A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory
Abstract
:1. Introduction
2. Background
2.1. K-Means (K-M) Clustering Algorithm
2.2. Meta-Heuristics Clustering Algorithm
2.2.1. Tabu Search (TS) Clustering Algorithm
Memory Elements
Center Adjustment
Algorithm 1: Center Adjust(K, , d, D) |
2.2. Add xi to Sj∗ where Compute Equation (3) Hence,
|
3. The Proposed MHTSASM Algorithm
3.1. Intensification and Diversification Strategies
Algorithm 2: Intensification Algorithm |
|
Algorithm 3: Diversification Method |
|
3.2. Trial Solutions Generation Algorithm
Algorithm 4: Trial Solutions Method (C, µ, ASMv, d) |
|
3.3. Refinement Method
Algorithm 5: Refinement Method (C, µ, ASMv, ASMu, EL, d) |
|
3.4. The Proposed MHTSASM Algorithm
Algorithm 6: MHTSASM Algorithm |
|
4. Numerical Experiments
4.1. Dataset
4.2. Clustering Test Problems Situation Results
4.2.1. First Clustering Test Problems Situation
4.2.2. Second Clustering Test Problems Situation
4.2.3. Third Clustering Test Problems Situation
4.3. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharany, S.; Sharma, S.; Badotra, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol. Energies 2021, 14, 6016. [Google Scholar] [CrossRef]
- Li, G.; Liu, F.; Sharma, A.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Research on the natural language recognition method based on cluster analysis using neural network. Math. Probl. Eng. 2021, 2021, 9982305. [Google Scholar] [CrossRef]
- Jinchao, J.; Li, W.P.Z.; He, F.; Feng, G.; Zhao, X. Clustering Mixed Numeric and Categorical Data with Cuckoo Search. IEEE Access 2020, 8, 30988–31003. [Google Scholar]
- Su, M.C.; Chou, C.H. A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Vijendra, S.; Laxman, S. Symmetry based automatic evolution of clusters: A new approach to data clustering. Comput. Intell. Neurosci. 2015, 2015, 796276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.S.; Ahmad, A. Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett. 2004, 25, 1293–1302. [Google Scholar] [CrossRef]
- Alotaibi, Y.; Subahi, A.F. New goal-oriented requirements extraction framework for e-health services: A case study of diagnostic testing during the COVID-19 outbreak. Bus. Process Manag. J. 2021, 28. [Google Scholar] [CrossRef]
- Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef] [PubMed]
- Huizhen, Z.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Inf. Sci. 2020, 539, 347–374. [Google Scholar]
- Suganthi, S.; Umapathi, N.; Mahdal, M.; Ramachandran, M. Multi Swarm Optimization Based Clustering with Tabu Search in Wireless Sensor Network. Sensors 2022, 22, 1736. [Google Scholar] [CrossRef] [PubMed]
- Kareem, S.S.; Mostafa, R.R.; Hashim, F.A.; El-Bakry, H.M. An Effective Feature Selection Model Using Hybrid Metaheuristic Algorithms for IoT Intrusion Detection. Sensors 2022, 22, 1396. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S. MapReduce-based big data classification model using feature subset selection and hyperparameter tuned deep belief network. Sci. Rep. 2021, 11, 24138. [Google Scholar]
- Liqin, Y.; Cao, F.; Gao, X.Z.; Liu, J.; Liang, J. k-Mnv-Rep: A k-type clustering algorithm for matrix-object data. Inf. Sci. 2020, 542, 40–57. [Google Scholar]
- Mansouri, N.; Javidi, M.M. A review of data replication based on meta-heuristics approach in cloud computing and data grid. Soft Comput. 2020, 24, 14503–14530. [Google Scholar] [CrossRef]
- Li, J.Q.; Duan, P.; Cao, J.; Lin, X.P.; Han, Y.Y. A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria. IEEE Access 2018, 6, 58883–58897. [Google Scholar] [CrossRef]
- Amir, A.; Khan, S.S. Survey of state-of-the-art mixed data clustering algorithms. IEEE Access 2019, 7, 31883–31902. [Google Scholar]
- Laith, A. Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 2020, 33, 2949–2972. [Google Scholar]
- Alotaibi, Y. A New Database Intrusion Detection Approach Based on Hybrid Meta-Heuristics. CMC-Comput. Mater. Contin. 2021, 66, 1879–1895. [Google Scholar] [CrossRef]
- Alotaibi, Y.; Malik, M.N.; Khan, H.H.; Batool, A.; ul Islam, S.; Alsufyani, A.; Alghamdi, S. Suggestion Mining from Opinionated Text of Big Social Media Data. CMC-Comput. Mater. Contin. 2021, 68, 3323–3338. [Google Scholar] [CrossRef]
- Kosztyán, Z.T.; Telcs, A.; Abonyi, J. A multi-block clustering algorithm for high dimensional binarized sparse data. Expert Syst. Appl. 2022, 191, 116219. [Google Scholar] [CrossRef]
- Chou, X.; Gambardella, L.M.; Montemanni, R. A tabu search algorithm for the probabilistic orienteering problem. Comput. Oper. Res. 2021, 126, 105107. [Google Scholar] [CrossRef]
- Yiyong, X.; Huang, C.; Huang, J.; Kaku, I.; Xu, Y. Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering. Pattern Recognit. 2019, 90, 183–195. [Google Scholar]
- Amit, S.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [Google Scholar]
- Rabbani, M.; Mokhtarzadeh, M.; Manavizadeh, N. A constraint programming approach and a hybrid of genetic and K-means algorithms to solve the p-hub location-allocation problems. Int. J. Manag. Sci. Eng. Manag. 2021, 16, 123–133. [Google Scholar] [CrossRef]
- Ali, N.A.; Han, F.; Ling, Q.H.; Mehta, S. An improved hybrid method combining gravitational search algorithm with dynamic multi swarm particle swarm optimization. IEEE Access 2019, 7, 50388–50399. [Google Scholar]
- Amir, A.; Hashmi, S. K-Harmonic means type clustering algorithm for mixed datasets. Appl. Soft Comput. 2016, 48, 39–49. [Google Scholar]
- Sina, K.; Adibeig, N.; Shanehbandy, S. An improved overlapping k-means clustering method for medical applications. Expert Syst. Appl. 2017, 67, 12–18. [Google Scholar]
- Adil, B.M.; Yearwood, J. A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 2006, 170, 578–596. [Google Scholar]
- Mustafi, D.; Sahoo, G. A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering. Soft Comput. 2019, 23, 6361–6378. [Google Scholar] [CrossRef]
- Rout, R.; Parida, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Skin Lesion Extraction Using Multiscale Morphological Local Variance Reconstruction Based Watershed Transform and Fast Fuzzy C-Means Clustering. Symmetry 2021, 13, 2085. [Google Scholar] [CrossRef]
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved Metaheuristics-Based Clustering with Multihop Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 1618. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; He, M.; Song, L. Evaluation of Regional Industrial Cluster Innovation Capability Based on Particle Swarm Clustering Algorithm and Multi-Objective Optimization. Available online: https://www.springerprofessional.de/en/evaluation-of-regional-industrial-cluster-innovation-capability-/19688906 (accessed on 20 January 2022).
- Chen, L.; Guo, Q.; Liu, Z.; Zhang, S.; Zhang, H. Enhanced synchronization-inspired clustering for high-dimensional data. Complex Intell. Syst. 2021, 7, 203–223. [Google Scholar] [CrossRef]
- Sung-Soo, K.; Baek, J.Y.; Kang, B.S. Hybrid simulated annealing for data clustering. J. Soc. Korea Ind. Syst. Eng. 2017, 40, 92–98. [Google Scholar]
- Yi-Tung, K.; Zahara, E.; Kao, I.W. A hybridized approach to data clustering. Expert Syst. Appl. 2008, 34, 1754–1762. [Google Scholar]
- Ezugwu, A.E.; Adeleke, O.J.; Akinyelu, A.A.; Viriri, S. A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Comput. Appl. 2020, 32, 6207–6251. [Google Scholar] [CrossRef]
- Alsufyani, A.; Alotaibi, Y.; Almagrabi, A.O.; Alghamdi, S.A.; Alsufyani, N. Optimized Intelligent Data Management Framework for a Cyber-Physical System for Computational Applications. Available online: https://link.springer.com/article/10.1007/s40747-021-00511-w (accessed on 1 January 2022).
- Pasi, F.; Sieranoja, S. How much can k-means be improved by using better initialization and repeats? Pattern Recognit. 2019, 93, 95–112. [Google Scholar]
- Xiao-Dong, W.; Chen, R.C.; Yan, F.; Zeng, Z.Q.; Hong, C.Q. Fast adaptive K-means subspace clustering for high-dimensional data. IEEE Access 2019, 7, 42639–42651. [Google Scholar]
- Asgarali, B.; Hatamlou, A. An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms. Appl. Soft Comput. 2018, 67, 172–182. [Google Scholar]
- Yinhao, L.; Cao, B.; Rego, C.; Glover, F. A Tabu Search based clustering algorithm and its parallel implementation on Spark. Appl. Soft Comput. 2018, 63, 97–109. [Google Scholar]
- Alotaibi, Y. A New Secured E-Government Efficiency Model for Sustainable Services Provision. J. Inf. Secur. Cybercrimes Res. 2020, 3, 75–96. [Google Scholar] [CrossRef]
- Costa, L.R.; Aloise, D.; Mladenović, N. Less is more: Basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. Inf. Sci. 2017, 415, 247–253. [Google Scholar] [CrossRef]
- Gribel, D.; Vidal, T. HG-means: A scalable hybrid genetic algorithm for minimum sum-of-squares clustering. Pattern Recognit. 2019, 88, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Safwan, C.F. A Genetic Algorithm that Exchanges Neighboring Centers for Fuzzy c-Means Clustering. Ph.D. Thesis, Nova Southeastern University, Lauderdale, FL, USA, 2012. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Alotaibi, Y. Automated Business Process Modelling for Analyzing Sustainable System Requirements Engineering. In Proceedings of the 2020 6th International Conference on Information Management (ICIM), London, UK, 27–29 March 2020; pp. 157–161. [Google Scholar]
- Katebi, J.; Shoaei-parchin, M.; Shariati, M.; Trung, N.T.; Khorami, M. Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng. Comput. 2020, 36, 1539–1558. [Google Scholar] [CrossRef]
- Majid, E.; Shahmoradi, H.; Nemati, F. A new preference disaggregation method for clustering problem: DISclustering. Soft Comput. 2020, 24, 4483–4503. [Google Scholar]
- Rawat, S.S.; Alghamdi, S.; Kumar, G.; Alotaibi, Y.; Khalaf, O.I.; Verma, L.P. Infrared Small Target Detection Based on Partial Sum Minimization and Total Variation. Mathematics 2022, 10, 671. [Google Scholar] [CrossRef]
- Ashraf, F.B.; Matin, A.; Shafi, M.S.R.; Islam, M.U. An Improved K-means Clustering Algorithm for Multi-dimensional Multi-cluster data Using Meta-heuristics. In Proceedings of the 2021 24th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2021; pp. 1–6. [Google Scholar]
- Zhao, L.; Wang, Z.; Zuo, Y.; Hu, D. Comprehensive Evaluation Method of Ethnic Costume Color Based on K-Means Clustering Method. Symmetry 2021, 13, 1822. [Google Scholar] [CrossRef]
- Beldjilali, B.; Benadda, B.; Sadouni, Z. Vehicles Circuits Optimization by Combining GPS/GSM Information with Metaheuristic Algorithms. Rom. J. Inf. Sci. Technol. 2020, 23, T5–T17. [Google Scholar]
- Zamfirache, I.A.; Precup, R.E.; Roman, R.C.; Petriu, E.M. Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system. Inf. Sci. 2022, 583, 99–120. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E.; Horvath, E.; Petriu, E.M. Hybrid Particle Filter-Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems. IEEE Trans. Fuzzy Syst. 2022, 1. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. A Study of Fall Detection in Assisted Living: Identifying and Improving the Optimal Machine Learning Method. J. Sens. Actuator Netw. 2021, 10, 39. [Google Scholar] [CrossRef]
- Jayapradha, J.; Prakash, M.; Alotaibi, Y.; Khalaf, O.I.; Alghamdi, S. Heap Bucketization Anonymity-An Efficient Privacy-Preserving Data Publishing Model for Multiple Sensitive Attributes. IEEE Access 2022, 1. [Google Scholar] [CrossRef]
Algorithm Name | Implementation Complexity Level | Computational Cost Level | ||||
---|---|---|---|---|---|---|
High | Medium | Low | High | Medium | Low | |
K-M | ✓ | ✓ | ||||
TS | ✓ | ✓ | ||||
GA | ✓ | ✓ | ||||
SA | ✓ | ✓ | ||||
Algorithm 1 | ✓ | ✓ | ||||
J-M+ | ✓ | ✓ | ||||
VNS | ✓ | ✓ | ||||
VNS-1 | ✓ | ✓ | ||||
G1 | ✓ | ✓ | ||||
G2 | ✓ | ✓ | ||||
KHM | ✓ | ✓ | ||||
PSO | ✓ | ✓ | ||||
PSOKHM | ✓ | ✓ | ||||
ACO | ✓ | ✓ | ||||
ACOKHM | ✓ | ✓ | ||||
Proposed MHTSASM Approach | ✓ | ✓ |
Data Set Name | No. of Classes | No. of Features | Data Set Size | Classes Size in Parentheses |
---|---|---|---|---|
Iris | 3 | 4 | 150 | (50, 50, 50) |
Glass | 6 | 9 | 214 | (70, 17, 76, 13, 9, 29) |
Cancer | 2 | 9 | 683 | (444, 239) |
CMC | 3 | 9 | 1473 | (629, 334, 510) |
Wine | 3 | 13 | 178 | (59, 71, 48) |
Parameters | Definition | Value |
---|---|---|
El | Largest number of solution stored in elite list | 5 |
ASMv | Number of visits of each partition | 9 |
ASMu | Number of visit of each partition with improvement | 300 |
K | Dataset Name | fopt | K-M | TS | GA | SA | Algorithm 1 | MHTSASM |
---|---|---|---|---|---|---|---|---|
2 | German towns | 0.121426 × 106 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
first Bavarian postal zones | 0.60255 × 1012 | 7.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
second Bavarian postal zones | 0.199080 × 1011 | 144.25 | 0.00 | 144.25 | 144.25 | 144.25 | 144.25 | |
3 | German towns | 0.77009 × 105 | 1.45 | 0.00 | 0.00 | 0.29 | 0.29 | 0.00 |
first Bavarian postal zones | 0.29451 × 1012 | 23.48 | 23.48 | 23.48 | 23.48 | 0.00 | 0.00 | |
second Bavarian postal zones | 0.173987 × 1011 | 106.79 | 0.00 | 0.00 | 77.77 | 0.00 | 0.00 | |
4 | German towns | 0.49601 × 105 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
first Bavarian postal zones | 0.10447 × 1012 | 166.88 | 18.14 | 0.00 | 0.39 | 0.00 | 0.00 | |
second Bavarian postal zones | 0.755908 × 1010 | 303.67 | 0.00 | 0.00 | 9.13 | 0.00 | 0.00 | |
5 | German towns | 0.39453 × 105 | 2.75 | 0.00 | 0.15 | 0.15 | 0.15 | 0.00 |
first Bavarian postal zones | 0.59762 × 1011 | 335.32 | 33.35 | 0.00 | 40.32 | 0.00 | 0.00 | |
second Bavarian postal zones | 0.540379 × 1010 | 446.13 | 15.76 | 15.76 | 18.72 | 0.00 | 0.00 |
K | Dataset Name | fopt | K-M | J-M+ | VNS | VNS-1 | G1 | G2 | Algorithm 1 | MHTSASM |
---|---|---|---|---|---|---|---|---|---|---|
2 | first Germany postal zones | 0.60255 × 1012 | 7.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 152.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
3 | first Germany postal zones | 0.29451 × 1012 | 23.40 | 0.00 | 7.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 78.851 | 13.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.11 | |
4 | first Germany postal zones | 0.10447 × 1012 | 156.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 57.228 | 11.26 | 2.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | |
5 | first Germany postal zones | 0.59762 × 1011 | 315.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 46.446 | 13.83 | 3.97 | 1.46 | 0.00 | 0.00 | 0.06 | 0.00 | 0.19 | |
6 | first Germany postal zones | 0.35909 × 1011 | 531.44 | 27.70 | 11.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 39.040 | 16.21 | 4.26 | 0.01 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | |
7 | first Germany postal zones | 0.21983 × 1011 | 832.60 | 44.00 | 7.07 | 0.00 | 0.00 | 0.00 | 1.48 | 0.00 |
Fisher’s iris | 34.298 | 17.43 | 2.86 | 0.00 | 0.00 | 0.02 | 1.55 | 1.34 | 0.00 | |
8 | first Germany postal zones | 0.13385 × 1011 | 1239.64 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 29.989 | 20.81 | 2.76 | 0.02 | 0.00 | 0.01 | 0.25 | 0.00 | 0.00 | |
9 | first Germany postal zones | 0.84237 × 1010 | 1697.17 | 28.59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher’s iris | 27.786 | 18.80 | 1.62 | 0.00 | 0.00 | 0.01 | 0.82 | 1.37 | 0.23 | |
10 | first Germany postal zones | 0.64465 × 1010 | 1638.30 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 11.32 | 0.00 |
Fisher’s iris | 25.834 | 17.43 | 2.84 | 0.42 | 0.00 | 0.51 | 1.00 | 0.00 | 0.28 |
p No | Dataset Name | KHM | PSO | PSOKHM | MHTSASM |
---|---|---|---|---|---|
2.5 | Iris | 0.750 | 0.711 | 0.753 | 0.892 |
Glass | 0.421 | 0.387 | 0.424 | 0.548 | |
Cancer | 0.829 | 0.819 | 0.829 | 0.872 | |
CMC | 0.335 | 0.298 | 0.333 | 0.404 | |
Wine | 0.516 | 0.512 | 0.516 | 0.715 | |
3 | Iris | 0.744 | 0.740 | 0.744 | 0.892 |
Glass | 0.422 | 0.378 | 0.427 | 0.548 | |
Cancer | 0.834 | 0.817 | 0.834 | 0.872 | |
CMC | 0.303 | 0.250 | 0.303 | 0.404 | |
Wine | 0.538 | 0.519 | 0.553 | 0.715 | |
3.5 | Iris | 0.770 | 0.660 | 0.762 | 0.892 |
Glass | 0.396 | 0.373 | 0.396 | 0.548 | |
Cancer | 0.832 | 0.820 | 0.835 | 0.872 | |
CMC | 0.332 | 0.298 | 0.332 | 0.404 | |
Wine | 0.502 | 0.530 | 0.535 | 0.715 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, Y. A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory. Symmetry 2022, 14, 623. https://doi.org/10.3390/sym14030623
Alotaibi Y. A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory. Symmetry. 2022; 14(3):623. https://doi.org/10.3390/sym14030623
Chicago/Turabian StyleAlotaibi, Youseef. 2022. "A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory" Symmetry 14, no. 3: 623. https://doi.org/10.3390/sym14030623
APA StyleAlotaibi, Y. (2022). A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory. Symmetry, 14(3), 623. https://doi.org/10.3390/sym14030623