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Abstract: Human-robot interaction (HRI) occupies an essential role in the flourishing market for
intelligent robots for a wide range of asymmetric personal and entertainment applications, ranging
from assisting older people and the severely disabled to the entertainment robots at amusement parks.
Improving the way humans and machines interact can help democratize robotics. With machine and
deep learning techniques, robots will more easily adapt to new tasks, conditions, and environments.
In this paper, we develop, implement, and evaluate the performance of the machine-learning-based
HRI model in a collaborative environment. Specifically, we examine five supervised machine learning
models viz. the ensemble of bagging trees (EBT) model, the k-nearest neighbor (kNN) model, the
logistic regression kernel (LRK), the fine decision trees (FDT), and the subspace discriminator (SDC).
The proposed models have been evaluated on an ample and modern contact detection dataset (CDD
2021). CDD 2021 is gathered from a real-world robot arm, Franka Emika Panda, when it was executing
repetitive asymmetric movements. Typical performance assessment factors are applied to assess the
model effectiveness in terms of detection accuracy, sensitivity, specificity, speed, and error ratios. Our
experiential evaluation shows that the ensemble technique provides higher performance with a lower
error ratio compared with other developed supervised models. Therefore, this paper proposes an
ensemble-based bagged trees (EBT) detection model for classifying physical human–robot contact
into three asymmetric types of contacts, including noncontact, incidental, and intentional. Our
experimental results exhibit outstanding contact detection performance metrics scoring 97.1%, 96.9%,
and 97.1% for detection accuracy, precision, and sensitivity, respectively. Besides, a low prediction
overhead has been observed for the contact detection model, requiring a 102 µS to provide the correct
detection state. Hence, the developed scheme can be efficiently adopted through the application
requiring physical human–robot contact to give fast accurate detection to the contacts between the
human arm and the robot arm.

Keywords: human–robot interaction (HRI); human–machine communication (HMC); robotics;
machine learning; asymmetric classification

1. Introduction

Robots are considered asymmetric coworkers in industrial settings, assisting humans
in complex or physically demanding tasks. As multi-purpose service assistants in homes,
they will be an essential part of our daily lives [1]. Robots are beginning to migrate away
from production lines, where they are separated from humans, and into environments
where human-robot interaction (HRI) is unavoidable [2]. With this transition, human-robot
collaboration has progressed to the point where robots can now work alongside and around
humans on difficult tasks.

Human-robot interaction (HRI) has recently received more attention, intending to
transform the manufacturing industry from inflexible traditional production techniques
to a flexible and smart manufacturing paradigm [3,4]. The current industry needs a
novel generation of robots to assist workers by leveraging responsibilities in standings of
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flexibility and cognitive skill needs [3]. HRI applications include everything from robots
that aid the elderly and disabled to entertainment robots at amusement parks. HRI is
employed in a variety of areas, including space technology, military, industry, medical
treatment, assisting the elderly, crippled, and entertainment [5,6].

Operationally, HRI has two modes of operation relationships: parallel relationships
and hierarchical relationships. In a parallel relationship, a human and a robot are two
independent and asymmetric entities that make their own decisions, which is also called
peer-peer interaction. While in hierarchical relationships, either the human or the robot
transfers part of the responsibility of decision making (such as detection or identification)
to others by leveraging intelligent learning techniques. Typically, HRI works as a team to
complete a physical task at both the cognitive and physical levels. Based on a cognitive
model for HRI, the robot gathers inputs from users and the environment and elaborates
and translates them into information that the robot can use [7]. However, the drawbacks
of human-robot collaboration include synchronization, excessive interaction force, and
insufficient motion compliance [5].

Robots can interact with humans by several means. Figure 1 illustrates the human-
robot interaction. There are different types of interactions, such as physical, social emotions,
or cultural context interactions. There are different techniques through which a human can
interact with the robots, such as visual, tactile screen sensing, tactile skin sensing, voice,
and audiovisual [8].

Figure 1. Framework Human-Robot Interaction.

In collaborative environments, the safe HRI necessitates robots to avoid potentially
damaging collisions, while continuing to work on their primary mission wherever possible.
Additionally, to avoid potentially dangerous collisions, robots must be able to accurately
detect their surroundings and assimilate critical information in real-time [2]. In circum-
stances when people and robots must physically interact and/or share their workspace,
these robots are expected to actively assist workers in performing complex tasks, with the
highest priority placed on human safety [6]. Human-robot contact detection allows the
robot to keep a safe distance from its human counterpart or the environment, which is an
important requirement for ensuring safety in shared workspaces [6].

Designing a multi-objective, cascaded safety system that primarily prevents collisions
while also limiting the force impact of a collision is unavoidable, assuring human safety
when collaborating with a collaborative robot in a physical HRI. Human intention detection
is one of the most important preconditions for addressing this concern [6]. However, when
HRI circumstances become more regular, relying solely on collision avoidance will no
longer suffice—contact is unavoidable and, in certain cases, desirable. When humans
interact with the robot, for example, when touch is required, a simple knock can encourage
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a worker to step away, allowing more movement spaces [2]. Safety is always a critical
issue for HRI tasks [9]. As a result, the first issue that must be addressed is man-machine
security [10].

Because collision avoidance cannot always be guaranteed in unexpected dynamic
contexts, collision detection is the most basic underlying element for safe control of robot
activity. Collision detection must be extremely accurate in order for the robot to react
quickly. Due to their low bandwidth, exteroceptive sensors, such as cameras, are limited in
their application. Furthermore, establishing detection using merely basic proprioceptive
sensors has a lot of attraction in terms of on-board availability (no workspace constraints)
and low costs.

The main strategies for safety HRI are collision avoidance, collision detection, and
collision reaction. Collision avoidance is the interaction between humans and robots
without contact. The robot modifies its predetermined trajectory to avoid collision with
humans. Human wearable sensors, cameras, and sensors are commonly used for collision
avoidance. Unfortunately, due to the limitations of sensors and robot motion capabilities,
collision avoidance may fail, for example, if the human moves quicker than the robot can
detect or counteract. When an unwanted physical collision is detected, the robot switches
as quickly as possible from the control law associated with normal task execution to a
reaction control law. A number of different reaction strategies have been considered and
implemented [11].

Therefore, in this paper, we propose a new intelligent and autonomous human-robot
contact detection model (HRCDM) aiming to improve the interaction between humans
and robotics and thus help robots to actively assist workers in performing complex tasks
with the highest priority placed on human safety. The proposed model is intended to
provide a decision-making mechanism for the robot to identify the type of contact with
humans in a collaborative environment. In addition, our proposed method considers the
collaborative robots in which the torque signal is available, i.e., the robot requires motor
torque. Therefore, it is assumed that the model is to be deployed for robots working in a
collaborative environment with humans (and with each other as well). Thus, this method
cannot be applied to any robot that contains only the position sensor. Specifically, our main
contribution in this work can be summarized as follows:

• We developed a lightweight and high-performance human-robot contact detection
model (HRCDM) using different supervised machine-learning methods.

• We discriminate and evaluate the performance of five supervised ML schemes EBT
(ensemble bagging trees), FDT (fine decision trees), kNN (k-nearest neighbors), LRK
(logistic regression kernel), and SDC (subspace discriminate) for HRCDS using new
and inclusive contact detection dataset (CDD 2021).

• We provide extensive experimental results using several quality and computation
indicators. In addition, we compare our best outcomes with existing approaches and
show that our EBT-based HRCDS is more accurate than existing models by 3–15%,
with faster inferencing.

2. Related Works

The human-robot interaction zone has recently placed a strong prominence on cyber-
physical space in order to address the concerns accompanied by intelligent robots for a wide
range of personal and entertainment applications. As such, collision or contact detection in
the human–robotics collaborative environment is a major concern for several HRI domains
that require the robot to infarct and move with the surroundings. A large number of
approaches have been introduced and developed in the literature to address this issue.
Collision avoidance methods based on sensors and cameras are presented in Section 2.1.
While collision detection methods based on the dynamic model of the robot (model-based
methods) are discussed in Section 2.2. These methods should be discussed and compared.
The third part discusses collision detection methods based on data (data-based methods),
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which use fuzzy logic, neural networks, support vector machines, and deep learning, and
is presented in Section 2.3.

2.1. Collision Avoidance

The active collision avoidance approach proposed in [10] provides a workplace moni-
toring system to detect any human entering the robot’s workspace. This proposed method
is based on the calculated human skeleton in real-time to minimize measurement error and
to estimate the positions of the skeleton points. A human’s behavior is also estimated by an
expert system. Robots use various methods to avoid human interaction, such as stopping
and bypassing. In this approach, the AI method is used to generate a new path for the robot
when it needs to execute in real-time while avoiding the human. The proposed method
employs active collision avoidance to ensure that the robot does not come into contact with
the human. The proposed work was to detect a human, analyze the human’s motion, and
then protect the human based on the motion [10].

To avoid collisions, [12] safety zones were created around a robot. For dynamic avoid-
ance, the use of a 3D camera to inform the robot’s movement in a dynamic environment was
proposed. For safe HRI, a mixed perception approach was presented. A safety monitoring
system was created to improve safety by combining the recognition of human actions with
visual perception and the interpretation of physical HRI. Contact and vision data were
gathered. When entering shared workspaces, the recognition system classified human
actions by using the skeleton representation of the latter. When physical contact between
a human and a robot occurs, the contact detection system is used to distinguish between
intentional and unintentional interaction [6] by introducing on-board perception with
proximity sensors [13]. This method relies on external sensing to keep a safe distance from
humans [13]. The proximity data are used to avoid, rather than to make, a transition contact.
Another noticeable work has been developed in [14], where a minimal robotic twin-to-twin
transfusion syndrome (TTTS) approach was proposed. From a single monocular fetoscope
camera image, CNN was used to predict the relative orientation of the placental surface.
This work is based on the position of the object of interest as a cognitive ability model, and
it employs vision for sensing. In this proposed study, the accuracy of adjusting the object of
interest was 60%.

Unfortunately, due to the limitations of sensors and robot motion capabilities, collision
avoidance may fail, for example, if the human moves quicker than the robot can detect or
counteract. The steps of avoiding collision are to detect the human, analyze the motion of
the human and then safeguard the human from a collision.

2.2. Collision Detection Methods Based on the Dynamic Model of the Robot

Moreover, the authors in [15] used a Gaussian mixture model with force sensing to
encode catheter motions at both the proximal and distal sites based on cannulation data
obtained from a single phantom by an expert operator. Non-rigid registration was used to
map catheter tip trajectories into other anatomically similar trajectories, yielding a warping
function. The robot detects and adjusts its end-effector using its distal sites. The proposed
method produced more smooth catheter paths than the manual method, while the human
positions the robot’s end effector in a specific pose and holds the robot in place. In addition,
the proposed approach in [16] is based on interactive reinforcement learning that learns a
complete collaborative assembly process. This approach uses robot decision-making as a
cognitive ability model and vision as a sensing technique. The action of the robot is based
on observing the scene and understanding the assembly process. The proposed method
was able to handle deviation during action execution.

A neural integrator was used as time-varying persistent activity of neural populations
to model the gradual accumulation of sensory and other evidence [17]. In this approach,
decision-making and vision sensing were used to assist a human in assembling a pipe
system. While the robot looks at the human to understand the current stage of the process,
it passes the pipe required by the human. Conversely, a nonparametric motion flow model
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for HRI was proposed by [18]. The proposed method made use of a vision sensing and
robot decision-making model as a cognitive ability model. By considering the spatial and
temporal properties of a trajectory, the mean and variance functions of a Gaussian process
were used to measure the motion flow similarity. The main human role in this approach
is to grab the object held by the robot, but at a certain point in the interaction, the human
decides to change the way he grabs it. A change in the user’s motions was detected by the
robot, and action was determined.

Furthermore, collaborators in [19] proposed a model learning and planning approach
to trust-aware decision making in HRI. A computational model that incorporates trust into
robot decision-making is used in this approach. A partially observable Markov decision
process with human trust as a latent variable was learned from the data by the system. If
the human does not trust the robot, the human must either put or prevent the robot from
acting. The proposed model’s results show that human trust corresponds to the robot’s
manipulation capabilities. In another HRI scenario, a neuro-inspired model based on
dynamic neural fields was used to select an action [20]. Its foundation was task recognition
and vision sensing. In this approach, a system of colored pipes was built in collaboration
with the robot. The current step of the assembly sequence is understood by the robot, and
it performs an action and advises the user on the next steps it should take. In addition,
HRI using variable admittance control and the prediction was proposed by [21]. It used
force sensing, reinforcement learning, and long short-term memory networks to obtain
the optimal damping value of the admittance controller and to predict human intention.
In this approach, the optimal damping value of the admittance controller was obtained
by using reinforcement learning, while the human intention was predicted by using the
long short-term memory networks. In this technique, the object held by the robot was
dragged by the human. The intention of the human was detected by the robot and tracked
the trajectory forced by the dragging of the object.

Additionally, the researchers used a model-based reinforcement learning model, a
multi-layer perceptron, and force sensing [22]. A human must lift an object, while a robot
assists in the lifting of an object. Based on bilateral control for HRI, Reference [23] presented
imitation learning. This method made use of control variables, force sensing, and long-
short rem memory. A model for predicting a human’s ergonomics within an HRI was
developed by [24]. The human must provide support for an object while rotating it. The
robot looks at the human hand pose to provide the required rotation. Similarly, the authors
in [25] presented a reinforcement learning-based framework for HRI. It was learned in an
unsupervised and proactive manner, and it balances the benefits of timely actions with
the risk of taking inappropriate actions by minimizing the total time required to complete
the task. In this technique, machine learning methods such as reinforcement learning,
long short-term memory, and variational autoencoders were used. The robot recognized
the human action and then assisted the human in the assembly. This method avoids the
time-consuming annotation of motion data and allows for online learning. Besides, the
work proposed in [26] describes an artificial cognitive architecture for HRI that uses social
cues to decipher goals. This work implemented a low-level action encoding with a high-
level probabilistic goal inference and several levels of clustering on different feature spaces,
paired with a Bayesian network that infers the underlying intention. In general, collision
detection methods that are based on the dynamic model should obtain joint acceleration
information, which is, however, complicated to calculate or measure.

2.3. Collision Detection Methods Based on Data

The approaches proposed by [27] based on collision detection and reaction do not
include prior-to-contact sensing, and none of these approaches employ proactive percep-
tion of the environment to anticipate contact. A neural network was used to solve the
synchronization movement problem in HRI. The radial basis function neural network
(RBFNN) model was used in this approach to detect the collaborator’s motion intention.
The adaptive impedance control method was used to obtain training samples and to control
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the robot during the data acquisition process [5]. In addition, ML methods are considered as
a critical factor in HRI and interception. SVM, the Markov model, neural networks, and the
Gaussian mixture model (GMM) have been used for HRI with accuracy ranging from 70%
to 90% [28–30]. Deep learning algorithms are used to improve HRI recognition accuracy by
using video stream data RGB-D images, 3D skeleton tracking, and joint extortion for the
classification of arbitrary action [31–33].

Collision detection and identification for robot systems were solved by simple thresh-
old logic and a hypothesis-tested method. Speech recognition and snoring identification
and fault identification of the mechatronic system was used [34]. A deep learning neural
network was used and tested using the system fault status [35]. In [36], different classifiers
were used and tested using the recorded signal samples.

Time series and fuzzy logic modeling were used by [37] for collision detection between
humans and robots. Collisions were detected statistically by observing large deviations
between the actual and expected torque. The time series method is more efficient since
it does not require an external sensor. The results show that both proposed methods can
detect collisions fast. However, unexpected collisions and expected contacts of the robot
with the human are not discussed in this research.

Time series and fuzzy logic modeling to detect collisions between a human and a robot
were proposed by [37]. Collisions were detected statistically by looking for large differences
in torque between the actual and expected values. Because it does not require an external
sensor, the time series method is more efficient. The results show that both methods
proposed can detect collisions quickly. However, unexpected collisions and expected
human-robot contact were not addressed in this study. For detecting human–manipulator
collisions, a neural network was proposed by [38]. The neural network is designed based on
the manipulator’s joint dynamics. The designed system’s results achieve high effectiveness
in detecting collisions between humans and robots. In [39], a practical aspect of collision
detection was presented using simple neural architecture. In this study, a virtual force
sensor that processes information about motor current with the help of an artificial neural
network with four different architectures was used. The MC-LSTM architecture produced a
mean absolute prediction error of about 22 Nm. The external tests conducted show that the
presented architecture can be used as a collision detector. With the optimal threshold, the
MC-LSTM collision detection f1 score was 0.85. In this study, isolation and identification
were not considered; only the detection part was considered.

In [40], a deep learning method was used for online robot action planning and execu-
tion to parse visual observations of HRI and predict the human operator’s future motion.
The proposed method is based on a recurrent neural network (RNN) that can learn the
time-dependent mechanisms that underpin human motions. In the same context, Dynamic
neural fields were used to apply brain-like computations to endow a robot with these
cognitive functions. In addition, HRI stiffness estimation and intention detection were
proposed [41]. The endpoint stiffness of the human arm can be calculated based on the
muscle activation levels of the upper arm and the human arm configurations. This method
uses a neural learning algorithm to configure wrist recognition. The primary human role is
to lift an object with the robot and move it to a new location. The robot’s role is to detect
human interaction and follow its movement to keep the object balanced. The results show
that the robot was successful in completing its task.

In another context, the HRI framework proposed in [42] is based on estimating human
arm impedance parameters with a neural network to improve tracking performance under
variable admittance control for HRI. This method made use of force sensing. The human
perceives different objects differently and holds one end of the saw, while the robot holds
the other end of the saw and tracks its movement using recognition parameters. When com-
pared to other approaches, the results of this research work show smoother performance.

Unlike aforementioned models, in this work, we propose a machine-learning-based
self-governing human-robot contact detection system to support the decision making of a
robotic system in classifying the type of contacts with the human in a collaborative HMI en-
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vironment by characterizing the performance of five different ML-based models using eight
different standard performance evaluation metrics. The selected ML model to develop the
human-robot contact detection system is the optimal model that provides the best quality
indication factors, minimum error rates, and best possible computational complexity.

3. HRC Detection Model

In this research, we have developed and evaluated our proposed machine learning-
based human-robot contact detection using the MATLAB 2021b system along with Simulink
toolboxes over a 64-bit Windows 11 Professional operating system, with the latest service
packs. For improved simulation and efficient experimental assessment, we used a high-
performance computing platform that employs an Intel 11th Gen Intel (R) Core (TM)
i7-11800 H @ 2.30 GHz Processor, with 16 GB memory (DDR-4 RAM units), 1000-GB SD
storage, and 4 GB graphical processing unit (GPU). The complete workflow diagram for
the development and assessment of our proposed HRCDS is illustrated in Figure 2 below.
Specifically, once the required data are accumulated, then, the HRCDM model is composed
of three core components before the deployment and performance of the collision detection;
these include the data formulation component, learning models’ component, and the
performance evaluation component.

Figure 2. Workflow diagram to implement and validate the proposed HRCDS Model.

3.1. The CDD 2021 Dataset

Contact detection dataset (or CDD 2021 Dataset) is an up-to-date dataset that is
assembled from a robot arm, Franka Emika Panda while performing frequent interactions
and movements within a collaborative environment [43]. Each sample is composed of
using 785 numerical features that are calculated from the 140-millisecond time-lapse sensor
data, motor torque, external torque, joint position, and velocity, with a 200 Hz sampling
rate (28 data points). The CDD 2021 dataset accumulates a total of 2205 samples distributed,
as exhibited in Figure 3.

3.2. The Data Formulation Component

A data formulation component is a group of consecutive operations accountable for
reformulating the accumulated data samples symmetrically and preparing a proper format
that can be presented for the learning processes. The stages of this model component are
described below and are summarized in Figure 4.
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Figure 3. CDD 2021 dataset: sample distribution.

Figure 4. Stages of the data formulation process.

• The first stage after accumulation of the intended data (i.e., CCD2021) is to read and
host the CCD2021 records (which is available in .CSV format) using the MATLAB
import tool. Once imported, MATLAB will host the data records in a temporary table
in order to enable the exploratory data analysis (EDA) before the data are stored in
the workplace to check the symmetry of samples features. At this stage, we have
performed several EDA processes over the imported data including: (1) combining
the datasets from different files in one unified dataset, (2) removing any unwanted or
corrupted values, (3) fixing all missing values, (4) replacing nonimportable values or
empty cells with zeros.

• The second stage of data formulation is the class labeling, where we have three classes
at the output layer. We have three labels encoded using integer encoding as follows:
“Noncontact: 0”, “Intentional: 1”, and “Collision: 2”.

• The third stage of data formulation is samples randomization (also called shuffling).
This process takes place by rearranging the positions for the sample in the dataset by
using a random redistribution process. This process is essential to ensure that data
are statistically unpredicted and asymmetric and to avoid any biasing by the classifier
toward specific data samples.

• The fourth stage of data formulation is the splitting of the dataset into two subsets:
training dataset that is composed of 70% of the samples in the original dataset and
testing (validation) dataset that is composed of 30% of the samples in the original
dataset. To ensure higher efficiency in the learning process (training + testing), we
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used asymmetric k-fold cross-validation to distribute the dataset into training and
testing datasets.

During the training process, we used 70% of the CDD 2021 dataset comprising ap-
proximately 1600 samples that are distributed in a balanced manner between the collision
and non-collision classes. The rest of the samples, which is 30% of the CDD 2021 dataset,
comprising approximately 410 samples, are used to test the model performance. The used
dataset is quite enough to train the proposed model to provide binary/ternary classifica-
tions. To justify arguments for this experiment, we trained and tested the proposed model
using several machine learning techniques (to be discussed in the upcoming sections), and
most of these models have successfully achieved a high-performance detection capability
in terms of several standard key performance indicators (KPIs), such as detection accuracy,
detection sensitivity, and detection speed.

3.3. The Learning Models Component

In this work, we have developed our HRCDM model using five supervised algorithms
in order to characterize their performance and then to pick up the optimal model to deploy
the HRCDM model. The developed ML models include: the ensemble of bagging trees
(EBT) model [44], the k-nearest neighbor (kNN) model [45], the logistic regression kernel
(LRK) [46], the fine decision trees (FDT) [47], and the subspace discriminator (SDC) [48].
The summary of ML technique specifications and configurations used to implement the
HRC detection model is illustrated in Table 1.

Table 1. Summary of ML techniques used to implement the HRC detection model.

Model Type Description

EBT

Learning Family: Bagged Trees, Ensemble technique: Bag, Learner method:
Decision tree, Number of learners: 30, Maximum number of DT splits: 2204,
Learning rate = 0.1, Optimizer: Bayesian optimizer, number of
epochs: 30 iterations.

kNN
Learning Family: Weighted KNN, Number of neighbors (k): 10, Learner method:
nearest neighbor, Distance metric: Euclidean Distance, weight metric: Squared
inverse, data standardization: true

LRK

Learning Family: Logistic Regression Kernel, Learner method: Logistic
Regression, Number of expansion dimensions: Auto, Regularization strength
(Lambda): Auto, Kernel scale: Auto, Multiclass method: One-vs-One, Iteration
limit: 1000

FDT
Learning Family: Fine Tree, Learner method: Decision tree, Maximum number
of splits: 100, Split criterion: Gini’s diversity index, Surrogate decision splits Off,
all features used in the model.

SDC
Learning Family: Subspace Discriminant, Ensemble technique: Subspace,
Learner method: Discriminant, Number of learners: 30, Subspace
dimension: 393, all features used in the model.

3.4. The Model Evaluation Component

The model evaluation in the machine-learning-based model is a vital stage of ev-
ery model design [49]. This significantly requires tracing of the performance trajectories
to provide insight into the solution approach and problem formulation, to compare the
developed ML-based models to pick up the optimal model that maximizes the model per-
formance and minimizes the model alarms and error thresholds, and finally to benchmark
the best-obtained results with respect to those results reported in the literature within the
same area of research. In this research, we have evaluated our models in terms of three
quality indicating factors (ACC, PPV, and TPR), three alarms/error rates (MCE, FDR, and
FNR), and two computation complexity factors (PSD and PRT). Besides, a confusion matrix
analysis is provided to explore the statistical numbers of the samples classified correctly (TP,
TN) and the samples classified incorrectly (FP, FN). Furthermore, the area under the ROC
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(receiver operating characteristic) curve (in short, known as AUC) [50] is also investigated
for every individual class (noncontact, intentional, and collision). Figure 5 demonstrates
the summary of standard assessment factors involved in this research.

Figure 5. Standard performance measurement factors.

3.5. Experimental Environment

To efficiently develop and evaluate the aforementioned models, we used a high-
performance computing platform along with up-to-date software/programming utilities.
For instance, in terms of software, the ML models stated above have been implemented and
evaluated on a Windows 11 environment (64-bit operating system, x64-based processor)
using the MATLAB 2021b computing system and machine learning toolbox (Simulink tool)
along with the help of a parallel computation package to enable the parallel execution of
model training and testing, which maximize the utilization of the available processing
and computing devices. In terms of hardware, the developed (implemented) models have
been executed on a commodity computer with high processing and computing capabilities.
The computer is composed of central processing (11th Gen Intel (R) Core (TM) i7-11800
H @ 2.30 GHz), a graphical processing unit (NVIDIA GeForce RTX 3050 Ti Laptop GPU),
and random-access memory (16.0 GB of RAM). In addition, the data (up-to-date data,
2021) used to train and test the stated ML models were obtained from Mendeley’s data
repository powered by Elsevier. Once the data are obtained, they undergo a series of data
preprocessing operations such as data cleaning, transformation, encoding, standardization,
shuffling, and splitting (into training and testing datasets). Once the data are preprocessed,
the ML models are developed using MATLAB coding in addition to the machine learning
toolboxes provided in the packages. Every model is customized and trained/validated
using five-fold cross-validation using several parameters/hyperparameters configurations
in order to pick up the optimal results of the learning process performance. Every model
is evaluated using several standard performance measurement factors (stated above in
Figure 5). Once all results from all models are generated, compared, and analyzed, then
the best performant model is selected to be deployed with the robot to execute in real-
time environments.

4. Results and Analysis

In this work, we developed a computational intelligence model for human-robot
interactions (HRI) that can help the robot identify the asymmetric type of contact during its
movements and interactions with humans. To do so, we have employed the five asymmetric
aforementioned machine learning techniques at the implementation stage of the proposed
HRCDS. The following subsections provide extensive results and analyses regarding the
solution approach and model implementation.
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4.1. Performance Evaluation

In this subsection, we present and analyze our experimental results for the developed
and evaluated models. To begin, Table 2 along with Figure 6 compares the performance of
HRCDS implementation utilizing various machine learning methods (i.e., HRCDS_EBT,
HRCDS_kNN, HRCDS_LRK, HRCDS_FDT, and HRCDS_SDC) in terms of eight different
performance indicators (i.e., ACC, PPV, TPR, MCE, FDR, FNR, PSD, and PRT). In terms
of quality rates (accuracy (ACC), specificity (PPV), and sensitivity (TPR)), the ensemble
learning-based model (HRCDS_EBT) exhibits the highest performance indicators with
improvement factors of 0.5–20%, 1.5–23.4%, and 0.1–24.4% for ACC, PPV, and TPR, respec-
tively, over the other implemented ML-based models. Consequently, HRCDS_EBT has
recorded the lowest estimates in terms of error rates with 2.9%, 4.3%, and 4.9% for MCE,
FDR, and FNR, respectively. Conversely, the lowest quality rates and thus highest error
rates belong to the subspace discriminant learning-based model (HRCDS_SDC). However,
it recorded relatively high-speed inferencing with a prediction time (PRT) of 135 µS. In
terms of computational complexity, both HRCDS_EBT and HRCDS_FDT show the highest
prediction speed with 9800 O/S and 15,000 O/S, respectively. On the contrary, the slowest
predictive model is the HRCDS_LRK requiring a 909 µS for single sample inferencing.
Although HRCDM_kNN is three times slower than HRCDS_EBT, it recorded a competent
performance indicator, which can be a second high-performance alternative model for the
HRCDM_EBT model.

Table 2. Summary of performance factors for HRC detection model using different ML Techniques.

ACC PPV TPR MCE FDR FNR PSD PRT

EBT 97.1% 96.9% 97.1% 2.9% 3.1% 2.9% 9800 O/S 102 µS
kNN 96.6% 94.2% 95.0% 3.4% 5.8% 5.0% 3300 O/S 303 µS
LRK 94.2% 92.0% 89.4% 5.8% 8.0% 10.6% 1100 O/S 909 µS
FDT 92.2% 71.7% 61.3% 7.8% 28.3% 38.7% 15,000 O/S 67 µS
SDC 77.1% 72.3% 70.7% 22.9% 27.7% 29.3% 7400 O/S 135 µS

Figure 6. Comparing the performance factors for several HRCDS variations.
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4.2. Optimal Model Selection

Based on the above discussion, summary, and comparisons of performance factors
for HRCDS variations using different asymmetric ML techniques provided in Table 2 and
Figure 6, it can be inferred that overall, the best performance factors’ results belong to the
HRCDS-based ensemble bagged trees, and thus, HRCDS-EBT is efficiently selected for the
robot in making intelligent decisions involving the asymmetric contacts with humans due
to movements and interactions. Therefore, the following results and discussion will focus
on the HRCDS-EBT. For instance, Figure 7 illustrates the trajectory of the misclassification
rate (minimum classification error) for 30 iterations of the learning process of the HRCDM-
EBT model. By observing the figure, the best point of the learning process is satisfied after
the 18th iteration where the model reached its minimum classification error (2.9%) and was
saturated to the end of the learning process. At this point, the best hyperparameters of
the ensemble bagging trees were recorded (for example, the best learning rate, number of
learners, etc.).

Figure 7. The performance trajectory for the minimum classification error vs. iteration number for
the ensemble bagged trees (EBT).

4.3. Experimental Evaluation of the Optimal Model

Besides, Figure 8 exhibits the confusion matrix analysis for the three-classes classifier
employing ensemble bagged trees (EBT) for the HRCDS. The diagonal of the matrix repre-
sents the number of correctly classified samples for each target class; that is, the number of
correctly classified samples for the “collision” class is 319 samples out of 359 samples for
this target class (i.e., 88.9% of classification accuracy for this class), the number of correctly
classified samples for the “intentional” class is 623 samples out of 647 samples for this
target class (96.3% of classification accuracy for this class), and the number of correctly
classified samples for the “Noncontact” class is 1199 samples out of 1199 samples for this
target class (100% classification accuracy for this class). Conversely, the non-diagonal cells
of this matrix represent the number of incorrectly classified samples for each target class;
that is, the number of incorrectly classified samples for the “collision” class is 40 samples
out of 359 samples for this target class (i.e., 11.1% of minimum classification error for this
class), the number of incorrectly classified samples for the “intentional” class is 24 samples
out of 647 samples for this target class (3.7% of minimum classification error for this class),
and the number of incorrectly classified samples for the “Noncontact” class is 0 samples
out of 1199 samples for this target class (0.0% minimum classification error for this class).
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However, the overall classification accuracy and minimum classification error will consider
all numbers in the matrix as follows:

Overall accuracy f or HRCDS − EBT =
319 + 623 + 1199
359 + 647 + 1199

× 100% = 97.1%

Overall minimum classi f ication error =
40 + 24 + 0

359 + 647 + 1199
× 100% = 2.90%

Figure 8. The confusion matrix analysis for the three-classes classifier employing ensemble bagged
trees (EBT).

Moreover, Figure 9 illustrates the sensitivity levels (TPR/recall) and specificity levels
(PPV/precision) as well as the insensitivity levels (FNR) and imprecision levels (FDR) for
the individual classes of the three-classes classifier of HRCDS-EBT. The “Noncontact” class,
which represents 54% of the total number of samples (1199 samples out of 2205 samples),
exhibits the best performance rates, scoring a 100% for sensitivity and specificity and
0.00% for insensitivity and imprecision. Similarly, the “Intentional” class, which represents
29% of the total number of samples (647 samples out of 2205 samples), exhibits excellent
performance rates scoring 96.30% and 94.00% for sensitivity and specificity as well as
3.70% and 6.0% for insensitivity and imprecision, respectively. Conversely, the “Collision”
class, which represents 16% of the total number of samples (359 samples out of 2205
samples), exhibits the lowest performance rates scoring 88.90% and 93.00% for sensitivity
and specificity as well 11.10% and 7.0% for insensitivity and imprecision, respectively.
However, the overall sensitivity and specificity for HRCDS-EBT are 97.1% and 96.9% with
2.9% and 3.1% recorded for the overall insensitivity and imprecision levels, respectively.
The reason for such high-performance indicators is due to the impact of high-performance
results obtained for the “Noncontact” class, which occupies the majority of the samples
and thus highly contributed to the overall sensitivity and specificity levels. Another major
reason is the use of ensemble learning, which is considered one of the best solutions
for imbalanced data classification problems [51], enhancing the performance indicators
toward the classes. The reasons for such high-performance indicators are due to the use
of ensemble learning, which can enhance the performance indicators toward the classes
that have been the majority of the samples, such as “Noncontact”, which contributed to the
overall sensitivity and specificity levels.
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Figure 9. The sensitivity (recall) matrix analysis for the three-classes classifier employing ensemble
bagged trees (EBT).

Additionally, Figure 10 illustrates the area under the ROC (receiver operating charac-
teristic) curve (in short known as AUC) results forever individual class of the proposed
three-class classifier. The AUC curve is a representational plot to present the analytical ca-
pability of the classifier model of distinguishing between the positive and negative classes.
The AUC curve is created by plotting TPR against FPR to show the trade-off between
sensitivity and specificity at different thresholds. For every classifier, the more its AUC
curve becomes closer to the top-left corner, the better performance it has. Therefore, the
best performant curve will pass through the point (0.0, 1.0) of ROC space providing a
100% ability in the discrimination of positive and negative classes (i.e., AUC = 1.0, best
discrimination), whereas the closer the curve comes to the 45-degree diagonal of the ROC
space, the less accurate the test is. Therefore, the least accurate curve will pass through the
point (0.5, 0.5) of the ROC space providing a 50% ability in the discrimination of positive
and negative classes (i.e., AUC = 0.5, no discrimination). According to the obtained ROC
curves for our classes, it can be seen that all classes illustrated an excellent discrimination
capability, recording AUC values of 1.00, 0.98, and 0.93 for “Noncontact”, “Intentional”,
and “Collision” classes, respectively. Overall, the average AUC of the proposed model
exceeds 0.97, which reflects the high capability of our model in distinguishing between the
positive and negative classes.

Figure 10. The ROC curves for each class of the three-classes classifier employing ensemble bagged
trees (EBT).
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4.4. Comparison with the State-of-the-Art Models

To the best of our knowledge, this is the first work that evaluates and characterizes the
performance of machine learning approaches using the CDD 2021 dataset (contact detection)
that is gathered from a robot arm of Franka Emika Panda (a well-known robot). However,
we can still compare our empirical results with some of the results reported in some other
related works in the same area of study. For instance, the intelligent HRI model proposed
in [52] can provide collision detection between humans and robots and worker’s clothing
detection with a sensitivity level of 90% and an accuracy of 94%. Our model outperforms
this model with a 7.1% sensitivity level and a 3.1% accuracy level. In addition, the authors
of [53] developed an intelligent HRI model to classify human actions through the assembly
process using convolutional neural network (CNN), and they achieved 82% accuracy, while
our ensemble-based model indicates a higher accuracy of 97.1%. Furthermore, the authors
of [54,55] characterized the performance of two deep learning-based collision detection
systems, viz. collision net CNN [54] and force myography (FMHG) [55], which reported
accuracy rates of 88% and 90%, respectively, introducing a detection overhead of 200 ms,
while our ensemble model achieved 97.1% with 102µs detection overhead. In addition, the
contributors in [38] developed a neural network-based safe human–robot interaction. In
this work, the authors have characterized the performance of four different neural network
models, including one multilayer feedforward NN (MLFFNN-1) architecture, MLFFNN
architecture with two-hidden layers (MLFFNN-2), cascaded forward NN (CFNN), and
recurrent NN (RNN). The best performance results belonged to the CFNN, scoring 92%
and 84% for accuracy and sensitivity. However, our model performs significantly better
in terms of both reported evaluation metrics. Finally, the researchers in [39] developed an
intelligent robot collision detection system by employing the combination of convolution
neural network and the long short-term memory (CNN-LSTM). Their empirical evaluation
results reported, for their best model, an accuracy of 93.0%, the same for specificity, and
91.0% for sensitivity. All the reported results are lower than that reported by our model
performance. Several other reported results are compared and exhibit the high performance
of our proposed model, such as the support vector machine-based model reported in [56],
which has an accuracy of 59% and sensitivity proportion of 72%. Lastly, Table 3 provides a
summary of the effectiveness comparison of our system with other systems that exist in the
literature in the same area of study.

Table 3. Comparing our best-obtained results with the existing model for HRI collision detection.

Ref. Year Model Accuracy Sensitivity Specificity Overhead

[38] 2021 CFNN model 92.0% 84.0% - NA
[39] 2021 (CNN-LSTM) 93.0% 91.0% 93.0% NA
[52] 2022 CNN 94.0% 90.0% NA NA
[53] 2019 CNN 82.0% NA NA NA
[54] 2019 CollisionNet 88.0% NA NA 18.5 ms
[55] 2019 FMG method 90.0% NA NA 200 ms

Proposed 2022 HRCDS-EBT 97.1% 97.1% 97.1% 102 µs

5. Conclusions

An intelligent self-governing human-robot contact detection model to support the
decision making of a robotic model in classifying the type of contacts with humans in an
HMI environment divided into three types of contacts, noncontact, incidental, or intentional,
has been developed, implemented, and evaluated in this paper. The proposed solution
approach characterizes the results of five machine-learning methods, including k-nearest
neighbors (kNN), logistic regression kernel (LRK), fine decision trees (FDT), subspace
discriminant (SDC), and ensemble bagging trees (EBT). The developed models have been
evaluated on a contemporary and inclusive contact detection dataset (CDD 2021) that
was assembled from the movements of the “Franka Emika Panda” robot arm when it
was executing a repetitive movement. Our empirical results have been recorded for the
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model-based EBT, which demonstrated remarkable performance metrics recording 97.1%
and 97.0% for detection accuracy and the F1-score, respectively, with a low inference delay
of 102 µS to provide the correct detection state. Therefore, the proposed model can be
professionally adopted into physical human-robot contact applications to provide fast and
accurate HRI contact detection.

For future work, we will try to address the collision detection framework for robotics,
employing position sensors only where the torque signal is available and working in
a collaborative environment with humans. In addition, we will try to investigate the
employment of long, short-term memory (LSTM), which is flexible and has more control
ability on the classification output and thus can have improved decision-making results
for robotics systems. Furthermore, the proposed model can be deployed in a real HRI
environment to provide collision detection in a real-time environment. More data targeting
several other aspects of motion/interaction of the root system can be collected and recorded
from the actual movements of the robot while interacting with humans and other robots.
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