;d, wzrv>

<p ey e Sy E(x @) x H(x,w)dwdx
Y(x, 1) x H(x, pu) +¥(x,0) x H(x,v)]dx

+ ¥(x, 1) X H(x,0) + ¥ (x,0) x H(x, p))dx

+W fcd fy ¥ (x,w) x H(x,w)dwdx

,w) X H(e,w) +¥(d,w) x H(d,w)]|dw

,w) x H(d,w)+¥(d, w) x H(c,w)]dw,

yw) X H(e,w)dw + g5 f ¥(d,w) x H(d,w)dw
) X H(x, ]/t)dx+6 f Y (x,v) x H(x,0)dx

) X H(d, w)dw + 3(v m f Y(d,w) x H(c,w)dw
) X H(x, v)dx—i— f Y (x,v) x H(x,u)dx
§M(c,d,u,0) + 2/\/(c d, 1, 0).

IN ¢

(79)
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=

GRS
P-ﬁ

=

R
— R

+ <

,0) X H(x,v)|dx
,0) X H(x,p)|dx (80)
d,w)x H(d,w)]|dw
w) X H(c,w)|dw
IN(c,d, p,v).
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Now, using integral inequality (17) for integrals on the right-hand side of (78), we
have the following relation

g S Cop) X Hx o <p (900 x Hie ) +¥(dp) x HEd W] gy
+§[ ¥ p) x H(d,p) + ¥(d, ) x H(e, ) ],
L fcd ¥(x,0) x H(x,0)dx <, 3[¥(c,0) x H(c,v) + ¥(d,0) x H(d,v)] 82)
+3[ ¥(c,0) x H(d,v) + ¥(d,v) x H(c,v) |,
e L0 % MO o)dx <) J[¥( ) x i) + ¥ x Hd o)) gy
FLL¥(Em) x H(d,0) + ¥(d, ) x H(G,0) |,
7 S (o) x Hx pdx <p 3[¥(c0) x Hie o) +¥(d,0) < Hdp)] (g
+3[ ¥(c,0) x H(d,u) + ¥(d,0) x H(c, 1) |
v%y f: ¥(c,w) x H(c,w)dw <, 2[¥(c, 1) x H(c,u) + ¥(c,v) x H(c,v)] (85)
+%[ ¥(c,u) x H(c,v) +¥(c,v) x H(e, ) |,
o i ¥(dw) T’H(d,w)dw <p 3[¥(d, u) x H(d, p) + ¥(d,0) x H(d,0)] (86)
+¢[ ¥(d, u) x H(d,v) +¥(d,0) x H(d,u) |,
st Sy Yo w) x H(d,w)dw <p 31¥ (e, 1) x H(d, 1) + ¥(c,v) x H(d,v)] 87)
+%[ ¥(c,u) x H(d,v) +¥(c,0) x H(d, u) |,
ﬁ f; ¥(d,w) x H(c,w)dw <, 1[¥(d, 1) x H(c,u) +¥(d,0) x H(c,v)] (88)
J-

+3[ ¥(d, u) x H(c,v) + ¥(d,0) x H(c, )
From (81)—(88) and inequality (80) we have

x

’ )
d o
Sl’m fc fy ¥(x,w) X (x,w)dwdx—l—%l’(c,d,ﬂfv)
d

+Z£M(c,d, u,v) + 3N (c,d,p,v).
This concludes the proof. [

Remark 8. Let one take ¥y (x,w), H«(x,w) as an affine function and ¥*(x,y), H*(x,y) as a
convex function. If ¥, (x,w) # ¥*(x,w) and H.(x,w) # H*(x,w), then from Remark 4 and
(65), we obtain the coming inequality (see [23]):

4?(%,“7) x M (54, 142)

D) W fc fy ¥(x,w) x H(x,w)dwdx + % P(c,d,p,0)

+3eM(c,d, i, v) + %N(c,d, 1,0).

if Yo(x,w) = ¥*(x,w) and H.(x,w) = H*(x,w), then from (65), we obtain the coming

inequality (see [16]):
41{/(C+d }H’U) XH( /‘uT)
d
< @ J: f:'f’ w) x H(x,w)dwdx + % P(c,d, 1, 0)
+% M(cdy, )+ 2N (c,d, 1, v).

4. Conclusions

We introduced LR-convex interval-valued functions on coordinates through pseudo
order relation. Moreover, we demonstrated various Hermite-Hadamard type inequalities
via LR-convexity for interval-valued functions on coordinates. Our findings broaden the
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scope of several well-known inequalities and will aid in the development of interval integral
inequalities and interval convex analysis theory. Inequalities for preinvex interval-valued
functions, as well as certain applications in interval nonlinear programming, are the next
steps for this study.

Finally, we think that our findings may be applied to other fractional calculus models
having Mittag-Liffler functions in their kernels, such as Atangana-Baleanue and Prabhakar
fractional operators. This consideration has been kept as an open problem for academics
interested in this topic. Researchers that are interested might follow the steps outlined in
references [39,40].
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