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Abstract: Convolutional neural networks (CNNs) have attracted extensive attention in the field
of modern remote sensing image processing and show outstanding performance in hyperspectral
image (HSI) classification. Nevertheless, some hyperspectral images have fixed position priors and
parameter sharing between different positions, so the common convolution layer may ignore some
important fine and useful information and cannot guarantee to effectively capture the optimal image
features. This paper proposes an improved multilayer perceptron (IMLP) and IMLP combined
with ResNet (IMLP-ResNet) two models for HSI classification. Combined with the characteristics
of hyperspectral data, we design IMLP based on three improvements. Specifically, a depthwise
over-parameterized convolutional layer is introduced to increase learnable parameters of the model
in IMLP, which speeds up the convergence of the model without increasing the computational
complexity. Secondly, a Focal Loss function is used to suppress the useless ones in the classification
task and enhance the critical spectral–spatial features, which allow the IMLP network to learn
more useful hyperspectral image information. Furthermore, to enhance the convergence speed of
the network, cosine annealing is introduced to further improve the training performance of IMLP.
Furthermore, the IMLP module is combined with a residual network (IMLP-ResNet) to construct a
symmetric structure, which extracts more advanced semantic information from hyperspectral images.
The proposed IMLP and IMLP-ResNet are tested on the two public HSI datasets (i.e., Indian Pines
and Pavia University) and a real hyperspectral dataset (Xuzhou). Experimental results demonstrate
the superiority of the proposed IMLP-ResNet method over several state-of-the-art methods with the
highest OA, which outperforms CNN by 8.19%, 6.28%, 5.59% and outperforms ResNet by 3.52%,
3.54%, 2.67% on Indian Pines, Pavia University and Xuzhou datasets, respectively, and demonstrates
that the well-designed MLPs can also obtain remarkable classification performance of HSI.

Keywords: remote sensing; hyperspectral image classification; convolutional neural network; multi-
layer perceptron; residual network

1. Introduction

Hyperspectral images (HSI) generally consist of tens to hundreds of continuous spec-
tral bands [1], and can provide rich spatial and spectral information simultaneously, which
offers great potential for the subsequent information extraction and practical applications
in people’s lives [2]. Therefore, HSI is becoming a valuable tool for monitoring the Earth’s
surface, and is used in a wide range of applications, such as environmental monitoring [3],
precision agriculture [4], military investigation [5], and so on.

Hyperspectral image classification (HSIC) is one of the hot issues in hyperspectral
research. Taking advantage of rich spectral information, numerous classification meth-
ods have been developed. Support vector machine (SVM) [6] has good robustness to
high-dimensional hyperspectral data. K-nearest neighbor (KNN) [7] is one of the simplest
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classifiers for HSI classification. Random forest (RF) [8] is an ensemble learning method
that operates by constructing multiple decision trees in the training process. In addition to
these, decision trees [9], extreme learning machines [10], sparse representation-based classi-
fiers [11] and many other methods have been further adopted to improve the performance
of hyperspectral image classification. Nevertheless, it is difficult to accurately distinguish
different land-cover categories using the spectral information [12]. Zhan et al. [13] used
factor analysis to learn effective spectral and spatial features, and applied a Large-margin
Distribution Machine (LDM) to hyperspectral remote sensing image classification. Mean-
while, morphological profile-based methods [14] have been proposed to effectively combine
spatial and spectral information.

However, the conventional methods are based on handcrafted spectral–spatial fea-
tures [15], which heavily depend on professional expertise and are quite empirical. Deep
learning-based methods can automatically extract spectral features, spatial features, or
spectral–spatial features of HSIs for classification application. Chen et al. [16] proposed
a stacked autoencoder (SAE) to extract the joint spectral–spatial features for complet-
ing accurate HSI classification. Li et al. [17] used a single restricted Boltzmann machine
(RBM) and a multilayer DBN to extract spectral–spatial features and obtained superior
classification performance compared to the SVM-based method. Makantasis et al. [18]
introduced a 2-D CNN to HSI classification, which achieved satisfactory performance
with encoded spectral–spatial information with CNN and conducted classification with a
multilayer perceptron. Chen et al. [19] used 3-D CNN to simultaneously extract spectral–
spatial features and achieved a better result for HSI classification. Nonetheless, due to
the loss of information caused by the vanishing gradient problem, training deep CNNs
is still a little difficult. Recently, He et al. [20] proposed the residual network (ResNet)
to solve this problem well, which defines a residual block as infrastructure elements to
facilitate learning of deeper networks and enabling them to be substantially deeper. Zhong
et al. [21] designed a spectral–spatial residual network (SSRN), which uses spectral residual
blocks and spatial residual blocks consecutively to learn deep discriminative features from
abundant spectral features and spatial contexts of HSI and achieved the most advanced
HSI classification accuracy on agricultural, urban–rural and urban datasets. Moreover, a
deep pyramidal residual network (PyResNet) [22] was developed to learn more robust
spectral–spatial representations from the HSI cubes and provided competitive advantages
(in terms of both classification accuracy and computational time) over the most advanced
HSI classification methods.

Although CNN-based models have achieved good performance for HSI classification,
the intrinsic complexity of remote sensing hyperspectral images still limits the performance
of many models based on CNN. Firstly, the parameters of CNN increase exponentially with
the convolution layer, and the size becomes lager with the increase in computing power.
In addition, due to the long-running multiplication and addition time, the consumption
of calculation has become the bottleneck of practical application. Finally, the translation
invariance and local connectivity of CNN will affect the HSI classification effect. MLP, as
a neural network with less constraints, can eliminate the negative effects of translation
invariance and local connectivity and has been proven to be a promising machine learning
technology. The present MLP-Mixer [23] is known as a pioneering MLP model. Further-
more, Liu et al. [24] proposed gMLP, which is based on MLPs combined with gating, and
showed that it can perform as well as transformers in vision applications and key language.
H. Touvron et al. [25] proposed ResMLP network structure built entirely upon multi-layer
perceptron and attained surprisingly good accuracy/complexity tradeoffs on ImageNet.
In addition, RaftMLP [26] aims to achieve cost-effectiveness and ease of application to
downstream tasks with fewer resources in developing a global MLP-based model.

MLP solves translation invariance and local connectivity problems; residual networks
can prevent model degradation and facilitate rapid convergence due to the retention of
original information. Therefore, we proposed two MLP-based classification framework: an
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improved MLP (IMLP) model, and IMLP combined with ResNet (IMLP-ResNet) to achieve
superior HSI classification performance in this paper.

As a summary, the following are the main contributions of this study.

1. MLP, as a less constrained network, can eliminate the negative effects of translation
invariance and local connectivity. Therefore, this paper introduces MLP into HSI
classification to fully obtain the spectral–spatial features of each sample and improve
the classification performance of HSI.

2. Based on the characteristics of hyperspectral images, we designed IMLP by introduc-
ing depthwise over-parameterized convolution, a Focal Loss function and a cosine
annealing algorithm. Firstly, in order to improve network performance without in-
creasing reasoning computation, depthwise over-parameterized convolutional layer
replaced the ordinary convolution, which can speed up training with more parame-
ters. Secondly, a Focal Loss function is used to enhance the important spectral–spatial
features and prevent useless ones in the classification task, which allows the network
to learn more useful hyperspectral image information. Finally, a cosine annealing
algorithm is introduced to avoid oscillation and accelerate the convergence rate of the
proposed model.

3. This paper inserts IMLP between two 3 × 3 convolutional layers in the ordinary
residual block, called as IMLP-ResNet, which has a stronger ability to extract deeper
features for HSI. Firstly, the residual structure can retain the original characteristics of
the HSI data, and avoid the issues of gradient explosion and gradient disappearance
during the training process. In addition, the residual structure can improve the
modeling ability of the model. Moreover, IMLP can improve the feature extraction
ability of residual network, so that the model strengthens the key features on the basis
of retaining the original features of hyperspectral data.

The rest of this article is organized as follows. Section 2 describes our proposed classi-
fication approach. Section 3 reports the experimental results and appraises the performance
of the proposed method part. Section 4 gives the discussion and analyzes how to choose
experimental parameters in the IMLP-ResNet classification model. Section 5 gives the final
conclusions and discusses research directions in the future.

2. The Proposed MLP-Based Methods for HSI Classification

Considering that the deepening of network layers in deep learning will cause the
phenomenon of gradient disappearance and gradient explosion, the classification model
adopts residual network as the basic framework. Figure 1 shows the overview flowchart of
the improved MLP combined with ResNet (IMLP-ResNet) for HSI classification.
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First of all, the improved MLP (IMLP) model for HSI classification is described
in detail.

2.1. The Proposed Improved MLP (IMLP) for HSI Classification

Figure 2 gives the overall architecture of the proposed IMLP for HSI classification,
which consists of two stages: a training stage and a testing stage. In the training stage, the
network consists of a Global Perceptron module, Partition Perceptron module and Local
Perceptron module. The structural reparameterization means that the training-time model
has a set of parameters and the inference-time model has another set [27], and parameterizes
the latter with the former’s parameters. The detailed description is explained as follows. It
is assumed that the HSI dataset is the size of H ×W × nBand, where H and W represent
spatial height and width, and nBand is the frequency band number. First, each pixel of
the hyperspectral image is processed with a fixed window size y× x, and a single sample
with a shape of y× x× nBand is generated. Subsequently, with the shape of each patch, it
becomes R× R× nBand. In this paper, the patch size is set to 4× 4.
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The global perceptron module block consists of two branches. The first branch of the
global perceptron module splits up the input hyperspectral feature image. The hyperspec-
tral feature map changes from (H, W, C) to (h1, w1, O) In the second branch, the original
feature map (H, W, C) is evenly pooled, and the size of the hyperspectral feature map
becomes (h, w, O). H, W, C indicate the height, width and number of input channels of the
input hyperspectral feature map, respectively. h1, w1, O respectively represent the height,
width and number of output channels of the split hyperspectral feature image. Finally, h, w
indicate the height and width of the hyperspectral feature image after average pooling
as follows:

h1 =
H
h

, w1 =
W
w

(1)

The second branch uses average pooling to achieve a pixel for each hyperspectral
feature image, and then feeds it though BN and a two-layer MLP. The hyperspectral feature
map (h, w, O) is sent to the BN layer and two fully connected layers. The ReLU function is
introduced between the two fully connected layers to effectively avoid gradient explosion
and gradient disappearance. For the fully connected layer, X(in) and X(out) represent
input and output, and the kernel W ∈ RQ×P is the matrix multiplication (MMUL) defined
as follows:

X(out) = MMUL
(

X(in), W
)
= X(in) ·WT (2)

The hyperspectral vector is transformed into (1, 1, C) by BN layer and two fully con-
nected layers, after which the hyperspectral feature images are obtained after all branches
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are added. Then, the hyperspectral features are input to partition perceptron and local
perceptron without dividing.

The Partition Perceptron module block contains a BN layer and a group convolution.
The input of the partition perceptron is (h, w, O). Then access the group convolution
of groups = 4 and BN layer. After BN layer and a group convolution processing, it
becomes the original hyperspectral feature input (H, W, C). Y(out) ∈ RC×H×W indicates
the output hyperspectral feature. p is the number of pixels filled, while F ∈ RC/g×K×K

is the convolution kernel. g indicates the number of convolution groups. The calculation
formula of Y(out) is shown in Equation (3).

Y(out) = g
(

Y(in), F, g, p
)

, F ∈ RC/g×K×K (3)

The Local Perceptron module contains a depthwise over-parameterized convolutional
layer (DO-Conv) [28] and a BN layer. First, the local perceptron module sends the seg-
mented hyperspectral feature image (h, w, O) simultaneously to the deep hyperparametric
convolution layer. Then the feature graph is fed into BN layer, and the output of all
convolution branches is added with the output of the partition perceptron as the final
output. In the test phase, reparameterization is carried out to fuse the two parts of the local
perceptron module and the partitioned perceptron module into a fully connected layer.
The FC kernel of a DO-Conv kernel is the result of convolution on an identity matrix with
proper reshaping operation. Formula (4) shows exactly how to build W(F,p) from F and p.

W(F,p) = DOCONV(Y, F, p), (Chw, Ohw)T (4)

In order to increase the learnable parameters of the proposed model, a deeply over-
parameterized convolutional layer is introduced to replace the ordinary convolutional layer
to construct IMLP. In addition, IMLP introduced Focal Loss for the purpose of solving the
problem of data imbalance in hyperspectral image classification and the cosine annealing
algorithm to improve the training performance of IMLP, which makes the convergence
speed of the network faster. The three modifications are described in the following parts.

2.1.1. DO-Conv

In order to improve the training speed of the model, DO-Conv is introduced to
replace the traditional convolution layer in the local perceptron module. The architecture
of DO-Conv is shown as Figure 3. There are two components in DO-Conv, including
a feature component and a convolution kernel component. The model is more efficient
after adding the convolution kernel component, so this paper uses the convolution kernel
component to train the network. The DO-Conv is composed of a conventional convolution
W ∈ RCout×Dmul×Cin and a deep convolution. D ∈ R(M×N)×Dmul×Cin . In conventional
convolution, the convolution layer slides the input data, and each element of the output
feature is obtained by the horizontal slice of the convolution kernel and P dot product of
the image block. In the deep convolution layer, the convolution kernel is convolved with
each input channel during the training phase.

At the end of the training phase, the multi-layer composite linear operation used for
over-parameterization is folded into a compact single-layer representation. Then, only one
layer is used for reasoning, reducing the calculation to full equivalence with the regular
layer. M and N are spatial dimensions of P, Cin is the number of input feature graphs, Cout
is the number of Dmul output feature graphs, DT ∈ RDmul×(M×N)×Cin is the transposition
of D ∈ RDmul×(M×N)×Cin and the convolution kernel of DO-Conv is W ′. First, the deep
convolution kernel DT and the convolution kernel of ordinary convolution W are combined
into W ′, W ′ = DT ◦W. The convolution output feature O is then generated as O = W ′ ∗ P,
where ∗ is convolution, ◦ is the dot product, and # is the defined operator.

O = (D, W)#P = (D ˆT ◦W) ∗ P (5)
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2.1.2. Focal Loss

Data imbalance is common in hyperspectral remote sensing images. Because there
are various objects with different sizes in a hyperspectral scene, it is very difficult to
mark samples in practice. Therefore, there is usually a serious imbalance between various
samples of hyperspectral data [29]. Thus, this paper introduced focal loss function instead
of cross entropy loss (CE) function. CE is written as follows:

CE(p, y) =
{

−log(p) i f y = 1
−log(1− p) otherwise

(6)

where y ∈ {±1} specifies the ground-truth class and P ∈ [0, 1] is the model’s estimated
probability for the class with label y = 1, and pt is defined as follows:

pt =

{
p i f y = 1

1− p otherwise
(7)

Focal Loss is calculated as follows:

FL(pt) = −(1− pt)
γlog(pt) (8)

Focusing parameter γ can adjust the weight of positive and negative samples as well
as control the weight of difficult and easy samples. When some samples are misclassified
and pt is very small, the regulatory factor (1− pt)

γ is close to 1, which has little influence
on loss function. However, as pt tends to 1, this factor will gradually tend to 0, and
losses for well-classified samples will also decrease, so as to achieve the effect of reducing
weight. γ will smoothly adjust the proportion of reduced weights for easily classified
samples. Increased γ can enhance the influence of the regulatory factor, which reduces the
loss contribution of easily classified samples and broadens the range of low loss received
by samples.

2.1.3. Cosine Annealing Algorithm

The batch gradient descent (BGD) and stochastic gradient descent (SGD) are mainly
used to update parameter values in deep learning. BGD needs to update each parameter
with all the data sets. If the sample size is too large, the training speed will be too slow,
which will increase the computational cost. However, SGD has a characteristic fast training
speed, because it uses part of the information of the data and easily falls into a local optimal
solution [30]. Therefore, this article introduces the cosine annealing algorithm to update
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the parameter values under the premise of comprehensive training sample speed and
computational cost, and the learning rate can be reduced by the cosine function. We decay
the learning rate with a cosine annealing for each batch as follows:

ηt = ηi
min + 1/2

(
ηi

max − ηi
min

)
(1 + cos

(
Tc

Ti
π

)
) (9)

where ηi
min and ηi

max are ranges for the learning rate, Ti is the total number of epochs, and
Tc is the current epoch. When Tc = Ti, ηt reaches the minimum training batch.

When the gradient descent algorithm is used to optimize the objective function, the
learning rate should become smaller to get closer to the global minimum value of the
loss function and make the model as close as possible to this point. The cosine annealing
algorithm can reduce the learning rate by cosine function. The cosine goes down slowly as
x increases, then it accelerates and goes down slowly again.

2.2. The Proposed IMLP-ResNet Model for HSI Classification

The main idea of an IMLP-ResNet model refers to the insertion of IMLP between two
3× 3 convolutional layers in the ordinary residual block; that is to say, the IMLP module
inserted into the third layer of ResNet has a stronger ability to extract deeper features
for HSI. First of all, ResNet34 can retain the original characteristics of the HSI data. It
can solve gradient explosion and gradient disappearance in the training process. In the
meantime, ResNet34 can improve the modeling ability of the model. IMLP can improve the
feature extraction ability of residual network and strengthen the key features on the basis
of retaining the original features. ResNet34 compared with other CNN models can help
overcome the over-fitting phenomenon. The ResNet family includes ResNet18, ResNet34,
ResNet50, ResNet152, etc. In order to improve the classification efficiency, ResNet34 with
fewer parameters was used in this paper.

2.2.1. The Structure of ResNet34

The classification performance of the deep learning model decreases with the increase
in depth [31]. Inspired by deep residual learning framework, this aggravating problem can
be solved by adding quick connections and propagating eigenvalues between each layer.

The core of the deep residual network lies in the residual learning module, which
can save part of the original input information during the training of the deep CNN
model [32,33]. In this way, the learning target is transferred to avoid the saturation of
classification accuracy caused by the depth of the network. As shown in Figure 4, x
represents the input, H(x) represents the output, and F(x) represents the residual function.
The output of the residual unit is shown in Equation (10).

H(x) = F(x) + x (10)
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Figure 4. The architecture of the residual block.
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The residual module calculates the residual error when the span is not interrupted.
{Wi} is used to show the residual module block, the residual module actually calculates
the output result as shown in Equation (11).

y = F(x, {Wi}) + x (11)

F(x, {Wi}) is residual mapping and can be obtained by back propagation (BP). For the
case of two weight layers, the calculation process is shown in Equation (12) when the bias
is ignored.

F(x, {Wi}) = W2σ(W1)x = W2ReLU(W1)x (12)

The calculation of residual module requires that F(x, {Wi}) and x have the same
dimension. A linear projection Ws is proposed by the shortcut connections to match
the dimensions:

y = F(x, {Wi}) + Wsx (13)

Figure 5 is the overall architecture of ResNet34, which adds shortcut connections
between each two layers, and can directly sample the input image with the convolution of
stride of 2. It can be seen that there are four layers in the structure of ResNet34 and each
layer has 3, 4, 6, and 3 residual blocks, respectively. The convolutional layers mostly have
3 × 3 filters for the same output feature map size. In order to maintain the time complexity
of each layer, the number of filters was doubled if the feature map size is halved. The size
of the feature map is halved and the number of feature maps is doubled to maintain the
complexity of the network.
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2.2.2. IMLP-ResNet Model

Figure 6a shows the structure of the ordinary residual block, which contains two 3 × 3
convolutional layers and a shortcut connection. BN is applied after the convolutional layer
and before the activation function to accelerate the convergence of the module. The shortcut
connection enables the gradient to propagate directly from the later to earlier layers, thus
mitigating the gradient vanishing. The stacking multiple residual blocks can develop a
deeper network to alleviate overfitting of the network.

As shown in Figure 6b, this paper inserts IMLP between two 3× 3 convolutional layers
in the ordinary residual block to constitute a symmetric structure. Traditional convolutional
layers obtain long-range dependencies by the large receptive fields formed by deep stacks of
convolutional layers. However, repetition of local operations requires a lot of computation
and may cause optimization difficulties. At the same time, some images have intrinsic
positional prior, which cannot be fully utilized by a convolutional layer because it shares
parameters among different positions. IMLP runs faster than CNN with the same number
of parameters and has global capacity and positional perception. Therefore, our proposed
IMLP-ResNet can perform fine-feature extraction at different network levels and learn
more comprehensive feature representations for HSI classification.
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3. Results
3.1. Dataset Description

In order to verify the classification performance efficiently, a number of experiments
were performed on two standard hyperspectral datasets (Indian Pines and Pavia Uni-
versity), and the Xuzhou dataset. The Indian Pines dataset was acquired in 1992 by an
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Indian Pines Test
Site in northwestern Indiana with a size of 145× 145 pixels, 224 spectral bands and 16 types
of land cover. The number of bands was reduced to 200 by removing the bands covering
the water-absorbing area (bands 104–108, 150–163, 220). The Pavia University dataset was
picked up by ROSIS sensors flying over Pavia in northern Italy. The number of spectral
bands is 103, and the size is 610 × 610 pixels with nine categories. Figures 7 and 8 show the
false-color composite image and ground truth map, and Tables 1 and 2 report the detailed
number of pixels available in each class for the two datasets respectively.
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Figure 8. Pavia dataset. (a) False color map; (b) ground truth map.

Table 1. Indian pines labeled sample counts.

Class Code Name Sample Numbers

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10,249

Table 2. Pavia University labeled sample counts.

Class Code Name Sample Numbers

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

The Xuzhou dataset was obtained via a HySpex SWIR-384 and HySpex VNIR-1600
imaging spectroradiometer in Xuzhou in November 2014, with a size of 500× 260 pixels
and 436 bands. Based on the field survey, nine feature types were identified. Figure 9 shows
the false-color composite image and the ground truth graph. Table 3 reports the detailed
number of pixels available in each class.
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Table 3. Xuzhou labeled sample counts.

Class Code Name Sample Numbers

1 Bareland-1 26,396
2 Lakes 4027
3 Coals 2783
4 Cement 5214
5 Crops-1 13,184
6 Trees 2436
7 Bareland-2 6990
8 Crops-2 4777
9 Red-tiles 3070

Total 68,877

3.2. Experimental Parameters Setting

All experiments were performed on an Intel(R) Xeon(R) 4208 CPU @ 2.10 GHz proces-
sor and Nvidia GeForce RTX 2080Ti graphics card. In order to reduce experimental errors,
the model randomly selected a limited number of samples from the training set for training.
The epoch was set to 200, and the batch size was set to 32. All experimental results were
averaged from 10 experiments. Overall accuracy (OA), average accuracy (AA) and Kappa
coefficient (K) were used as evaluation indexes to measure the performance of each method.
This model uses Adam optimizer to learn the weight of three-dimensional spectral space
filter, and adopts cosine annealing to adjust the learning rate, taking cosine function as the
period, and resetting the learning rate at the maximum value of each period. The initial
learning rate of this method was 0.001, with a cycle of 15 epochs. After 15 epochs, the
learning rate was automatically increased and the local optimum was skipped.

3.3. Evaluation Metrics

The evaluation index is the standard to evaluate the quality of the algorithm model,
which guides us to better improve the algorithm’s classification performance. In this
experiment, the Confusion Matrix is used to count the classification results, and the Overall
Accuracy (OA), Average Accuracy (AA) and Kappa coefficient (K) are used to evaluate the
classification results.

Confusion Matrix is a kind of evaluation matrix commonly used in classification
problems. Each row of the matrix represents the number vector of a category divided into
all classes, and each column represents the number vector of all categories divided into
all classes. As shown in Formula (14), the diagonal elements of the matrix are the number
of correctly classified categories of a certain category, where C is the number of categories
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of classification problems, and mij represents the ith class samples misclassified into the
jth class.

M =



m11 m12
m21 m22

. . . m1j

. . . m2j

. . . m1C

. . . m2C
. . . . . .
mi1 mi2

. . . . . .

. . . mij

. . . . . .

. . . miC
. . . . . .

mC1 mC2

. . . . . .

. . . mCj

. . . . . .

. . . mCC

 (14)

OA computes to the ratio between the number of correctly classified samples and
that of the total samples to be tested. This index is a common evaluation standard for
classification problems and reflects the probability of consistency between classification
results and real reference values, as written in Formula (15).

OA =
trace(M)

N
(15)

where trace(M) is the trace of the matrix, that is, the sum of all elements on the main
diagonal of matrix M, and N is the total number of all test samples.

AA represents the average classification accuracy of each category, which reflects the
average performance of all categories. mi+ represents the sum of all elements in row i, and
C represents the total number of categories.

AA = ΣN
i=1

mii
mi+

/C (16)

K is an index to measure the classification accuracy, which can evaluate the classifica-
tion performance more comprehensively by integrating the overall classification accuracy
and average classification accuracy.

K =
NΣC

i=1mii − ΣC
i=1mi+m+i

N2 − ΣC
i=1mi+m+i

(17)

where mi+ represents the ith row of the confusion matrix, and m+i represents the ith column
of the Confusion Matrix.

3.4. Comparison of the Proposed Methods with the State-of-the-Art Methods

The curves of the loss and accuracy of the training and testing of all datasets classified
by the proposed IMLP-ResNet over 200 epochs are shown in Figures 10–12. It can be
observed from Figures 10a, 11a and 12a that, with the increase in the number of epochs
in the Indian Pines, Pavia University and Xuzhou datasets, the losses in training sets and
validation sets decreased continuously. In Figures 10b, 11b and 12b, classification accuracy
keeps improving. The Indian Pines dataset and Pavia University dataset converged around
epoch 180, while the Xuzhou dataset converged around the epoch of 190. Among them,
the Xuzhou data set converges slowly compared with the other two data sets, because the
number of training samples in this dataset is higher than the other two datasets. However,
the accuracy of the training set and validation set of the three datasets is still improved
after the model converges. The main reason is that, with the continuous optimization of
parameters, the gradual fitting of curves verifies the good generalization ability of our
proposed model and the convergence of this model.
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The experiment mainly compared the proposed algorithm with the Radial Basis Func-
tion (RBF) Support Vector Machine algorithm (RBF-SVM) [34] and Extended Morphological
Profile (EMP) Support Vector Machine Calculation Methods (EMP-SVM) [35], Deep Con-
volutional Neural Network (DCNN) [36], Spectral–Spatial Residual Network (SSRN) [21],
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Residual Network (ResNet) [37], Pyramid Residual network (PyResNet) [22], RepMLP [38],
IMLP classification performance for hyperspectral dataset. Ten percent of the total sample
number was used as the training sample number for hyperspectral classification as shown
in Tables 4–6. Compared with other methods, the IMLP-ResNet proposed in this paper
has the highest classification accuracy for the three datasets. For example, compared with
RBF-SVM in the Indian Pines dataset, IMLP-ResNet increased OA, AA and K by 12.85%,
12.87% and 10.55% and improved by 0.54%, 0.70% and 0.58% compared with RepMLP,
respectively. Taking the Xuzhou dataset as an example, OA reached 98.15%, compared with
RBF-SVM, EMP-SVM, DCNN, SSRN, ResNet, PyResNet, RepMLP and IMLP, in which OA
increased by 15.89%, 10.72%, 5.59%, 3.98%, 2.67%, 1.80%, 1.37% and 1.01% respectively. The
Indian Pines dataset and Pavia University dataset have similar classification results. All the
experimental results show that the proposed IMLP-ResNet is superior to other methods.

Table 4. Classification results on the Indian Pines dataset by different classification methods.

Class Code RBF-SVM EMP-SVM DCNN SSRN ResNet PyResNet RepMLP IMLP IMLP-ResNet

1 78.25 ± 2.24 79.62 ± 3.61 78.34 ± 1.89 80.91 ± 1.96 82.67 ± 1.51 88.89 ± 1.57 87.05 ± 2.06 89.25 ± 0.87 91.33 ± 1.28
2 79.22 ± 3.02 84.26 ± 3.49 88.15 ± 2.36 90.04 ± 1.49 91.26 ± 6.29 92.12 ± 1.48 93.38 ± 0.74 94.02 ± 1.23 96.97 ± 2.29
3 80.27 ± 0.98 79.15 ± 2.81 82.37 ± 3.63 84.65 ± 1.91 83.95 ± 1.29 88.39 ± 2.36 90.65 ± 0.28 90.37 ± 3.68 92.16 ± 1.61
4 82.02 ± 1.78 85.34 ± 2.69 89.06 ± 1.67 88.65 ± 5.66 90.38 ± 3.99 91.93 ± 8.23 90.54 ± 1.08 90.37 ± 1.06 92.24 ± 2.98
5 88.22 ± 1.56 87.37 ± 1.63 90.38 ± 1.06 91.98 ± 3.26 93.93 ± 4.06 92.21 ± 1.89 92.48 ± 1.73 93.07 ± 1.36 95.09 ± 2.11
6 82.52 ± 3.02 86.39 ± 2.57 91.38 ± 4.39 92.32 ± 2.32 93.72 ± 3.15 94.26 ± 1.07 94.22 ± 0.27 93.18 ± 3.03 96.51 ± 0.88
7 82.22 ± 2.27 84.38 ± 0.31 85.31 ± 0.98 86.70 ± 3.82 84.31 ± 13.96 90.64 ± 8.96 89.46 ± 3.79 90.37 ± 0.46 95.17 ± 4.44
8 85.02 ± 1.02 86.20 ± 1.58 90.27 ± 3.18 93.08 ± 6.67 92.08 ± 4.37 93.10 ± 2.70 92.22 ± 0.17 93.56 ± 2.30 94.44 ± 1.85
9 83.20 ± 0.52 81.27 ± 2.94 85.09 ± 0.67 86.73 ± 5.95 81.90 ± 1.65 87.84 ± 11.12 89.34 ± 1.29 88.06 ± 3.75 93.60 ± 3.22
10 79.22 ± 1.02 84.66 ± 3.10 88.09 ± 2.16 90.33 ± 5.14 90.98 ± 7.37 91.12 ± 2.50 91.05 ± 2.44 92.34 ± 2.88 94.46 ± 2.56
11 82.27 ± 2.98 86.27 ± 1.06 89.37 ± 1.06 90.36 ± 0.96 91.72 ± 0.68 93.71 ± 2.82 92.54 ± 3.08 93.09 ± 2.85 95.68 ± 2.60
12 85.02 ± 2.27 88.34 ± 0.43 90.76 ± 0.41 92.17 ± 0.61 95.01 ± 0.61 90.70 ± 7.52 91.09 ± 2.06 91.45 ± 1.14 96.02 ± 3.03
13 82.22 ± 0.53 85.61 ± 0.39 89.05 ± 3.28 95.39 ± 1.22 94.91 ± 2.78 95.89 ± 2.93 92.16 ± 3.08 93.07 ± 0.39 94.88 ± 1.07
14 80.52 ± 2.02 85.17 ± 2.09 90.36 ± 1.02 92.03 ± 2.36 91.55 ± 1.89 95.95 ± 1.70 93.81 ± 0.46 94.03 ± 2.69 95.36 ± 2.09
15 81.22 ± 2.27 86.20 ± 1.43 91.06 ± 2.47 93.84 ± 1.45 92.75 ± 3.26 94.65 ± 2.19 94.89 ± 2.04 95.30 ± 0.88 96.33 ± 2.76
16 85.63 ± 1.20 88.69 ± 3.07 90.67 ± 4.09 92.87 ± 2.93 93.65 ± 2.79 95.05 ± 3.12 94.73 ± 3.17 95.37 ± 0.63 96.03 ± 1.58

OA(%) 81.55 ± 1.43 83.64 ± 0.47 86.21 ± 1.43 88.66 ± 0.60 90.88 ± 1.90 92.21 ± 0.98 93.05 ± 3.27 93.59 ± 0.69 94.40 ± 1.62
AA(%) 79.37 ± 0.58 81.76 ± 2.14 83.65 ± 0.48 85.83 ± 3.37 87.76 ± 2.81 90.27 ± 4.12 90.96 ± 0.25 91.66 ± 2.23 92.24 ± 1.73
100 K 82.33 ± 1.86 84.59 ± 0.35 86.93 ± 1.28 88.34 ± 0.69 89.61 ± 1.89 90.78 ± 1.08 91.34 ± 4.87 91.92 ± 0.27 92.88 ± 1.83

Table 5. Classification results on the Pavia dataset by different classification methods.

Class Code RBF-SVM EMP-SVM DCNN SSRN ResNet PyResNet RepMLP IMLP IMLP-ResNet

1 76.56 ± 1.28 86.24 ± 0.43 90.07 ± 1.95 92.29 ± 1.82 92.11 ± 3.35 93.05 ± 1.37 93.08 ± 3.05 93.25 ± 0.22 94.58 ± 4.76
2 81.23 ± 3.54 87.36 ± 1.94 92.48 ± 0.67 93.27 ± 1.79 95.03 ± 2.76 95.88 ± 4.62 94.66 ± 1.31 96.17 ± 2.47 97.55 ± 0.29
3 80.34 ± 0.89 85.57 ± 3.29 90.36 ± 1.65 91.51 ± 2.93 92.58 ± 2.96 92.97 ± 3.13 93.15 ± 2.67 93.20 ± 1.58 94.80 ± 3.75
4 82.01 ± 2.68 85.15 ± 2.36 91.43 ± 3.21 92.22 ± 1.59 94.73 ± 1.25 95.45 ± 1.07 95.89 ± 2.16 96.22 ± 0.34 97.64 ± 0.45
5 80.15 ± 1.34 86.20 ± 2.48 91.86 ± 2.37 93.08 ± 3.07 95.37 ± 2.15 96.87 ± 1.25 96.90 ± 4.79 97.06 ± 3.28 98.57 ± 0.76
6 79.60 ± 2.36 85.71 ± 1.99 92.10 ± 3.08 93.46 ± 2.54 94.78 ± 4.61 95.33 ± 2.46 95.24 ± 1.02 96.37 ± 0.61 98.83 ± 0.40
7 75.36 ± 2.88 84.01 ± 3.49 90.22 ± 0.44 91.03 ± 0.75 93.76 ± 1.91 94.59 ± 2.66 93.57 ± 3.09 94.38 ± 1.57 96.51 ± 2.07
8 73.47 ± 4.16 82.28 ± 1.75 86.25 ± 3.19 88.03 ± 0.43 90.27 ± 0.39 91.36 ± 3.36 91.16 ± 2.14 92.59 ± 2.60 93.26 ± 1.59
9 84.02 ± 4.39 85.13 ± 2.16 90.24 ± 0.82 93.76 ± 1.60 95.33 ± 0.54 96.55 ± 1.82 96.98 ± 1.56 97.03 ± 1.44 98.25 ± 1.85

OA(%) 83.12 ± 2.72 86.01 ± 1.03 91.78 ± 2.52 93.03 ± 1.36 94.52 ± 2.93 95.68 ± 0.18 96.31 ± 3.28 96.89 ± 0.77 98.06 ± 0.64
AA(%) 80.31 ± 3.64 85.24 ± 1.37 90.36 ± 1.04 91.28 ± 2.61 93.49 ± 1.95 94.05 ± 0.32 94.36 ± 0.23 94.87 ± 1.23 95.59 ± 0.69
100 K 78.54 ± 0.19 83.54 ± 2.68 89.02 ± 0.86 90.87 ± 0.18 92.01 ± 2.95 93.87 ± 3.08 94.52 ± 4.17 95.03 ± 1.09 96.88 ± 1.87

Table 6. Classification results on the Xuzhou dataset by different classification methods.

Class Code RBF-SVM EMP-SVM DCNN SSRN ResNet PyResNet RepMLP IMLP IMLP-ResNet

1 81.34 ± 0.25 86.25 ± 3.41 91.25 ± 3.08 93.24 ± 0.37 94.09 ± 1.67 94.14 ± 3.94 95.18 ± 4.96 95.54 ± 0.16 96.98 ± 4.57
2 81.23 ± 2.13 87.16 ± 4.39 91.28 ± 2.14 94.12 ± 4.06 95.02 ± 0.68 96.19 ± 2.17 96.25 ± 0.83 97.73 ± 3.64 98.86 ± 1.56
3 79.28 ± 3.46 86.52 ± 0.63 90.27 ± 0.93 93.36 ± 2.45 94.68 ± 2.17 94.36 ± 2.35 95.94 ± 4.36 96.19 ± 4.72 98.63 ± 0.25
4 80.49 ± 4.10 85.07 ± 1.69 88.21 ± 1.07 90.47 ± 3.88 91.26 ± 3.24 92.10 ± 2.91 92.76 ± 3.41 93.21 ± 1.55 95.16 ± 0.73
5 82.74 ± 0.43 86.06 ± 3.81 90.38 ± 2.46 93.67 ± 2.53 94.06 ± 0.46 95.33 ± 0.97 95.84 ± 3.25 96.58 ± 1.61 98.71 ± 0.52
6 81.09 ± 1.51 84.68 ± 1.42 89.07 ± 3.86 91.03 ± 3.67 93.47 ± 1.23 94.67 ± 4.26 95.22 ± 2.03 96.34 ± 2.57 98.70 ± 3.46
7 80.98 ± 2.29 85.34 ± 3.06 88.22 ± 0.58 91.09 ± 0.18 92.20 ± 0.65 93.84 ± 2.91 93.97 ± 1.78 95.20 ± 4.09 96.91 ± 1.97
8 82.63 ± 4.41 87.03 ± 4.19 89.17 ± 2.02 92.97 ± 2.56 93.67 ± 3.68 94.29 ± 3.07 95.56 ± 2.26 96.77 ± 3.67 98.26 ± 3.49
9 81.06 ± 1.94 86.05 ± 3.43 88.06 ± 1.24 90.38 ± 2.69 91.18 ± 0.39 92.45 ± 0.37 93.71 ± 0.13 94.05 ± 2.14 96.21 ± 3.16

OA(%) 82.26 ± 0.19 87.43 ± 3.74 92.56 ± 2.37 94.17 ± 3.25 95.48 ± 1.82 96.25 ± 3.24 96.78 ± 0.34 97.14 ± 3.65 98.15 ± 0.28
AA(%) 84.09 ± 1.07 86.02 ± 2.75 91.66 ± 3.10 93.26 ± 0.28 93.07 ± 1.44 95.23 ± 0.21 95.64 ± 1.36 96.08 ± 2.17 97.49 ± 0.98
100 K 80.37 ± 3.26 85.49 ± 4.12 90.21 ± 4.32 93.67 ± 1.49 94.18 ± 0.98 95.98 ± 3.76 96.02 ± 2.37 97.54 ± 3.68 98.44 ± 0.65

Figures 13–15 show the classification diagram of different methods for all datasets of
10% training samples. Compared with the classical EMP-SVM method and deep learning-
based DCNN, SSRN, ResNet and other methods, the proposed classification model in
this paper has more accurate classification results. Taking Pavia University dataset as an
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example, the traditional RBF-SVM and EMP-SVM methods have many noise points in
classification results.
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Figure 13. The classification results of Indian pines dataset. (a) Ground truth; (b) RBF-SVM;
(c) EMP-SVM; (d) DCNN; (e) SSRN; (f) ResNet; (g) PyResNet; (h) RepMLP; (i) IMLP; (j) IMLP-ResNet.
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Figure 15. The classification results of Xuzhou dataset. (a) Ground truth; (b) RBF-SVM; (c) EMP-

SVM; (d) DCNN; (e) SSRN; (f) ResNet; (g) PyResNet; (h) RepMLP; (i) IMLP; (j) IMLP-ResNet. 

As shown in Figure 14, parts of the traffic land are mistakenly classified as grassland, 

and the classification accuracy of ground objects is relatively low. Compared with SVM, 

DCNN and SSRN classification methods, the classification effect of ResNet and PyResNet 

is improved, but there are still some misclassification phenomena. However, the IMLP-

Figure 14. The classification results of Pavia University dataset. (a) Ground truth; (b) RBF-SVM;
(c) EMP-SVM; (d) DCNN; (e) SSRN; (f) ResNet; (g) PyResNet; (h) RepMLP; (i) IMLP; (j) IMLP-ResNet.
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Figure 15. The classification results of Xuzhou dataset. (a) Ground truth; (b) RBF-SVM; (c) EMP-SVM;
(d) DCNN; (e) SSRN; (f) ResNet; (g) PyResNet; (h) RepMLP; (i) IMLP; (j) IMLP-ResNet.

As shown in Figure 14, parts of the traffic land are mistakenly classified as grassland,
and the classification accuracy of ground objects is relatively low. Compared with SVM,
DCNN and SSRN classification methods, the classification effect of ResNet and PyResNet
is improved, but there are still some misclassification phenomena. However, the IMLP-
ResNet model can make full use of each convolutional layer and feature map, and the
classification effect is greatly improved. It also eliminates block misclassification and
protects edge information. Experiments show that IMLP–ResNet can effectively extract
more refined features from three kinds of data sets and cross-dimensional information
interaction focuses on more important features, thus improving the classification accuracy.

Figure 15 shows the classification results of the Xuzhou dataset. Xuzhou is an impor-
tant coal-producing area in China, and coal mining areas may lead to surface subsidence
and soil quality degradation, which threatens the safety of residential areas and crop plant-
ing. At the same time, it may induce secondary geological disasters. Figure 15 can reflect
the land-use situation of the mining area. According to the current classification results,
there is still a large area of cultivated land around the tailings pond. By classifying all kinds
of ground objects in the test area, we can understand the distribution of the tailings pond,
which is helpful to the later mining area.
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4. Discussions

In order to find the optimal architecture, it is necessary to do experiments with different
main parameters, which plays a crucial role in the size of the model and the complexity of
the proposed IMLP–ResNet. By comparing the overall accuracy of different parameters,
the influence of these parameters on the model can be analyzed. In the Indian Pines
dataset, Pavia University dataset and Xuzhou dataset, the improvement effects of different
parameter changes on the model are shown in Figures 16–19.
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The first parameter was experimentally verified in a different patch size. The hyper-
spectral images were first divided into fixed-size patches to input IMLP-ResNet, and patch
sizes were set as 4× 4, 8× 8, 16× 16 respectively. The corresponding input dataset is
divided into 4× 4× nBand, 8× 8× nBand, and 16× 16× nBand. As shown in Figure 16,
for the three datasets, OA, AA and Kappa coefficients all showed a decreasing trend with
the increase in patch size. When patch size = 4, the IMLP-ResNet model proposed achieves
the best classification accuracy, because the correlation between the internal information of
image patches weakens with the increase in patch size.

The second parameter is to choose the layer of ResNet into which the proposed IMLP
module should be inserted to get the best classification results. As shown in Figure 17, we
can conclude that the IMLP module inserted into the third layer of ResNet has the highest
accuracy in the three datasets. This is because the number of residual blocks in ResNet34
is [3,4,6], that is, the number of residual blocks in the third layer is more than that in the
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other three layers. The IMLP module inserted in the third layer of ResNet has a deeper
network than the other three layers, which has a stronger ability to extract deeper features
of hyperspectral images, so the classification accuracy is higher.

The third parameter is the proportion of training samples to the total samples. The
patch size is set to 4 and IMLP module is the third layer of ResNet; 5% and 10% of training
samples are taken from the three data sets, respectively, as shown in Figures 18 and 19.

It can be seen from Figures 18 and 19 that, when the number of training samples
accounts for 10% of the total samples, the OA is higher than when the number of training
samples accounts for 5% of the total samples. This is because the more training samples
exist, the more accurately the model can estimate the data distribution, thus the better
the generalization performance in the validation set, which leads to higher accuracy. The
above results show that when the patch size is 4, the IMLP module is inserted into the
third layer of ResNet, and the number of training samples accounts for 10% of the total
number of samples, the three datasets can achieve the best classification performance with
our proposed IMLP-ResNet.

5. Conclusions

In this paper, two HSI classification frameworks based on MLP are proposed: the IMLP
model and IMLP–ResNet. Firstly, according to the characteristics of HSI, three improve-
ments were made to the original model and the IMLP was designed. Secondly, in order to
improve the network performance without increasing the amount of inference computation,
we introduced a deep over-parameterized convolution layer instead of ordinary convo-
lution. Thirdly, in order to enable the network to learn more useful hyperspectral image
information and suppress useless features, we used a Focal Loss function to enhance the
key spectral spatial features in the classification task. Finally, in order to avoid oscillation, a
cosine annealing algorithm is introduced to accelerate the convergence of the model. The
residual structure can retain the original characteristics of this data, avoid the problems
of gradient explosion and gradient disappearance in the training process, and improve
the modeling ability of the model. In addition, IMLP can improve the feature extraction
capability of ResNet, so that the model can enhance the key features while preserving the
original features of hyperspectral data. Therefore, in this paper, we proposed IMLP–ResNet,
which can extract 3D spectral–spatial features at different levels of the network and learn
more comprehensive feature representation for HSI classification.

The proposed IMLP and IMLP–ResNet were tested on two public datasets (Indian
Pine and Pavia) and a real HSI dataset (Xuzhou). Compared with the classic methods
and deep learning-based methods, the proposed IMLP and IMLP-ResNet show obvious
improvements. The results show that the proposed IMLP algorithm and IMLP–ResNet
algorithm are meaningful and can obtain better classification results in HSI classification.

However, in the task of hyperspectral image classification, the available marker sam-
ples are usually very limited. When analyzing the classification effect of the number of
training samples, the IMLP–ResNet proposed in this paper finds that the effect of 10% of
the number of samples is better than 5%. Therefore, in the next step, we will consider data
expansion, active learning, transfer learning, meta learning and other technologies to realize
the construction and design of a network model combined with MLP under small samples.
In addition, the means of using unlabeled samples more effectively for semi-supervised
hyperspectral classification based on MLP is also worthy of further research.
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