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Abstract: The two-component Camassa–Holm system and two-component Hunter–Saxton system
are completely integrable models. In this paper, it is shown that these systems admit nonlocal
symmetries by their geometric integrability. As an application, we obtain the recursion operator and
conservation laws by using this kind of nonlocal symmetries.
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1. Introduction

This paper mainly discusses nonlocal symmetries, conservation laws, and recursion
operators of the two-component Camassa–Holm system [1,2] and the two-component
Hunter–Saxton system [1,2]. These systems have Lax-pairs and bi-Hamiltonian structures,
which are completely integrable systems. It has long been known that integrable systems
have nonlocal symmetries, which is an interesting trait. The nonlocal symmetries of an
integrable equation are related to the conservation law of the equations, the exact solutions,
the Darboux transformation, and the integrability of the equations. Therefore, it is very
important to study the nonlocal symmetries of integrable equations. As an application,
we obtain the recursion operator and conservation laws by using this kind of nonlocal
symmetries.

The famous Camassa–Holm equation [3,4]

ut − uxxt = −3uxu + uuxxx + 2uxuxx (1)

was first derived by Fokas and Fuchssteiner and Camassa and Holm. This model describes
the unidirectional propagation of shallow water waves over a flat bottom. In fact, Fokas
and Fuchssteiner [4] obtained the Camassa–Holm equation through the integrability of the
KdV equation. Interestingly, Olver and Rosenau also obtained the Camassa–Holm equation
by using the tri-Hamiltonian duality method [1].

If we introduce m = u− uxx, then Equation (1) can be rewritten in the following form:

mt = −mxu− 2mux,

m = u− uxx. (2)

Olver, Rosenau and Chen Liu Zhang obtained a two-component Camassa–Holm system,
which is an extension of the Camassa–Holm equation,

mt + 2mux + umx − ρρx = 0,

ρt + (ρu)x = 0, (3)
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where m = u− uxx. They point out that this system admits bi-Hamiltonian structure and
Lax-pairs. The two-component Camassa–Holm system is also derived from the Green–
Naghdi equation by Constantin and Ivanov [5]. The two-component Camassa–Holm
system is a geodesic flow concerning the H1 metric on the semidirect product space
Di f f s(S1)n C1(S1) [6,7]. Wave breaking phenomena of system (2) that have a certain
initial value have been studied extensively. Various properties of the Camassa–Holm
equation have been studied extensively [8–10]. Reyes shows that the Camassa–Holm
equation has geometric integrability [11–14]. The Camassa–Holm equation can be obtained
from a non-stretching invariant plane curve flow in Centro-Affine differential geometry by
Chou and Qu in [15]. In Reference [16], Misiolek shows that the Camassa–Holm equation
is a geodesic flow of a right-invariant on the Virasoro group. The two-component Camassa–
Holm and Hunter–Saxton systems also have drawn much attention and have multi-peakon
solitons [5]. As an extension of the Camassa–Holm equation, µ Camassa–Holm type
equations also have geometric integrability and a bi-Hamiltonian structure, drawing much
attention [17–22].

The outline of this paper is as follows. In Section 2, the generalized symmetries
and their commutators of the two-component Camassa–Holm system are constructed. A
recursion operator for the two-component Camassa–Holm system is obtained in Section 3.
In Section 4, we construct generalized nonlocal symmetries and an infinite number of
the two-component Hunter–Saxton system. Section 5 presents a concluding remark on
this work.

2. Nonlocal Symmetries of the Two-Component Camassa–Holm System
2.1. Pseudo-Spherical Surface

Definition 1 ([23]). A scalar differential equation F(x, t, u, ux, · · · , uxn ,tm) = 0 in two indepen-
dent variables x, t is of pseudo-spherical type (or if it describes pseudo-spherical surfaces) if there
exist one-forms ωα = 0, defined as

ωα = fα1(x, t, u, · · · , uxr ,tp)dx + fα2(x, t, u, · · · , uxs ,tq)dt, α = 1, 2, 3, (4)

for which the coefficients fα,β are smooth functions that depend on x, t and a finite number of
derivatives of u, such that the one-forms ωα = ωα(u(x, t)) satisfy the structure equations given by

dω1 = ω3 ∧ω2,

dω2 = ω1 ∧ω3,

dω3 = ω1 ∧ω2,

whenever u = u(x, t) is a solution of F(x, t, u, ux, · · · , uxn ,tm) = 0.

Definition 2 ([23]). An equation F(x, t, u, ux, · · · , uxn ,tm) = 0 is geometrically integrable if it
describes a nontrial one-parameter family of pseudo-spherical surfaces.

Proposition 1 ([23]). Let F(x, t, u, ux, · · · , uxn ,tm) = 0 be a differential equation describing
pseudo-spherical surfaces with associated one-forms ωα. The following two Pfaffian systems are
completely integrable whenever u(x, t) is a solution of F(x, t, u, ux, · · · , uxn ,tm) = 0,

−2dΓ = ω3 + ω2 − 2Γω1 + Γ2(ω3 −ω2), (5)

−2dΩ = ω3 −ω2 − 2Ωω1 + Ω2(ω3 + ω2). (6)

Moreover, the one-forms

θ = ω1 − Γ(ω3 −ω2), (7)

θ̂ = −ω1 + Γ(ω3 + ω2) (8)
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are closed whenever u(x, t) is a solution of F(x, t, u, ux, · · · , uxn ,tm) = 0 and Γ (respectively, Ω) is
a solution of (5) (respectively, (6)).

Proposition 2 ([23]). The two-component Camassa–Holm system describes pseudo-spherical sur-
faces; therefore, it is geometrically integrable.

For Proposition 2, we have the one-form [8]

ω1 =

[(
ρ2 − 1

4

)
λ2 + λm +

5
4

]
dx +

[(
1
4
− ρ2

)
uλ2

+

(
1
2

ρ2 − um +
1
2

ux −
1
8

)
λ−3

4
u +

5
8

λ−1
]

dt,

ω2 =λdx−
(

λu + ux −
1
2

)
dt,

ω3 =

[(
1
4
− ρ2

)
λ2 − λm +

3
4

]
dx

+

[(
ρ2 − 1

4

)
uλ2 −

(
1
2

ρ2 − um +
1
2

ux −
1
8

)
λ

−5
4

u +
3
8

λ−1
]

dt,

(9)

which is associated with two-component Camassa–Holm system.

Theorem 1 ([8]). The two-component Camassa–Holm system admits a quadratic pseudo-potential
α, which is defined by the system

αx = −α2 + λ2ρ2 + λm + 1
4

αt =
[(

1
2λ − u

)
α + 1

2 ux

]
x

(10)

where λ 6= 0, m = u− uxx

As an application, an infinite number of conservation laws with Equation (10) can be
obtained. We expand α as

α =
∞

∑
n=−2

αn(x, t)λ−
n
2 (11)

Furthermore, we substitute the above equation into the conservation law described by
Equation (10) and possess the parameter λ. The following system on αj has been obtained:

α2
−2(x, t) = ρ,
−2α−1(x, t)α−2(x, t) = 0,
α2
−2,x = −α2

−1(x, t)− 2α0(x, t)α−2(x, t) + m,
. . .

(12)

Thus, we calculate an infinite number of conservation laws of the two-component Camassa–
Holm equation. The first three conservation densities are given by

H1 =
∫

ρdx,
H2 =

∫ m
ρ dx

H3 =
∫ ρ3

x+ρ2−ρm2

ρ3 dx
(13)

Now, if we set
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α =
∞

∑
n=0

αn(x, t)λ
n
2 , (14)

then Equation (10) can be rewritten as(
∞

∑
n=0

αn(x, t)λ
n
2

)
x

= −
(

∞

∑
n=0

αn(x, t)λ
n
2

)2

+ λm + λ2ρ2 +
1
4

(15)

The following system on αj(x, t) has been obtained:

α0,x = −α0(x, t)2 +
1
4

, (16)

α1,x = −2α0(x, t)α1(x, t), (17)

α2,x = −2α0(x, t)α2(x, t)− α1(x, t)2 + m, (18)

· · · (19)

As a result, the first three conservation functionals are constructed,

H1 =
∫

u dx, (20)

H2 =
∫ (

ρ2 − u2 − u2
x

)
dx, (21)

H3 =
∫
(p4 − 2p2u2 + 4p2uux − 2p2u2

x + u4 + 6u2u2
x (22)

− 4uu3
x + u4

x + p2u− p2ux − u3 − 3uu2
x + u3

x)dx. (23)

We obtain the same conservation densities as in [8], where the pseudo-potential function
expands on “λn” and “λ−n”.

2.2. Nonlocal Symmetries for the Two-Component Camassa–Holm System

Definition 3 ([11]). Let N be a nonzero integer or N = ∞. An N−dimensional covering π of a
(system of) partial differential equation(s) Fa = 0, a = 1, · · · , k, is a triplet

(αb, b = 1, · · · , N; Xib, b = 1, · · · , N, i = 1, · · · , N; D̃i, i = 1, · · · , n) (24)

of variables αb, smooth functions Xib depending on xi, uα, αb, and a finite number of partial
derivatives of uα, and linear operators

D̃i = Di +
N

∑
b=1

Xib
∂

∂αb , (25)

such that equations

D̃i(Xjb) = D̃j(Xib), i, j = 1, · · · , n, b = 1, · · · , N (26)

hold whenever uα(Xi) is a solution of Fa = 0.

Definition 4 ([11]). Let Fa = 0, a = 1, · · · , k be a system of partial differential equations, with
π = (αb, Xi,b, D̃i) a covering of Fa = 0. A nonlocal π-symmetry of Fa = 0 is a generalized symmetry

X = ∑
a

Ga ∂

∂ua + ∑
b

Hb ∂

∂ub (27)

of the augmented system
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Fa = 0, (28)

∂αb

∂xi = Xib, (29)

Now, a pseudo-potential α in Equation (10) has been defined. Then, the potential
function δ is defined as

δx = α, (30)

δt =

(
1

2λ
− u

)
α +

1
2

ux (31)

Based on the infinitesimal criteria [24] for symmetries, the two-component Camassa–Holm
system admits the following evolutionary vector field,

W =αe2δ ∂

∂u
−
[
2λ2ρρx + λmx +

(
4λ2ρ2 + 4λm

)
α
]
e2δ ∂

∂m
,

− λ(ρx + 2αρ)e2δ ∂

∂ρ
.

(32)

If we introduce β(x, t), which satisfies the following system,

βx = −e2δ
(

2λ3ρ2 + λ2m
)

, (33)

βt = e2δ

(
−α2

2
+ 2λ3uρ2 + λ2um− 1

2
λ2ρ2 +

1
8

)
. (34)

then the two-component Camassa–Holm system admits the following nonlocal symmetry:

V =αe2δ ∂

∂u
−
[
2λ2ρρx + λmx +

(
4λ2ρ2 + 4λm

)
α
]
e2δ ∂

∂m

− λ(ρx + 2ρα)e2δ ∂

∂ρ
−
(

2λ3ρ2 + λ2m
)

e2δ ∂

∂α

+ β
∂

∂δ
+
[

β2 +
(

3λ4ρ2 + λ3m
)

e4δ
] ∂

∂β
.

(35)

This result has been proved in [8].

Theorem 2. The generalized symmetries for the augmented two-component Camassa–Holm
system (10), (30), and (36) admit the following vector fields,
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V1 = (−2uxm− umx − ρρx)
∂

∂m
− ut

∂

∂u
− (ρu)x

∂

∂ρ

+

((
1

2λ
− u

)
α +

1
2

ux

)
x

∂

∂α
+

((
1

2λ
− u

)
α +

1
2

ux

)
∂

∂δ

+ e2δ

(
−α2

2
+ 2λ3uρ2 + λ2um− 1

2
λ2ρ2 +

1
8

)
∂

∂β
,

V2 = mx
∂

∂m
+ ux

∂

∂u
+ ρx

∂

∂ρ
+

(
−α2 + λ2ρ2 + λm +

1
4

)
∂

∂α

+ α
∂

∂δ
+
(
−e2δ

(
2λ3ρ2 + λ2m

)) ∂

∂β
,

V3 =
∂

∂δ
+ 2β

∂

∂β
,

V4 =
∂

∂β
,

V5 = αe2δ ∂

∂u
−
[
2λ2ρρx + λmx +

(
4λ2ρ2 + 4λm

)
α
]
e2δ ∂

∂m

− λ(ρx + 2ρα)e2δ ∂

∂ρ
−
(

2λ3ρ2 + λ2m
)

e2δ ∂

∂α

+ β
∂

∂δ
+
[

β2 +
(

3λ4ρ2 + λ3m
)

e4δ
] ∂

∂β
.

(36)

The proof of the above theorem is a straightforward computation.

Corollary 1. The five nonlocal symmetries (36) generate a Lie algebra E, and their commutators
are presented in Table 1.

Table 1. The commutation table of the two-component Camassa–Holm system’s nonlocal
symmetry algebra.

V1 V2 V3 V4 V5

V1 0 0 0 0 0
V2 0 0 0 0 0
V3 0 0 0 −2V4 2V5
V4 0 0 2V4 0 V3
V5 0 0 −2V5 −V3 0

3. Recursion Operators for the Two-Component Camassa–Holm System

Set α as

α =
ψx

ψ
= (ln ψ)x, (37)

where α is determined by the pseudo-potential Equation (10). The function ψ satisfies the
second-order linear problem

ψxx = ψλ2ρ2 + ψλm +
ψ

4
. (38)

The potential δ can be written as

δx = α, (39)

then, we have

δ = ln ψ. (40)
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Now, the function G = αe2δ can be rewritten as

G(x, t) = ψxψ. (41)

Furthermore, we know that the shadow G(x, t) satisfies

D−1
x G =

ψ

2
, (42)

DxG = ψxxψ + ψ2
x, (43)

DxxG = ψxxxψ + 3ψxxxψx. (44)

Using Equation (38), we obtain

2λψxxψx = ψxψm +
λψxψ

2
. (45)

In contrast, from Equation (43), ψxxψ can be written as

λψxxψx =
Gx

6
− λψxxxψ

3
. (46)

In the above equation, the term ψψxxx can be obtained by taking the x-derivative of
Equation (38) and multiplying the resulting equation by 2λψx,

2λψxxxψ = ψxψm + ψ2mx +
λψxψ

2
(47)

Then, we have

2λψxxψx =
Gxx

3
−
(

D−1
x G(x, t)

)
mx

3λ
− G(x, t)m

6λ
− G(x, t)

12
. (48)

The function G(x, t) satisfies the following equation by replacing (45) in Equation (48):

0 =
Gxx

3
−
(

D−1
x G(x, t)

)
mx

3λ
− G(x, t)m

6λ
− G(x, t)

12
− G(x, t)(λ + 2m)

4λ
(49)

As a result, Equation (49) can lead to

λG =
(

D2
x − 1

)−1(
mxD−1

x + 2m
)

G. (50)

The pseudo-differential operator

Q =
(

D2
x − 1

)−1(
mxD−1

x + 2m
)

(51)

is precisely the recursion operator for the two-component Camassa–Holm system.

4. Nonlocal Symmetries of the Two-Component Hunter–Saxton System

The two-component Hunter–Saxton system

mt + 2mux + umx − ρρx = 0,

ρt + (ρu)x = 0, (52)

m = u− uxx
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describes a pseudo-spherical surface with the following associated one-form:

ω1 =

[(
ρ2 − 1

4

)
λ2 + λm + 1

]
dx +

[(
1
4
− ρ2

)
u

+

(
1
2

ρ2 − um +
1
2

ux −
1
8

)
λ−u +

1
2

λ−1
]

dt

ω2 =λdx−
(

λu + ux −
1
2

)
dt

ω3 =

[(
1
4
− ρ2

)
λ2 − λm + 1

]
dx

+

[(
ρ2 − 1

4

)
uλ2 −

(
1
2

ρ2 − um +
1
2

ux −
1
8

)
λ

−u +
1
2

λ−1
]

dt.

(53)

Theorem 3. The two-component Hunter–Saxton system admits the quadratic pseudo-potential α
defined by the system

αx =− α2 + λ2ρ2 + λm,

αt =

(
u− 1

2λ

)
α2 − uxα− λ2uρ2 + λ

(
ρ2

2
− um

)
.

(54)

where m = −uxx, and parameterλ 6= 0.

Now, we construct an infinite number of conservation laws of the two-component
Hunter–Saxton system with the pseudo-potential α. Set

α =
∞

∑
n=−2

αn(x, t)λ−
n
2 . (55)

Substituting this into Equation (52), one obtains the equations for the coefficient function
αi,x, i = −2,−1, 0, · · · ,

∞

∑
n=−2

(αn)xλ−
n
2 = −

(
∞

∑
n=−2

αn(x, t)λ−
n
2

)2

+ λm + λ2ρ2 (56)

Comparing the coefficients of λ−i, we obtain the following equations for αi, i = −2,−1, 0, · · · :

α2
−2(x, t) = ρ,
−2α−1(x, t)α−2(x, t) = 0,
α2
−2,x = −α2

−1(x, t)− 2α0(x, t)α−2(x, t) + m,
. . .

(57)

Then, the αi, i = −2,−1, 0, · · · can be determined recursively. The first three conservation
densities are presented as follows:

H1 =
∫

ρdx,
H2 =

∫ m
ρ dx

H3 =
∫ ρ2

x−ρm2

ρ3 dx.
(58)

If we set

α =
∞

∑
n=0

αn(x, t)λ
n
2 , (59)
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then one pbtains the equations for the coefficient functions αi,x, i = 0, 1, 2, · · · ,(
∞

∑
n=0

αn(x, t)λ
n
2

)
x

= −
(

∞

∑
n=0

αn(x, t)λ
n
2

)2

+ λm + λ2ρ2, (60)

Comparing the coefficients of λi, the following equations for αi are obtained:

α0,x = −α0(x, t)2,

α1,x = −2α0(x, t)α1(x, t),

α2,x = −2α0(x, t)α2(x, t)− α1(x, t)2 + m,

· · · .

Then, the αi, i = 0, 1, 2, · · · can be determined, and conservation densities are presented
as follows:

H1 =
∫ (

ρ2 − u2
x

)
dx,

H2 =
∫
(p4 − 2p2u2 + 4p2uux − 2p2u2

x + u4 + 6u2u2
x

− 4uu3
x + p2u− p2ux − 3uu2

x + u3
x)dx

· · · .

Now, we consider the two-component Hunter–Saxton system’s nonlocal symmetries. Sys-
tem (52) can be rewritten as

αx = −α2 + λ2ρ2 + λm + 1
4

αt =
[(

1
2λ − u

)
α + 1

2 ux

]
x

(61)

where m = −uxx. Furthermore, the potential function δ(x, t) is defined as

δx = α, (62)

δt =

(
1

2λ
− u

)
α +

1
2

ux (63)
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Theorem 4. The following vector fields are the generalized symmetries for the augmented two-
component Hunter–Saxton system (52) and (61)–(63).

V1 = (−2uxm− umx − ρρx)
∂

∂m
− ut

∂

∂u
− (ρu)x

∂

∂ρ

+

((
1

2λ
− u

)
α +

1
2

ux

)
x

∂

∂α
+

((
1

2λ
− u

)
α +

1
2

ux

)
∂

∂δ

+ e2δ

(
−α2

2
+ 2λ3uρ2 + λ2um− 1

2
λ2ρ2

)
∂

∂β
,

V2 = mx
∂

∂m
+ ux

∂

∂u
+ ρx

∂

∂ρ
+
(
−α2 + λ2ρ2 + λm

) ∂

∂α

+ α
∂

∂δ
+
(
−e2δ

(
2λ3ρ2 + λ2m

)) ∂

∂β
,

V3 =
∂

∂δ
+ 2β

∂

∂β
,

V4 =
∂

∂β
,

V5 = αe2δ ∂

∂u
−
[
2λ2ρρx + λmx +

(
4λ2ρ2 + 4λm

)
α
]
e2δ ∂

∂m

− λ(ρx + 2ρα)e2δ ∂

∂ρ
−
(

2λ3ρ2 + λ2m
)

e2δ ∂

∂α

+ β
∂

∂δ
+
[

β2 +
(

3λ4ρ2 + λ3m
)

e4δ
] ∂

∂β
.

(64)

where

βx = −e2δ
(

2λ3ρ2 + λ2m
)

, (65)

βt = e2δ

(
−α2

2
+ 2λ3uρ2 + λ2um− 1

2
λ2ρ2

)
. (66)

In addition, the following Corollary can be obtained.

Corollary 2. The nonlocal symmetries (64) generate a Lie algebra E, and their commutators are
presented in Table 2.

Table 2. The commutation table of the two-component Hunter–Saxton system’s nonlocal symme-
try algebra.

V1 V2 V3 V4 V5

V1 0 0 0 0 0
V2 0 0 0 0 0
V3 0 0 0 −2V4 2V5
V4 0 0 2V4 0 V3
V5 0 0 −2V5 −V3 0

5. Concluding Remarks

We have shown that the two-component Camassa–Holm system and the two-component
Hunter–Saxton system admit a class of nonlocal symmetries, and the recursion operator of
the two-component Camassa–Holm system is constructed by using its potential variables.
Thus, these kinds of nonlocal symmetries and recursion operators are related to the systems’
integrability. It is well-known that the Novikov equation and Degasperis–Procesi equation
are geometric integrable models, and their spectral matrix is 3× 3. It is difficult to define
a pseudo-potential function using the 3× 3 spectral matrix. However, it is interesting to
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investigate the existence of nonlocal symmetries and recursion operators, which will be
our future study.
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