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Abstract: The Q-rung dual hesitant fuzzy (q-RDHF) set is famous for expressing information com-
posed of asymmetry evaluations, because it allows for several possible evaluations in both the
membership degree and non-membership degree. Compared with some existing extended fuzzy
theories, the q-RDHF set is more superior and flexible because it can handle asymmetric assessments.
In order to assemble the evaluation information expressed by q-RDHF elements, this paper aims
to propose new operators to integrate q-RDHF elements. The partitioned Bonferroni mean (PBM)
operator is well-known for its advantages in coping with the inhomogeneous relationship between
asymmetry input arguments. In this paper, we combine the PBM operator with the power average
operator, and propose a family of q-RDHF power PBM operators. Some theorems and special cases
for the new proposed operators are discussed. Furthermore, we provide a general framework for deal-
ing with multiple attribute decision-making (MADM) problems using the novel proposed method.
To better show the calculation details, a numerical case study of the application of the proposed
method in a superintendent selection problem is introduced. In addition, we utilize the proposed
method to compare it with some existing methods in order to show its flexibility and superiority. The
results show that our method is much more advantageous when considering flexible actual situations.
Finally, the conclusion is given. The main contributions of this study are to propose an appropriate
method to solve unbalanced and asymmetry information in a q-RDHF environment, and to apply it
into a realistic superintendent selection problem.

Keywords: q-rung dual hesitant fuzzy set; partitioned Bonferroni mean operator; multiple attribute
decision-making problem

1. Introduction

Multiple attribute decision-making (MADM) problems are very common in modern
society, and the aim is to select the most appropriate alternative from several possible
options with respect to a set of attributes [1,2]. In real-world situations, decision makers
(DMs) often feel hesitant or uncertain when providing crisp single numbers due to a lack of
information or a tight schedule. To solve this problem, a family of fuzzy theories have been
proposed. Zadeh [3] first proposed the fuzzy sets to capture uncertain and fuzzy informa-
tion with a membership degree (MD). Then, Atanassov and Rangasamy [4] introduced the
concept of intuitionistic fuzzy sets by adding a non-membership degree (NMD), which
created a symmetric information expression method. Considering that the intuitionistic
fuzzy sets are limited in that the sum of MD and NMD is smaller or equal to one, Yager [5]
provided the concept of Pythagorean fuzzy sets, which extend the constraint to the square
sum of MD, and NMD is not greater than one. Furthermore, Yager [6] gave the definition
of q-rung orthopair fuzzy sets, which are a generalized form of intuitionistic fuzzy sets
and Pythagorean fuzzy sets. The q-rung orthopair fuzzy sets only require that MD and
NMD are in [0,1], and that the sum of the qth power of MD and NMD is no larger than
one. However, there are situations where DMs are hesitant to select the most appropriate
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evaluation among several possible assessments. Therefore, Torra [7] gave the definition
of hesitant fuzzy sets, which allowed for several possible evaluations as a set of MDs
simultaneously. In order to improve the symmetry of the information description and make
it more accurate, Zhu et al. [8] proposed the definition of dual hesitant fuzzy sets, which
allow for several possible evaluations to express the MDs and NMDs, respectively. For
example, in an MADM problem, if DM is not sure whether to provide 0.7 or 0.8 as the MD,
and is also uncertain about whether to give 0.1, 0.2, or 0.3 as the NMD, they can give their
evaluation as {{0.7, 0.8}, {0.1, 0.2, 0.3}}. We can see that the dual hesitant fuzzy sets are an
extension of intuitionistic fuzzy sets, and can not only describe the symmetry information,
but also the asymmetry information. However, dual hesitant fuzzy sets require that the
sum of the maximum values of MD and NMD is not greater than one, that is, if the DM
wants to provide {{0.7, 0.8}, {0.1, 0.3}} as the final evaluation, then it is no longer a dual
hesitant fuzzy number. To address this, Wei and Lu [9] extended the dual hesitant fuzzy
sets to a Pythagorean fuzzy environment and proposed the dual hesitant Pythagorean
fuzzy sets (DHPFSs). DHPFSs relaxed the restriction to the square sum of the maximum
values of MD, and NMD is not greater than one. Once proposed, DHPFSs received wide
usage. Tang and Wei [10] utilized the Bonferroni mean operator to aggregate the evaluation
information under dual hesitant Pythagorean fuzzy environments and gave the definition
of the DHPFS Bonferroni mean operator. Wei and Lu [9] studied a novel MADM method
based on the dual hesitant Pythagorean fuzzy Hamacher aggregation operators, and ap-
plied the proposed method to a supplier selection problem in supply chain management.
Wei et al. [11] introduced a Hamy mean operator to DHPFSs to explore a more flexi-
ble method for dealing with problems of interactive property relationships. All of these
methods have illustrated the potential advantages of DHPFSs. Subsequently, Xu and col-
leagues [12] found that the information DHPFSs carries is still insufficient to solve MADM
problems with a high degree of complexity, thus they proposed the concept of q-rung dual
hesitant fuzzy sets (q-RDHFSs). As a generalized form of fuzzy set theory, q-RDHFSs
provides DMs the maximum freedom to express their opinions based on their individual
preferences. This is because q-RDHFSs utilize a parameter value q to reconcile the rela-
tionship between 1 and the sum of the maximum values of MD and NMD. To do this, one
needs to find an appropriate q to make the sum of the qth power of maximum values of MD
and NMD smaller or equal to one. Q-RDHFSs adsorb the advantages of q-rung orthopair
fuzzy sets [6] and dual hesitant fuzzy sets [8], and their characters and superiorities in
depicting decision makers’ fuzzy evaluation values are evident. Many methods, such as,
Wang et al. ‘s [13] method based on a dual hesitant q-rung orthopair fuzzy Muirhead mean
operator, Kou et al.’s [14] novel q-rung dual hesitant fuzzy MADM method based on en-
tropy weights, Yang et al.’s [15] extension TOPSIS method under a q-RDHFSs environment,
and Shao et al.’s [16] general framework that investigated the multi-granulation rough
decision-making method under q-RDHFSs situations, all demonstrate that q-RDHFSs have
a wide application scope. However, existing methods of q-rung dual hesitant fuzzy ele-
ments (q-RDHFEs) only consider the homogeneous relationship, which are inadequate for
resolving some realistic decision-making issues.

Aggregation operators (AOs) are used to fuse attribute values in the process of
MADM [17]. An increasing number of scholars have realized the existence of interre-
lationship among attributes, which is important for aggregating attribute values. The
Bonferroni mean (BM) [18] is a family of AOs whose capability of effectively absorbing the
relationship among arguments that have to be aggregated has gained great interests [19–21].
It should be emphasized that BM is based on the assumption of homogeneous correlations
among attributes; however, such a relationship is usually inhomogeneous or unbalanced
in most practical decision situations. It is highly necessary to reasonably consider such
a heterogeneous interrelationship and to appropriately calculate the overall evaluation
values of the alternatives. Therefore, Dutta and Guha [22] proposed a new form of BM, viz.
partitioned BM (PBM), which is suitable for situations where some attributes are related and
others are not. PBM classifies all attributes into several partitions, takes the interrelationship
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among attributes in the same partitions, and conducts the average operation of all partitions.
This mechanism allows PBM to reflect the inhomogeneous relationship among attributes,
which is suitable for solving real MADM issues and has gained much attention [23–25]. In
addition, DMs may provide extremely high or extremely low evaluations due to personal
preferences, which may have negative influences on the final decision result. The power
average operator is well-known for dealing with this kind of issue. In order to be able to
solve the inhomogeneous relationship and extreme values simultaneously, the combination
of a power average operator and PBM operator are employed in many fuzzy situations.
For example, Qin et al. [26] investigated a novel method based on weighted Archimedean
power partitioned Bonferroni mean (PPBM) operators. Zhu et al. [27] extended the PPBM
operator to the Pythagorean fuzzy environment and applied the proposed method to
multi-attribute group decision-making problems. However, to the best of our knowledge,
there are no studies that introduce the PPBM operator to q-RDHFSs. Therefore, in this
study, we extend the PPBM operator into q-RDHFSs and propose a family of q-rung dual
hesitant fuzzy PBM (q-RDHFPBM) operators.

The novelties and contributions of this paper mainly contain three aspects. (1) Novel
AOs of q-RDHFEs are proposed, which are able to capture the unbalanced interrelationship
among the aggregated q-RDHFEs. (2) The novel proposed operator can not only capture
the interrelationships between any two attributes, but can also reduce the extremely high or
extremely low evaluations. (3) We extend the application range of the PPBM operator under
q-RDHFSs and utilize an actual superintendent selection problem to show the advantages
of the proposed method. Selecting the appropriate AOs to capture the unbalanced and
asymmetry information is also a research difficulty of this study.

The rest of this study is organized as follows. Section 2 recalls concepts of the q-
rung dual hesitant fuzzy sets, the power average operator, and the partitioned Bonferroni
mean operator. Based on this, definitions of a family of q-rung dual hesitant fuzzy power
partitioned Bonferroni mean operators are proposed in Section 3. In Section 4, we provide
a general framework for utilizing the proposed method to solve MADM problems. In order
to further illustrate the application process and the advantages of the proposed method, we
employ a superintendent selection problem as a numerical case study and provide detail
calculation steps in Section 5. Section 6 concludes the study.

2. Related Concepts
2.1. The q-Rung Dual Hesitant Fuzzy Sets

In this section, we recall the concept of q-rung dual hesitant fuzzy sets introduced
by Xu et al. [12], which is constructed by a set of membership degrees and several non-
membership degrees.

Definition 1 ([12]). Let X be an ordinary fixed set, a q-RDHFS A defined on X is given by

A = { 〈x, hA(x), gA(x)〉|x ∈ X} (1)

in which h(x) and g(x) are two sets of values in [0,1], denoting the possible membership degrees
and non-membership degrees of the elements x ∈ X to the set A, respectively, with the following
conditions:

γq + ηq ≤ 1(q ≥ 1)

where γ ∈ hA(x), η ∈ gA(x) for all x ∈ X. For convenience, the pair d(x) = (hA(x), gA(x))
is called a q-rung dual hesitant fuzzy element (q-RDHFE), denoted by d = (h, g), with the
conditions: γ ∈ h, η ∈ g, 0 ≤ γq + ηq ≤ 1. Evidently, when q = 2, then q-RDHFS is reduced to
Wei and Lu’s dual hesitant Pythagorean fuzzy set (DHPFS) [12], and when q = 1, then q-RDHFS
is reduced to Zhu et al.’s [8] dual hesitant fuzzy set (DHFS).
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Remark 1. It can be seen from Definition 1 that q-RDHFS can handle the asymmetries in symmetric
information. Every q-RDHFE is composed of MDs and NMDs, which shows its ability in describing
symmetry. In addition, the characteristic that it allows for different numbers of possible evaluations
in MDs and NMDs demonstrates its asymmetry. Actually, symmetry is a special case of asymmetry.
When DMs provide only one element in both MD and NMD, then q-RDHFS reduces to a q-rung
orthopair fuzzy set [6], which is well known for its powerful symmetric information processing
ability.

To compare any two q-RDHFS, Xu et al. [12] proposed the following comparison laws.

Definition 2 ([12]). Let d = (h, g) be a q-RDHFE, S(d) =

(
1

#h ∑
γ∈h

γ

)q

−
(

1
#g ∑

η∈g
η

)q

be the

score function of d, and H(d) =

(
1

#h ∑
γ∈h

γ

)q

+

(
1

#g ∑
η∈g

η

)q

be the accuracy function of d, where

#h and #g are the numbers of the elements in h and g, respectively, then, let di = (hi, gi)(i = 1, 2)
be any two q-RDHFEs, we have the following comparison laws:

(1) if S(d1) > S(d2), then d1 > d2;
(2) if S(d1) = S(d2), then

if H(d1) > H(d2), then d1 > d2;
if H(d1) = H(d2), then d1 = d2.

Moreover, some operations of q-RDHFEs are defined by Xu et al. [12].

Definition 3 ([12]). Let d = (h, g), d1 = (h1, g1) and d2 = (h2, g2) be any three of q-RDHFEs,
and λ be a positive real number, then

(1) d1 ⊕ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{(
γ

q
1 + γ

q
2 − γ

q
1γ

q
2

) 1
q
}

, {η1η2}
}

;

(2) d1 ⊗ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2},

{(
η

q
1 + η

q
2 − η

q
1η

q
2

) 1
q
}}

;

(3) λd = ∪γ∈h,η∈g

{{(
1− (1− γq)λ

) 1
q
}

,
{

ηλ
}}

, λ > 0;

(4) dλ = ∪γ∈h,η∈g

{{
γλ
}

,
{(

1− (1− ηq)λ
) 1

q
}}

, λ > 0.

In addition, Kou et al. [14] introduced the distance measurement method between any
two q-RDHFEs.

Definition 4 ([14]). Let d1 = (h1, g1) and d2 = (h2, g2) be any two q-RDHFEs, then the distance
between d1 and d2 is defined as

dis(d1, d2) =

(
1

#h + #g

(
#h

∑
i=1

∣∣∣(γ1
i

)q
−
(

γ2
i

)q∣∣∣+ #g

∑
j=1

∣∣∣(η1
j

)q
−
(

η2
j

)q∣∣∣)) (2)

where γ1
i ∈ h1, γ2

i ∈ h2, η1
j ∈ g1, η2

j ∈ g2. #h is the number of elements in h1 and h2, #g is the
number of elements in g1 and g2.

It is important to note that the original q-RDHFEs should be symmetrical when utilizing
Definition 4 to calculate the distance. Therefore, Kou et al. [14] proposed the following procedure to
normalize q-RDHFEs.

Remark 2 ([14]). Let d1 = (h1, g1) and d2 = (h2, g2) be any two q-RDHFE, it should be noted
that if we want to calculate the distance between any two q-RDHFEs, we need to guarantee that
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#h1 = #h2 and #g1 = #g2. Therefore, the following standardized method for q-RDHFEs is
proposed by Kou et al. [14].

Let
d1 = (h1, g1) =

{{
γ1

1, γ1
2, · · · , γ1

#h1

}
,
{

η1
1 , η1

2 , · · · , η1
#g1

}}
and

d2 = (h2, g2) =
{{

γ2
1, γ2

2, · · · , γ2
#h2

}
,
{

η2
1 , η2

2 , · · · , η2
#g2

}}
If #h1 < #h2 and #g1 > #g2, then there are usually two methods to normalize d1 and d2.

When DMs are optimistic, we can extend d1 to d2 by adding the largest values in h1 and g2. When
DMs are pessimistic, we can extend d1 to d2 by adding the smallest values in h1 and g2. For
convenience, we suppose that all the DMs in this manuscript are optimistic.

2.2. The Power Average Operator

Definition 5 ([6]). Let ai(i = 1, 2, · · · , n) be a collection of non-negative crisp numbers. If

PA(a1, a2, · · · , an) =
n

∑
i=1

 (1 + T(ai))ai
n
∑

k=1
(1 + T(ak))

 (3)

then PA(a1, a2, · · · , an) is called the power average operator (PA), where T(ai) =
n
∑

j=1,j 6=i
Sup

(
ai, aj

)
and Sup

(
ai, aj

)
is the support foraifromaj, satisfying the following properties:

(1) Sup
(
ai, aj

)
∈ [0, 1];

(2) Sup
(
ai, aj

)
= Sup

(
aj, ai

)
;

(3) Sup(a, b) ≥ Sup(c, d), if |a− b| ≥ |c− d|.

In the following, we recall the concept of the partitioned Bonferroni mean (PBM)
operator and partitioned geometric Bonferroni mean (PGBM) operator.

Definition 6 ([22]). For any s, t ≥ 0 with s + t > 0 and T = {a1, a2, . . . , an}, which is
partitioned into e distinct sorts P1, P2, . . . , Pe, where Pi ∩ Pj = φ and ∪e

f=1Pf = T. The
partitioned BM aggregation operator is defined as

PBMs,t(a1, a2, . . . , an) =
1
e

 e

∑
f=1

 1∣∣∣Pf

∣∣∣ ∑
i∈Pf

as
i

 1∣∣∣Pf

∣∣∣− 1
∑

j∈Pf ,j 6=i
at

j

 1
s+t
 (4)

where
∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is the number of partitioned sort,s and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n.

Some important theorem results from Equation (4) can be obtained as follows:

Theorem 1 (Idempotency). Let s, t ≥ 0 and ai = a for all i = 1, 2, . . . , n. Then

PBM(a, a, . . . , a) = a (5)

Theorem 2 (Monotonicity). Let s, t ≥ 0 and ai ≤ bi for all i = 1, 2, . . . , n. Then

PBM(a1, a2, . . . , an) ≤ PBM(b1, b2, . . . , bn) (6)
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Theorem 3 (Boundedness). Let al = min
i

ai and au = max
i

ai. Then, for any s, t ≥ 0

al ≤ PBM(a1, a2, . . . , an) ≤ au (7)

2.3. The Partitioned Bonferroni Mean Operator

Definition 7 ([22]). For any s, t ≥ 0 with s + t > 0 and T = {a1, a2, . . . , an}, which is
partitioned into e distinct sorts P1, P2, . . . , Pe, where Pi ∩ Pj = φ and ∪e

f=1Pf = T. The
partitioned geometric BM (PGBM) aggregation operator is defined as

PGBMs,t(a1, a2, . . . , an) =

 e

∏
f=1

 1
s + t ∏

i,j∈Pf ,j 6=i

(
sai + taj

) 1
|Pf |(|Pf |−1)

 1
e

(8)

where
∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is the number of partitioned sort,s and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n.

3. The Q-Rung Dual Hesitant Fuzzy Partitioned Bonferroni Mean Operators

In this section, we extend PBM to q-RDHFSs and propose some new q-rung dual
hesitant fuzzy partitioned Bonferroni mean operators.

3.1. The q-Rung Dual Hesitant Fuzzy Power Partitioned Bonferroni Mean Operator

Definition 8. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, for any s, t ≥ 0 with
s + t > 0, if

q− RDHFPPBMs,t(d1, d2, . . . , dn) =

1
e


e
⊕

f=1

 1
|Pf |(|Pf |−1)

⊕
i, j ∈ Pf ,

i 6= j

((
n(1+T(di))

∑n
k=1(1+T(dk))

di

)s
⊗
(

n(1+T(dj))
∑n

k=1(1+T(dk))
dj

)t
)

1
s+t


(9)

then q− RDHFPPBMs,t is called as the q-rung dual hesitant fuzzy power partitioned Bonferroni
mean operator (q-RDHFPPBM).

∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is the number of partitioned

sorts, and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n. T
(
dj
)
=

n
∑

j=1,j 6=i
Sup

(
di, dj

)
and Sup

(
di, dj

)
is the support for di and dj,

which has the properties as defined in Definition 5.
In order to simplify Equation (9), we can define the following

ωi,j =
1 + T

(
di,j
)

∑n
k=1(1 + T(dk))

(10)

ωi,j = (ω1, ω2, · · · , ωn)
T is defined as the power weighting vector (PWV); satisfying that ωi,j ∈

[0, 1] and
n
∑

i,j=1
ωi,j = 1, then the Equation (9) can be simplified to

q− RDHFPPBMs,t(d1, d2, . . . , dn) =
1
e


e
⊕

f=1

 1∣∣∣Pf

∣∣∣(∣∣∣Pf

∣∣∣− 1
) ⊕

i, j ∈ Pf ,
i 6= j

(
(nωidi)

s ⊗
(
nωjdj

)t
)


1
s+t
 (11)
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Theorem 4. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, and s, t ≥ 0 with s + t > 0.
Then, the aggregation results of the q− RDHFPPBMs,t operator is still a q-RDHFE and

q− RDHFPPBMs,t(d1, d2, . . . , dn) = ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj




1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− γ

q
i
)nωi

)s
×
(

1−
(

1− γ
q
j

)nωi
)t
)


1
|Pf |(|Pf |−1)



1
(s+t)





1
e


1
q


,


e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− η

nωi
i

q)s ×
(

1− η
nωi
j

q
)t
) 1
|Pf |(|Pf |−1)



1
s+t


1
qe




(12)

If all the q-RDHFEs are partitioned into one part, the q-RDHFPPBM operator reduces to the
q-rung dual hesitant fuzzy power BM (q-RDHFPBM) operator as follows:

q− RDHFPPBMs,t(d1, d2, . . . , dn) =

 1
n(n−1)

n
⊕

i, j = 1,
i 6= j

(
(nωidi)

s ⊗
(
nωjdj

)t
)


1
s+t

∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj





1−


n
∏

i, j = 1,
i 6= j

(
1−

(
1−

(
1− γ

q
i

)nωi
)s
×
(

1−
(

1− γ
q
j

)nωi
)t
)

1
n(n−1)



1
q(s+t)


,



1−

1−
n
∏

i, j = 1,
i 6= j

(
1−

(
1− η

nωi
i

q)s ×
(

1− η
nωi
j

q
)t
) 1

n(n−1)


1

s+t


1
q




(13)

In the following, we will discuss some special cases of the q-RDHFPPBM operator.
Case 1. When t→ 0 , the q-RDHFPPBM operator reduces to the following:

q− RDHFPPBMs,0(d1, d2, . . . , dn) = 1
e

 e
⊕

f=1

(
1

|Pf |(|Pf |−1)
⊕

i∈Pf

(
(nωidi)

s)) 1
s
 = ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj



1−

 e
∏
f=1

1−

1−
(

∏
i∈Pf

(
1−

(
1−

(
1− γ

q
i

)nωi
)s
)) 1

|Pf |(|Pf |−1)


1
s




1
e


1
q
,


e

∏
f=1

1−
(

1− ∏
i∈Pf

(
1−

(
1− η

nωi
i

q)s
) 1
|Pf |(|Pf |−1)

) 1
s


1
qe




(14)
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Case 2. When t→ 0 and all the q-RDHFEs are partitioned into one sort, the q-
RDHFPPBM operator reduces to the following:

q− RDHFPPBMs,0(d1, d2, . . . , dn) =

(
1

n(n−1)

n
⊕

i=1
(nωidi)

s
) 1

s

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj



(

1−
(

n
∏
i=1

(
1−

(
1−

(
1− γ

q
i

)nωi
)s
)) 1

n(n−1)
) 1

qs

,


1−

(
1−

n
∏
i=1

(
1−

(
1− η

nωi
i

q)s
) 1

n(n−1)
) 1

s

 1
q



(15)

Case 3. When t→ 0 , s = 1, the q-RDHFPPBM operator reduces to the following:

q− RDHFPPBM1,0(d1, d2, . . . , dn) =
1
e

(
e
⊕

f=1

(
1

|Pf |(|Pf |−1)
⊕

i∈Pf

(nωidi)

))

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj



1−

 e
∏
f=1

(
∏

i∈Pf

(
1− γ

q
i

)nωi

) 1
|Pf |(|Pf |−1)


1
e


1
q
,

 e
∏
f=1

(
∏

i∈Pf

(ηi)
nωi

|Pf |(|Pf |−1)

) 1
e



(16)

Case 4. When t→ 0 , s = 1, and all the q-RDHFEs are partitioned into one sort, the
q-RDHFPPBM operator reduces to the following:

q− RDHFPPBM1,0(d1, d2, . . . , dn) = 1
n−1 ⊕i∈Pf

(ωidi)

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj



(

1−
e

∏
f=1

∏
i∈Pf

(
1− γ

q
i

) ωi
e(n−1)

) 1
q
,

{
e

∏
f=1

∏
i∈Pf

(ηi)
ωi

e(n−1)

} (17)

Case 5. When s = 1, t = 1, the q-RDHFPPBM operator reduces to the following form:

q− RDHFPPBM1,1(d1, d2, . . . , dn) = 1
e


e
⊕

f=1


1

|Pf |(|Pf |−1)
⊕

i, j ∈ Pf ,

i 6= j

(
(nωidi)⊗

(
nωidj

))


1
2


= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj






1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− γ

q
i
)nωi

)
×
(

1−
(

1− γ
q
j

)nωi
))


1
|Pf |(|Pf |−1)



1
2




1
e


1
q


,


e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− η

nωi
i

q)× (1− η
nωi
j

q
)) 1

|Pf |(|Pf |−1)



1
2


1
qe




(18)
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3.2. The q-Rung Dual Hesitant Fuzzy Weighted Power Partitioned Bonferroni Mean Operator

Definition 9. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, which is partitioned into a
distinct sort P1, P2, . . . , Pe, where ∪n

f Pf = T. The q-RDHFWPPBM operator is defined as

q− RDHFWPPBMs,t(d1, d2, . . . , dn) =

1
e


e
⊕

f=1

 1
|Pf |(|Pf |−1)

⊕
i, j ∈ Pf ,

j 6= i

 win(1+T(di))
n
∑

k=1
wk(1+T(dk))

di

s

⊗

 wjn(1+T(dj))
n
∑

k=1
wk(1+T(dk))

dj

t


1
s+t


(19)

where di = (hi, gi)(i = 1, 2, . . . , n), s, t ≥ 0,
∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is the number

of partitioned sorts, and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n. (w1, w2, . . . , wn) is the weight vector of (d1, d2, . . . , dn)

satisfying wi,j ∈ [0, 1], i, j = 1, 2, . . . , n and
n
∑

i,j=1
wi,j = 1.

To simplify Equation (19), we can define that

vi,j =
wi,j
(
1 + T

(
di,j
))

∑n
k=1 wk(1 + T(dk))

(20)

vi,j = (v1, v2, · · · , vn)
T is defined as the PWV, satisfying that vi,j ∈ [0, 1] and

n
∑

i,j=1
vi,j =

1, then the Equation (19) can be simplified to

q− RDHFWPPBMs,t(d1, d2, . . . , dn) =
1
e


e
⊕

f=1

 1∣∣∣Pf

∣∣∣(∣∣∣Pf

∣∣∣− 1
) ⊕

i, j ∈ Pf ,
j 6= i

(
(nvidi)

s ⊗
(
nvjdj

)t
)


1
s+t
 (21)

Theorem 5. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, and s, t ≥ 0 with
s + t > 0. Then, the aggregation results of the q − RDHFWPPBMs,t operator is still a
q-RDHFE and

q− RDHFWPPBMs,t(d1, d2, . . . , dn) = ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj




1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− γ

q
i
)nvi

)s
×
(

1−
(

1− γ
q
j

)nvi
)t
)


1
|Pf |(|Pf |−1)



1
s+t




1
e


1
q


,


e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− η

nvi
i

q
)s
×
(

1− η
nvi
j

q
)t
) 1
|Pf |(|Pf |−1)



1
s+t


1
qe




(22)

The proof of Theorem 5 is similar with that of Theorem 4 in Appendix A.
If all the q-RDHFEs are partitioned into one sort, the q-RDHFWPPBM operator reduces

to the q-rung dual hesitant fuzzy weighted power BM (q-RDHFWPBM) operator as follows:



Symmetry 2022, 14, 590 10 of 25

q− RDHFWPPBMs,t(d1, d2, . . . , dn) =


1

n(n−1)

n
⊕

i, j = 1,

i 6= j

(
(nvidi)

s ⊗
(
nvjdj

)t
)


1
s+t

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj






1−


n
∏

i, j = 1,

i 6= j

(
1−

(
1−

(
1− γ

q
i
)nvi

)s
×
(

1−
(

1− γ
q
j

)nvi
)t
)


1
n(n−1)



1
q(s+t)


,




1−

1−
n
∏

i, j = 1,

i 6= j

(
1−

(
1− η

nvi
i

q
)s
×
(

1− η
nvi
j

q
)t
) 1

n(n−1)



1
s+t


1
q




(23)

3.3. The q-Rung Dual Hesitant Fuzzy Power Partitioned Geometric Bonferroni Mean Operator

Definition 10. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, which is partitioned into a
distinct sorts P1, P2, . . . , Pe, where ∪n

f Pf = T. For any s, t ≥ 0 with s + t > 0, if

q− RDHFPPGBMs,t(d1, d2, . . . , dn) =


e
⊗

f=1


1

s + t

 ⊗
i, j ∈ Pf

i 6= j

sd

n(1+T(di))
n
∑

k=1
(1+T(dk))

i ⊕ td

n(1+T(dj))
n
∑

k=1
(1+T(dk))

j




1
|Pf |(|Pf |−1)





1
e

(24)

then q− RDHFPPGBMs,t is called the q-rung dual hesitant fuzzy power partitioned geometric
Bonferroni mean (q-RDHFPPGBM) operator.

∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is the number of

partitioned sorts and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n. T
(
dj
)

=
n
∑

j=1,j 6=i
Sup

(
di, dj

)
and Sup

(
di, dj

)
is the support

for di and dj, which has the properties as defined in Definition 5.
In order to simplify Equation (24), we can define that

θi,j =
1 + T

(
di,j
)

∑n
k=1(1 + T(dk))

(25)

θi,j = (θ1, θ2, · · · , θn)
T is defined as the power weighting vector (PWV), satisfying that

θi,j ∈ [0, 1] and
n
∑

i,j=1
θi,j = 1, then the Equation (24) can be simplified to

q− RDHFPPGBMs,t(d1, d2, . . . , dn) =


e
⊗

f=1


1

s + t

 ⊗
i, j ∈ Pf

i 6= j

(
sdnθi

i ⊕ td
nθj
j

)


1
|Pf |(|Pf |−1)





1
e

(26)

Theorem 6. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, and s, t ≥ 0 with s + t > 0.
Then, the aggregation results of the q− RDHFPPGBMs,t operator is still a q-RDHFE and
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q− RDHFPPGBMs,t(d1, d2, . . . , dn) = ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj


e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− γ

nθi
i

q
)s
×
(

1− γ
nθi
j

q
)t
) 1
|Pf |(|Pf |−1)



1
s+t


1
qe


,




1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− η

q
i
)nθi

)s
×
(

1−
(

1− η
q
j

)nθi
)t
)


1
|Pf |(|Pf |−1)



1
s+t




1
e


1
q




(27)

The proof of Theorem 6 is similar to that of Theorem 4 in Appendix A.
If all the q-RDHFEs are partitioned into one sort, the q-RDHFPPGBM operator reduces

to the q-rung dual hesitant fuzzy power geometric BM (q-RDHFPGBM) operator as follows:

q− RDHFPPGBMs,t(d1, d2, . . . , dn) =
1

s+t

 ⊗
i, j ∈ Pf

i 6= j

(
sdnθi

i ⊕ td
nθj
j

)


1
n(n−1)

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj





1−

1−
n
∏

i, j = 1,
i 6= j

(
1−

(
1− γ

nθi
i

q
)s
×
(

1− γ
nθi
j

q
)t
) 1

n(n−1)


1

s+t


1
q


,



1−


n
∏

i, j = 1,
i 6= j

(
1−

(
1−

(
1− η

q
i

)nθi
)s
×
(

1−
(

1− η
q
j

)nθi
)t
)

1
n(n−1)



1
q(s+t)





(28)

In the following, we will discuss some special cases of the q-RDHFPPGBM operator.
Case 1. When t→ 0 , the q-RDHFPPGBM operator reduces to the following:

q− RDHFPPGBMs,0(d1, d2, . . . , dn) =

 e
⊗

f=1

 1
s

(
⊗

i∈Pf

(
sdnθi

i

)) 1
|Pf |(|Pf |−1)


1
e

= ∪γi∈hi ,ηi∈gi




e
∏
f=1

1−
(

1− ∏
i∈Pf

(
1−

(
1− γ

nθi
i

q
)s) 1

|Pf |(|Pf |−1)

) 1
s


1
qe

,



1−

 e
∏
f=1

1−

1−
(

∏
i∈Pf

(
1−

(
1−

(
1− η

q
i

)nθi
)s)) 1

|Pf |(|Pf |−1)


1
s




1
e


1
q




(29)

Case 2. When t→ 0 and all the q-RDHFEs are partitioned into one sort, the q-
RDHFPPGBM operator reduces to the following:
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q− RDHFPPGBMs,0(d1, d2, . . . , dn) =
1
s

(
⊗

i∈Pf

(
sdnθi

i

)) 1
n(n−1)

= ∪γi∈hi ,ηi∈gi



1−

(
1−

n
∏
i=1

(
1−

(
1− γ

nθi
i

q
)s) 1

n(n−1)

) 1
s


1
q

,

1−


n
∏

i, j = 1,
i 6= j

(
1−

(
1−

(
1− η

q
i

)nθi
)s)


1

n(n−1)


1
qs


(30)

Case 3. When t→ 0 , s = 1, the q-RDHFPPGBM operator reduces to the following:

q− RDHFPPGBM1,0(d1, d2, . . . , dn) =

 e
⊗

f=1

( ⊗
i∈Pf

(
dnθi

i

)) 1
|Pf |(|Pf |−1)


1
e

= ∪γi∈hi ,ηi∈gi


 e

∏
f=1

(
∏

i∈Pf

(
γ

nθi
i

q
) 1
|Pf |(|Pf |−1)

) 1
qe
,


1−

 e
∏
f=1

( ∏
i∈Pf

((
1− η

q
i

)nθi
)) 1

|Pf |(|Pf |−1)


1
e


1
q



(31)

Case 4. When t→ 0 , s = 1, and all the q-RDHFEs are partitioned into one sort, the
q-RDHFPPGBM operator reduces to the following:

q− RDHFPPGBM1,0(d1, d2, . . . , dn) = ⊗
i∈Pf

(
dθi

i

) 1
n−1

= ∪γi∈hi ,ηi∈gi



(

n
∏
i=1

(
γ

θi
i

q
) 1

n−1
) 1

q

,


(

1−
(

n
∏
i=1

((
1− η

q
i

)nθi
)) 1

n(n−1)
) 1

q




(32)

Case 5. When s = 1, t = 1, the q-RDHFPPGBM operator reduces to the following form:

q− RDHFPPGBM1,1(d1, d2, . . . , dn) =


e
⊗

f=1


1
2

 ⊗
i, j ∈ Pf

i 6= j

(
dnθi

i ⊕ d
nθj
j

)


1
|Pf |(|Pf |−1)





1
e

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj




e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− γ

nθi
i

q
)
×
(

1− γ
nθi
j

q
)) 1

|Pf |(|Pf |−1)



1
2


1
qe


,




1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− η

q
i
)nθi

)
×
(

1−
(

1− η
q
j

)nθi
))


1
|Pf |(|Pf |−1)



1
2




1
e


1
q




(33)
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3.4. The q-Rung Dual Hesitant Fuzzy Weighted Power Partitioned Geometric Bonferroni
Mean Operator

Definition 11. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, which is partitioned into a
distinct sort P1, P2, . . . , Pe, where ∪n

f Pf = T. The q-RDHFWPPGBM operator is defined as

q− RDHFWPPGBMs,t(d1, d2, . . . , dn) =

q− RDHFWPPGBMs,t(d1, d2, . . . , dn) =


e
⊗

f=1


1

s+t

 ⊗
i, j ∈ Pf

i 6= j

sd

ξi n(1+T(di ))
n
∑

k=1
ξk (1+T(dk ))

i ⊕ td

ξ jn(1+T(dj ))
n
∑

k=1
ξk (1+T(dk ))

j




1
|Pf |(|Pf |−1)





1
e

(34)

where di = (hi, gi)(i = 1, 2, . . . , n), s, t ≥ 0,
∣∣∣Pf

∣∣∣ denotes the cardinality of Pf , e is

the number of the partitioned sorts, and
e
∑

f=1

∣∣∣Pf

∣∣∣ = n. (ξ1, ξ2, . . . , ξn) is the weight vector of

(d1, d2, . . . , dn) satisfying ξi,j ∈ [0, 1], i, j = 1, 2, . . . , n and
n
∑

i,j=1
ξi,j = 1.

To simplify Equation (34), we can define that

ϑi,j =
ξi,j
(
1 + T

(
di,j
))

∑n
k=1 ξk(1 + T(dk))

(35)

ξi,j = (ξ1, ξ2, · · · , ξn)
T is defined as the PWV, satisfying that ξi,j ∈ [0, 1] and

n
∑

i,j=1
ξi,j = 1, then

Equation (34) can be simplified to

q− RDHFWPPGBMs,t(d1, d2, . . . , dn) =


e
⊗

f=1


1

s + t

 ⊗
i, j ∈ Pf

i 6= j

(
sdnϑi

i ⊕ td
nϑj
j

)


1
|Pf |(|Pf |−1)





1
e

(36)

Theorem 7. Let T = {d1, d2, . . . , dn} be a collection of q-RDHFEs, and s, t ≥ 0 with s + t > 0.
Then, the aggregation results of the q− RDHFWPPGBMs,t operator is still a q-RDHFE and

q− RDHFWPPGBMs,t(d1, d2, . . . , dn) = ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj


e

∏
f=1


1−

1− ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1− γ

nϑi
i

q
)s
×
(

1− γ
nϑi
j

q
)t
) 1
|Pf |(|Pf |−1)



1
s+t


1
qe


,




1−


e

∏
f=1


1−


1−

 ∏
i, j ∈ Pf ,

i 6= j

(
1−

(
1−

(
1− η

q
i
)nϑi

)s
×
(

1−
(

1− η
q
j

)nϑi
)t
)


1
|Pf |(|Pf |−1)



1
s+t




1
e


1
q




(37)

The proof of Theorem 7 is similar to that of Theorem 4 in Appendix A.
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If all the q-RDHFEs are partitioned into one sort, the q-RDHFWPPGBM operator
reduces to the q-rung dual hesitant fuzzy weighted power geometric BM (q-RDHFWPGBM)
operator as follows:

q− RDHFWPPGBMs,t(d1, d2, . . . , dn) =
1

s+t

 ⊗
i, j ∈ Pf

i 6= j

(
sdnϑi

i ⊕ td
nϑj
j

)


1
n(n−1)

= ∪γi∈hi ,ηi∈gi ,γj∈hj ,ηj∈gj





1−

1−
n
∏

i, j = 1,
i 6= j

(
1−

(
1− γ

nϑi
i

q
)s
×
(

1− γ
nϑi
j

q
)t
) 1

n(n−1)


1

s+t


1
q


,



1−


n
∏

i, j = 1,
i 6= j

(
1−

(
1−

(
1− η

q
i

)nϑi
)s
×
(

1−
(

1− η
q
j

)nϑi
)t
)

1
n(n−1)



1
q(s+t)





(38)

4. An Approach to MADM with the Proposed Operators

A typical MADM problem that can be solved with the proposed operators is described
as follows: There is a set of alternatives X = {X1, X2, · · · , Xm} to be evaluated by DMs,
with a collection of attributes C = {C1, C2, · · · , Cn}. The weight vector of attributes is

ζ = (ζ1, ζ2, · · · , ζn)
T , satisfying that 0 ≤ ζ j ≤ 1, (j = 1, 2, · · · , n) and

n
∑

j=1
ζ j = 1. Suppose

that the attributes are divided into several parts, represented by Ah(h = 1, 2, · · · , l), where
attributes in the same part are interrelated and attributes in different parts have no interre-
lationships to each other. Considering the high complexity of the MADM problem in the
real world, the organizer requires a DM to employ q-RDHFEs to express their evaluations
of alternative Xi(i = 1, 2, · · · , m) with respect to Cj(j = 1, 2, · · · , n). The evaluations are
summarized by decision matrix R =

(
dij
)

m×n. In the following, we provide detailed steps
for dealing with the MADM problem utilizing the proposed method.

Step 1. Normalize the decision matrix. Generally, attributes can be divided into two
categories: benefit type and cost type. The benefit type is defined as a higher score leading
to a worthwhile alternative, and the cost type means that the lower the score calculated
from the evaluations the better. We can utilize the following formula to normalize the
decision matrix

dij =

{ (
hij, gij

)
, f orCjisbeni f ittype(

gij, hij
)
, f orCjiscosttype

(39)

Step 2. Calculate the supports Sup(dic, did) according to the following equation

Sup(dic, did) = 1− dis(dic, did) (40)

where i = 1, 2, · · · , m; c, d = 1, 2, · · · , n; c 6= d and dis(dic, did) is the distance between dic
and did.

Step 3. Compute T
(
dij
)

by

T
(
dij
)
=

n

∑
c,d=1,c 6=d

Sup(dic, did) (41)

where i = 1, 2, · · · , m; c, d = 1, 2, · · · , n.
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Step 4. Calculate the PWV by

νij =
ζ j
(
1 + T

(
dij
))

∑n
j=1 ζ j

(
1 + T

(
dij
)) (42)

where i = 1, 2, · · · , m; j = 1, 2, · · · , n
Step 5. For alternative Xi(i = 1, 2, · · · , m), employ the q-RDHFWPPBM or q-RDHFWPPGBM

operator to aggregate the evaluations of attributes, and the overall evaluations of each
alternative can be obtained

di = q− RDHFWPPBMs,t(d1, d2, . . . , dn) (43)

or
di = q− RDHFWPPGBMs,t(d1, d2, . . . , dn) (44)

Step 6. Obtain the score values of each alternative according to Definition 2.
Step 7. Rank alternatives according to the results obtained in Step 6, and then choose

the best alternative.

5. Application of the Proposed Method in Superintendent Selection Problem

Case study: The superintendent plays an increasingly important role in the develop-
ment and growth of organized groups. For an enterprise, the superintendent is closely
related to the survival and development of enterprises. On the one hand, humans are
key resources for corporate activities. Any physical and financial resources in the enter-
prise need to be managed by people. On the other hand, employees have to rely on their
superintendents to obtain the resources they need. Therefore, how to select an excellent
superintendent is a topic worth studying. To select and employ an excellent manager, we
first need to determine the current and future requirements, and then consider whether to
recruit him/her from outside or to promote from the inside. In reality, the selection method
should be decided according to the real condition. Although the specific management
operations are different at different levels, the essential characteristics of these management
efforts are common, that is, organization and coordination. The final consensus criteria
that DMs decide on in order to utilize to evaluate the superintendent are professional skill,
interpersonal skill, rational skill, and design skill. Suppose that a company wants to hire
a superintendent from several potential candidates Ai(i = 1, 2, 3, 4) with respect to the
attributes Gj(j = 1, 2, 3, 4), where G1 represents the professional skill, G2 is the interper-
sonal skill, G3 represents the rational skill, and G4 is the design skill. The weight vector
of the four attributes is ζ j = (0.2, 0.3, 0.1, 0.4)T . Considering that the DM may be hesitant
about several possible values because of insufficient information or being short of time, the
ultimate coordinator requires the DM to provide his/her evaluation values with q-rung
dual hesitant fuzzy elements. According to the actual situations and the characteristics
of the attributes above, the attributes are divided into two parts, C1 = {G1, G4} and
C2 = {G2, G3}. The decision matrix Ra =

(
da

ij

)
4×4

given by the DM is shown in Table 1.

Table 1. The decision matrix with q-rung dual hesitant fuzzy elements.

G1 G2 G3 G4

A1 {{0.2, 0.4}, {0.6}} {{0.5, 0.6}, {0.5}} {{0.4, 0.7}, {0.8, 0.9}} {{0.5}, {0.7}}
A2 {{0.5, 0.6}, {0.3}} {{0.3, 0.4}, {0.7}} {{0.3, 0.4}, {0.5, 0.6}} {{0.2, 0.3}, {0.7, 0.8}}
A3 {{0.4, 0.6}, {0.4}} {{0.3}, {0.5}} {{0.3}, {0.6, 0.7}} {{0.5}, {0.3, 0.5}}
A4 {{0.7, 0.8}, {0.3}} {{0.2}, {0.5}} {{0.7}, {0.4}} {{0.5}, {0.7, 0.9}}

5.1. Superintendent Selection Process with the Proposed q-RDHFWPPBM Operator

In this subsection, we utilize the proposed method based on the q-RHDFWPPBM
operator to solve the case study, and the detailed calculation steps are shown as follows.
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Step 1. From the description of the case study, we can find that all the attributes are of
the benefit type and have no need to be normalized.

Step 2. Calculate the supports Sup(dic, did)(i = 1, 2, 3, 4) according to Equation (40),
we obtain

Sup(di1, di2) = Sup(di2, di1) =
[

0.8655 0.8750 0.8870 0.5805
]

Sup(di1, di3) = Sup(di3, di1) =
[

0.8325 0.8750 0.8870 0.9155
]

Sup(di1, di4) = Sup(di4, di1) =
[

0.9110 0.8470 0.9240 0.6975
]

Sup(di2, di3) = Sup(di3, di2) =
[

0.9060 1.0000 1.0000 0.6650
]

Sup(di2, di4) = Sup(di4, di2) =
[

0.9545 0.9720 0.9020 0.8830
]

Sup(di3, di4) = Sup(di4, di3) =
[

0.8605 0.9720 0.9020 0.7820
]

Step 3. Compute T
(
dij
)
(i, j = 1, 2, 3, 4) according to Equation (41)

T
(
dij
)
=


2.6090 2.7260 2.5990 2.7260
2.5970 2.8470 2.8470 2.7910
2.6980 2.7890 2.7890 2.7280
2.1935 2.1285 2.3625 2.3625


Step 4. Calculate the PWV according to Equation (42) (i, j = 1, 2, 3, 4)

νij =


0.1956 0.3029 0.0975 0.4039
0.1906 0.3058 0.1019 0.4017
0.1974 0.3034 0.1011 0.3980
0.1960 0.2880 0.1032 0.4128


Step 5. For alternative Ai(i = 1, 2, 3, 4), employ the q-RDHFWPPBM operator (sup-

pose that q = 3, s = t = 2) to aggregate the evaluations of the attributes according to Equation
(43), the overall evaluations of each alternative can be obtained. We omit them here to
save space.

Step 6. Obtain the score values of each alternative according to Definition 2. Then, we
can obtain

S(d1) = −0.7435, S(d2) = −0.6832, S(d3) = −0.5762, S(d4) = −0.6123.

Step 7. Rank the alternatives according to the results obtained in Step 10, we can get
A3 > A4 > A2 > A1. Therefore, A3 is the best alternative among these four candidates.

5.2. Parameter Analysis

It should be noted that parameters q, s, and t have significant influences on the decision
result. In this subsection, we investigated the flexibility of the parameters by assigning
different values to them.

5.2.1. The Influence of Parameter q

Our proposed method is based on q-rung dual hesitant fuzzy sets, which are superior,
with a flexible parameter q to relax the evaluation restrictions. In order to demonstrate
the influence of parameter q, we utilize the proposed method to solve the case study
with q ∈ [3, 10]. The detailed result is shown in Table 2, and the expected results of the
alternatives are presented in Figure 1 (suppose that s = t = 2).
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Table 2. The ranking results of alternatives based on q ∈ [3, 10] and s = t = 2 with the q-
RDHFWPPBM operator.

Parameter q Score Function S(di)(i = 1, 2, 3, 4) Ranking Orders

q = 3 S(d1) = −0.7435, S(d2) = −0.6832
, S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

q = 4 S(d1) = −0.6942, S(d2) = −0.6121
, S(d3) = −0.4984, S(d4) = −0.5488 A3 > A4 > A2 > A1

q = 5 S(d1) = −0.6443, S(d2) = −0.5460
, S(d3) = −0.4297, S(d4) = −0.4881 A3 > A4 > A2 > A1

q = 6 S(d1) = −0.5964, S(d2) = −0.4866
, S(d3) = −0.3706, S(d4) = −0.4327 A3 > A4 > A2 > A1

q = 7 S(d1) = −0.5518, S(d2) = −0.4339
, S(d3) = −0.3203, S(d4) = −0.3832 A3 > A4 > A2 > A1

q = 8 S(d1) = −0.5105, S(d2) = −0.3874
, S(d3) = −0.2775, S(d4) = −0.3396 A3 > A4 > A2 > A1

q = 9 S(d1) = −0.4726, S(d2) = −0.3462
, S(d3) = −0.2410, S(d4) = −0.3012 A3 > A4 > A2 > A1

q = 10 S(d1) = −0.4378, S(d2) = −0.3098
, S(d3) = −0.2098, S(d4) = −0.2675 A3 > A4 > A2 > A1

Figure 1. Score functions of alternatives when q ∈ [3, 10] and s = t = 2 with the q-RDHFWPPBM operator.

From Table 2 and Figure 1, we can find that the ranking order of alternatives remains
A3 > A4 > A2 > A1, regardless of the value of q, and the score values of the alternatives
increase with the increase in the values of q. Thus, we can see that our proposed method
not only has the ability of flexibility, but also the robustness. As for the value of parameter
q, we generally consider that it can take the smallest positive integer, which satisfies the
constraint that the sum of the maximum MD and NMD is smaller than one.

5.2.2. The Influence of Parameter s and t

The information aggregation operator that our proposed method based on is the
partitioned Bonferroni mean operator, which has two significant parameters, s and t.
From the above analysis, we know that the proposed method can reduce to some other
operators with different values of s and t. In order to demonstrate the influence of these two
parameters, we utilize the proposed method to solve the case study by assigning different
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values to s and t. The detailed calculation results of alternatives when s ∈ [1, 10], t = 1
(suppose that q = 3) are shown in Table 3 and Figure 2, and the results when s, t ∈ [1, 10]
(suppose that q = 3) are shown in Figure 3. From this, we can see that parameters s and
t have an effective influence on the score values and final ranking orders. However, the
optimal alternative obtained from the proposed method is always A3, meaning that the
third candidate is the most appropriate one and is most qualified for the job.

Table 3. Ranking results of alternatives when s ∈ [1, 10], t = 1 with the q-RDHFWPPBM operator (q = 3).

Parameter s and t Score Function S(di)(i = 1,2,3,4) Ranking Orders

s = 1, t = 1 S(d1) = −0.7461, S(d2) = −0.6847,
S(d3) = −0.5780, S(d4) = −0.6169 A3 > A4 > A2 > A1

s = 2, t = 1 S(d1) = −0.7291, S(d2) = −0.6792,
S(d3) = −0.5657, S(d4) = −0.6054 A3 > A4 > A2 > A1

s = 3, t = 1 S(d1) = −0.7046, S(d2) = −0.6702,
S(d3) = −0.5461, S(d4) = −0.5884 A3 > A4 > A2 > A1

s = 4, t = 1 S(d1) = −0.6837, S(d2) = −0.6610,
S(d3) = −0.5275, S(d4) = −0.5725 A3 > A4 > A2 > A1

s = 5, t = 1 S(d1) = −0.6670, S(d2) = −0.6526,
S(d3) = −0.5118, S(d4) = −0.5589 A3 > A4 > A2 > A1

s = 6, t = 1 S(d1) = −0.6534, S(d2) = −0.6453,
S(d3) = −0.4987, S(d4) = −0.5474 A3 > A4 > A2 > A1

s = 7, t = 1 S(d1) = −0.6422, S(d2) = −0.6411,
S(d3) = −0.4910, S(d4) = −0.5378 A3 > A4 > A2 > A1

s = 8, t = 1 S(d1) = −0.6328, S(d2) = −0.6353,
S(d3) = −0.4819, S(d4) = −0.5296 A3 > A4 > A2 > A1

s = 9, t = 1 S(d1) = −0.6249, S(d2) = −0.6461,
S(d3) = −0.4742, S(d4) = −0.5226 A3 > A4 > A1 > A2

s = 10, t = 1 S(d1) = −0.6179, S(d2) = −0.6423,
S(d3) = −0.4676, S(d4) = −0.5316 A3 > A4 > A1 > A2

Figure 2. Score functions of alternatives when s ∈ [1, 10], t = 1, q = 3 with the q-RDHFWPBM operator.
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Figure 3. Score functions of alternatives when s, t ∈ [1, 10], q = 3 with the q-RDHFWPBM operator.

5.3. Comparison Analysis

In order to demonstrate the advantages of the proposed method, we compare our
proposed method with some existing MADM methods, including the method based on the
q-rung dual hesitant fuzzy weighted Heronian mean (q-RDHWHM) operator proposed by
Xu et al. [12], the one based on dual hesitant q-rung orthopair fuzzy weighted Muirhead
mean (DHq-ROFWMM) operator proposed by Wang et al. [13], the method based on the
dual-hesitant Pythagorean fuzzy weighted Hamy mean (DHPFWHM) operator proposed
by Wei et al. [11], the method based on dual hesitant Pythagorean fuzzy weighted Bon-
ferroni mean (DHPFWBM) operator proposed by Tang and Wei [10], the method based
on weighted dual hesitant fuzzy Maclaurin symmetric means (WDHFMSM) operator
proposed by Zhang [28], and the method based on the q-rung orthopair fuzzy weighted
average (q-ROFWA) operator proposed by Liu and Wang [29]. We illustrate the superiors
of the proposed method by analyzing the differences in their application environment.

5.3.1. The Advantage of Providing DMs More Freedom

Our proposed method is based on the q-RDHFSs, which is a combination of q-rung
orthopair fuzzy sets and dual hesitant fuzzy sets. Therefore, our method can deal with
information from both characteristics. To illustrate this advantage, we compare our method
with the method based on the DHPFWHM operator proposed by Wei et al. [11], the method
based on the DHPFWBM operator proposed by Tang and Wei [10], and the method based
on the WDHFMSM operator proposed by Zhang [28]. We employ these methods to solve
the case study, the results of which are shown in Table 4. From Table 4, we can see that
only our method can be utilized to deal with the case study, as the other methods failed
in the circumstance. This is because the evaluation d13 = {{0.4, 0.7}, {0.8, 0.9}} is beyond
the restrictions of the other methods. For example, the method based on the DHPFWBM
operator [10] requires that the square sum of the maximum MD and NMD is no larger than
one. However, we find that 0.72 + 0.92 = 0.49 + 0.81 = 1.3 > 1 in d13, which means d13
cannot be aggregated with the DHPFWBM operator. However, our method has a flexible
parameter q to capture this gap. We know that 0.73 + 0.93 = 0.343 + 0.729 = 1.072 > 1
and 0.74 + 0.94 =0.2401 + 0.6561= 0.8962 < 1. Therefore, we can assign q = 4 to the
q-RDHFWPBM operator, then the ranking result can be obtained, as in Table 4. In summary,
our proposed method is more flexible and superior compared with Wei et al.’s [11], Tang
and Wei’s [10], and Zhang’s [28] methods.
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Table 4. Score functions and ranking results of alternatives using different methods.

Parameter s and t Score Function S(di)(i = 1,2,3,4) Ranking Orders

DHPFWHM [11] Cannot be calculated NA
DHPFWBM [10] Cannot be calculated NA
WDHFMSM [28] Cannot be calculated NA
q-RDHFWPPBM
(s = t = 2, q = 3 )

S(d1) = −0.7435, S(d2) = −0.6832,
S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

5.3.2. The Advantage of Capturing Partitioned Arguments

The proposed method utilizes PBM as the aggregation method, which is known for its
ability for capturing partitioned arguments. To demonstrate this advantage, we compare
the proposed method with that based on the DHq-ROFWMM [13] operator and that based
on q-RDHWHM [12] operator. It should be noted that these three methods are all based on
q-RDHFSs, and the aggregation methods are specifically the PBM operator, Muirhead mean
operator, and Heronian mean operator. All of these three aggregation methods can consider
the interrelationship between input arguments. However, the proposed method is better
because the PBM operator can take the partitioned arguments into consideration while the
others cannot. By utilizing these three methods to deal with the case study, we can find the
results, as presented in Table 5. As shown, the methods based on the DHq-ROFWMM [13]
operator and q-RDHWHM [12] operator cannot be utilized to calculate the case study, but
our proposed method can still select the best alternative A3. Considering that there may be
special associations between attributes, our method is superior.

Table 5. Score functions and ranking results of alternatives using different methods.

Parameter s and t Score FunctionS(di)(i = 1,2,3,4) Ranking Orders

q-RDHWHM [12] Cannot be calculated NA
DHq-ROFWMM [13] Cannot be calculated NA

q-RDHFWPPBM
(s = t = 2, q = 3 )

S(d1) = −0.7435, S(d2) = −0.6832,
S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

5.3.3. The Advantage of Considering More Hesitant Information

It should be noted that our method incorporates the dual hesitant fuzzy sets and
integrates its features. Thus, our method allows for several possible values in MDs
and NMDs according to the DMs’ preferences. To explain this superiority, we compare
our method with that based on the q-ROFWA [29] operator. The method based on the
q-ROFWA [29] operator requires only a single value in MD and NMD. If DMs feel hesitant
or uncertain about several evaluations, then the q-ROFWA operator is inadequate for
dealing with this. We employ these two methods to solve the case study, then the results
can be obtained, as seen in Table 6. From Table 6, we can directly and immediately see that
the method based on the q-RDHFWPBM operator is superior compared with the method
based on the q-ROFWA [29] operator.

Table 6. Score functions and ranking results of alternatives using different methods.

Parameter s and t Score Function S(di)(i = 1,2,3,4) Ranking Orders

q-ROFWA [29] Cannot be calculated NA
q-RDHFWPPBM
(s = t = 2, q = 3 )

S(d1) = −0.7435, S(d2) = −0.6832,
S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

5.3.4. The Advantage of Reducing Bad Influences of Extreme Values

The aggregation operator our method is based on is actually a combination of a power
average operator and PBM operator, which absorbs both the advantages of the power
average operator and the PBM operator. Therefore, our method can not only cope with
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situations with partitioned arguments, but can also reduce the bad influences of extremely
high or extremely low values. This is because our method can reassign the weights of
arguments through a flexible PWV. PWV is calculated from the decision matrix given by the
DMs, which can reassign novel evaluation-based weights to input arguments. It should be
noted that PWV is actually a combination of DMs’ evaluations and the given weight vector.
Thus, it can reallocate the proportion of each estimate in the final decision, thereby reducing
the negative influences of the extremely high or extremely low evaluations. Actually, many
studies have proven that the aggregation operators including the power average operator
have wonderful advantages for lessening the bad effects of extreme values. In this study,
we also investigate this advantage by providing a small example. Suppose that the DM
is extremely pessimistic about d24 and provides d′24 = {{0.1}, {0.86}} as the evaluation.
Then, we utilize the propose method to solve the case study with adjusted evaluations, and
the results of two rounds are shown in Table 7. From Table 7, we can see that the ranking
results remain the same, despite the score values of the alternatives showing a slight change
between two rounds. Therefore, our proposed method also has advantages in reducing the
bad influence of extreme values.

Table 7. Score functions and ranking results of alternatives of two calculation rounds for the
case study.

Parameter s and t Score Function S(di)(i = 1,2,3,4) Ranking Orders

q-RDHFWPPBM
(the first round)

S(d1) = −0.7435, S(d2) = −0.6832,
S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

q-RDHFWPPBM
(the second round)

S(d1) = −0.7435, S(d2) = −0.7409,
S(d3) = −0.5762, S(d4) = −0.6123 A3 > A4 > A2 > A1

To give a more explicit picture, we summarize the results of the methods mentioned
above in Table 8.

Table 8. The overall comparison results of the different methods.

Methods

Whether Can
Deal with

Evaluations with
Dual Hesitant
Information

Whether Can
Deal with

Problems with
Partitioned
Arguments

Whether Can
Capture

Evaluations That
the qth Sum of

MD and NMD Is
Larger than One

Whether Can
Consider the

Interrelationship
between

Attributes

Whether Can
Reduce Bad

Influences of
Extreme Values

q-RDHWHM [12] Yes No Yes Yes No
DHq-ROFWMM

[13] Yes No Yes Yes No

DHPFWHM [11] Yes No No Yes No
DHPFWBM [10] Yes No No Yes No
WDHFMSM [28] Yes No No Yes No
q-ROFWA [29] No No Yes No No

q-RDHFWPPBM Yes Yes Yes Yes Yes

6. Conclusions

In this paper, we propose the q-RDHFPPBM operator, q-RDHFPPGBM operator, and
their weighted forms, which can not only provide experts more freedom in the decision-
making process, but also have the ability to reflect the inhomogeneous relationship among
the input arguments, as well as alleviate the bad influences of extremely high or extremely
low values. The proposed operators have a stronger adaptability in the actual MADM envi-
ronment. Next, we apply it to the superintendent selection problem, and provide a detailed
calculation process to improve the readability of the paper. To demonstrate the validity and
superiority of the proposed method, we compare our method with some existing methods.
the results show that our method is more advantageous by providing DMs more freedom,
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capturing partitioned arguments, considering more hesitant information, and reducing the
negative effects of extreme values. Due to space limitations, we only compared our method
with a small number of existing MADM methods, and the results show that our method is
superior and more flexible when dealing with both symmetry and asymmetry information.
In the future, we will discuss our method from more perspectives and compare it with other
literature reported studies to show its advantages. In addition, we will apply our method to
more application scenarios, such as the enterprise informatization level evaluation problem,
the supplier selection problem, and the location problem.
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Appendix A

Proof of Theorem 4. According to Definition 3, we can obtain
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Therefore,
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Hence, the proof of Theorem 4 is completed. �
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