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Abstract: This paper investigates the bifurcation behavior and the stability of the rotating cantilever
rectangular plate that is subjected to varying speed and centrifugal force. The local stability of
the degenerated equilibrium of nonlinear system with symmetry is observed after analyzing the
corresponding characteristic equation. In addition to complex phenomena such as static bifurcation
and Hopf bifurcation, the 2-D torus bifurcation is investigated in this paper. Thereafter, the steady-
state solutions and stability region are obtained using the center manifold theory and normal form
method. Finally, numerical simulations are conducted to show the nonlinear dynamical behaviors of
the rotating cantilever rectangular plate.
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1. Introduction

With the rapid development of science and technology, many materials with out-
standing and specific properties have appeared. Functionally graded materials (FGM) is
a new kind of composite material whose composition and structure change continuously
composed of two or more materials [1]. Recently, FGM has become more widely used
in the aerospace industry and other fields, and its related research and application have
grown rapidly, making it one of the research hotspots in the field of materials both at home
and abroad.

Wang and Zu [2] studied the geometric nonlinear vibration problem of S-FGM plates.
Based on D’Alembert’s principle, they derived the nonlinear motion equation of S-FGM
plates, discretized and solved the motion equation, and studied the stability of the steady-
state solution. Reddy [3] developed a finite element model of functionally graded material
plates with changes in thickness direction using the high-order shear deformation plates
theory and von Karman’s large deformation theory. Guo et al. [4] developed a nonlinear
dynamic equation for four-sided simply supported fiber-reinforced composite laminates
under the combined action of x-axis plane excitation and transverse excitation, and studied
the dynamic behavior of its average equation. Wu [5] established the nonlinear dynamic
equation of functionally gradient material rotating cantilever plate with variable rotation
speed and analyzed the dynamic behavior of its average equation. Li et al. [6] obtained
the four coupled nonlinear differential equations of FGM shell using new displacement
field and analyzed the nonlinear transient dynamical behavior of the system. Sitli et al.
investigated the buckling and post-buckling behaviors of FGM plate using the asymptotic
numerical method [7], and meshfree radial point interpolation method [8].

Zhang et al. [9] investigate the local stability and bifurcation behavior of simply
supported FGM rectangular plates in a uniform thermal environment by transverse and
plane excitation, and three types of critical points of the system are discussed. It is found
that the theoretical analysis is consistent with the numerical simulation, which is given
with the help of Runge–Kutta method. Sharm et al. analyzed the bifurcation and stability
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behavior of the cholera model using the compound matrix technique [10,11]. Huseyin et al.
studied the bifurcation and stability behavior of the nonlinear dynamical systems using
unified technology and the critical point of the bifurcation response equation is defined
by a simple zero, and a pair of purely imaginary eigenvalues [12], and two different
pairs of purely imaginary eigenvalues [13], etc. [14,15]. Cai et al. [16] discussed the local
stability switches and Hopf bifurcation of modified Van der Pol–Duffing equation using
the τ-decomposition method and center manifold theory.

A perturbation method for calculating the normal form is proposed in references [17–20].
Combined with the multi-scale method, the unique normal form of the given nonlinear
dynamic systems can be obtained. Meanwhile, several physical models are given to verify
the method. Algaba et al. [21,22] analyzed the orbital normal form of the nondegenerate
Hopf-zero singularity and applied the results to discuss the three-dimensional Fitzhugh-
Nagumo system. Kincaid and Cheney [23] discussed the Runge-Kutta method of order
four, which is a high-precision algorithm widely used in engineering and is often used to
numerically solve differential equations. When using computer simulation, this method
saves the complex process of solving differential equations. Moreover, it has higher accu-
racy than Euler method and second-order Runge–Kutta method. In recent years, many
scientists have proposed various methods for numerical simulation of nonlinear equations.
Huang et al. [24,25] presented an incremental harmonic balance method to discuss the
quasi-periodic response of the Van del Pol–Matheieu equation. Although these methods
are in good agreement with fourth-order Runge–Kutta method in numerical simulation, the
fourth-order Runge–Kutta method can better realize the numerical simulation on computer
because its algorithm is relatively mature and its calculation accuracy is higher.

The contribution of this paper is the discovery of the complex nonlinear phenomena
of the rotating cantilever plate system for the 1:1 internal resonance, principal parameter
resonance, and 1/2 subharmonic resonance. By utilizing the normal form theory, the com-
plex rotating cantilever plate system is simplified to its normal form which is qualitatively
equivalent to its original system. Using the bifurcation theory, and stability theory, we
discuss three types of degenerate equilibrium points and obtain the stability conditions
and transition curves of the static bifurcation, Hopf bifurcation, and bifurcation of the
two-dimensional torus. As we all know, the bifurcation will lead to harmful dynamic
behavior of rotating cantilever plate system and make the system lose its original struc-
tural stability. Therefore, it is essential to select appropriate parameters of the rotating
cantilever plate system. The findings show that the numerical and analytical results are
essentially consistent.

The rest of the paper is organized as follows. In Section 2, the averaged equations of
the motion of a functionally graded material rotating cantilever plate at variable speed and
as well as the stability conditions of its initial equilibrium solution are given. In Section 3,
the stability and the bifurcation analysis of the system near the three degradation equilibria
are presented. In Section 4, some concluding remarks are made.

2. Problem Formulation

This paper focuses on the bifurcation and stability behaviors of the rotating can-
tilever FGM plate subjected to varying speed and centrifugal force. Figure 1 depicts a
rotating cantilever FGM plate with dimensions a, b, and h. The rotational speed has the
formula Ωr = Ω0 + f cos(Ωt), where f and Ω are the amplitude and frequency of the
velocity disturbance.
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Figure 1. The model of rotating cantilever rectangular plate.

Using the Reddy’s high-order shear deformation theory, Hamilton’s principle and
Galerkin’s method, the symmetric nonlinear dimensionless two-degree-of-freedom symme-
try system of rotating cantilever FGM plate is written as follows [5],

..
ω1 + (g1 + f11sin(Ωt))ω1 + (g2Ω0 + f12cos(Ωt))

.
ω1 + g3ω2

1 + g4ω1ω2 + g5ω1ω2
2 + g6ω2

1ω2 + g7ω3
1+

g8ω2
2 + g9ω3

2 + (g10 + f13sin(Ωt))ω2 + (g11 + f14cos(Ωt))
.

ω2 + g12
..
ω2 = 0,

(1a)

..
ω2 + (h1 + f21sin(Ωt))ω2 + (h2Ω0 + f22cos(Ωt))

.
ω2 + h3ω2

2 + h4ω1ω2 + h5ω1ω2
2 + h6ω2

1ω2 + h7ω3
2+

h8ω2
1 + h9ω3

1 + (h10 + f23sin(Ωt))ω1 + (h11 + f24cos(Ωt))
.

ω1 + h12
..
ω1 = 0,

(1b)

where all the coefficients can be found in reference [5]. Using the asymptotic perturbation
method, the average equation of the system in rectangular coordinates with symmetry is
obtained as follows

.
x1 = (−µ1Ω0 + α1)x1 + σ1x2 + (−µ2Ω0 + α3)x3 + α2x4 + Ng1

1, (2a)
.
x2 = −σ1x1 − (µ1Ω0 + α1)x2 + α2x3 − (µ2Ω0 + α3)x4 + Ng1

2, (2b)
.
x3 = (−µ4Ω0 + β3)x1 − β2x2 + (−µ3Ω0 + β1)x3 + σ2x4 + Ng1

3, (2c)
.
x4 = β2x1 − (µ4Ω0 + β3)x2 − σ2x3 − (µ3Ω0 + β1)x4 + Ng1

4, (2d)

where ω1 and ω2 are two different linear frequencies, σ1 and σ2 are two different detun-
ing parameters, µi are damping parameters. The nonlinear functions Ng1

i can be found
in reference [5].

The Jacobi matrix of symmetric system (2) at equilibrium point E = (x1, x2, x3, x4) =
(0, 0, 0, 0) takes the following form:

A =


−µ1Ω0 + α1 σ1 −µ2Ω0 + α3 α2
−σ1 −(µ1Ω0 + α1) α2 −(µ2Ω0 + α3)

−µ4Ω0 + β3 −β2 −µ3Ω0 + β1 σ2
β2 −(µ4Ω0 + β3) −σ2 −(µ3Ω0 + β1)

. (3)

Calculating the characteristic polynomial of (3), we have

f (λ) = λ4 + b1λ3 + b2λ2 + b3λ + b4, (4)
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where the parameters bi(i = 1, 2, 3, 4) are elided. According to the Hurwitz criterion, one
can also argue that while

b1 > 0, b1b2 − b3 > 0, b4 > 0, b3(b1b2 − b3)− b2
1b4 > 0, (5)

We get E is stable, otherwise, E is unstable and bifurcation may occur. The parameter
values affect the stability of the equilibrium point.

3. Bifurcation and Stability Analysis

In this section, we consider Equation (2) and turn to the local stability and bifurcation
analysis of equilibrium points. The values of the two damping parameters µ1 and µ3 will
be varied to study the effects on the system (2) that has symmetry.

3.1. Case of Double Zero and Two Negative Eigenvalues

Taking parameters of the system (2) as µ1 = µ2 = µ3 = µ4 = 1, Ω0 = 1, σ1 = 2,
σ2 = −2, α1 = 2, α2 = α3 = 0, β1 = −2, β2 = β3 = 0, which implies that b1 = b2 = 4,
b3 = b4 = 0 and the Jacobi matrix (3) has the eigenvalues λ1,2 = 0, λ3,4 = −2.

Consider the parameters µ1 and µ3 as perturbation parameters. Using the parameter
transformations µ1 = 1 + δ1, µ3 = 1 + δ2 and the state variable transformations:

x1
x2
x3
x4

 =


−3 −2 −1 −2
2 1 2 3
1 0 1 0
0 1 0 1




z1
z2
z3
z4

. (6)

yields

.
z1 =

(
1
2

δ2 −
3
2

δ1

)
z1 + (δ2 − δ1)z2 +

1
2
(δ2 − δ1)z3 + (δ2 − δ1)z4 + Ng2

1 (7a)

.
z2 = (δ1 − δ2)z1 +

(
1
2

δ1 −
3
2

δ2

)
z2 + (δ1 − δ2)z3 +

3
2
(δ1 − δ2)z4 + Ng2

2 (7b)

.
z3 =

3
2
(δ1 − δ2)z1 + (δ1 − δ2)z2 +

(
1
2

δ1 −
3
2

δ2 − 2
)

z3 + (δ1 − δ2)z4 + Ng2
3 (7c)

.
z4 = (δ2 − δ1)z1 +

1
2
(δ2 − δ1)z2 + (δ2 − δ1)z3 +

(
1
2

δ2 −
3
2

δ1 − 2
)

z4 + Ng2
4 (7d)

where the nonlinear terms Ng2
i (i = 1, 2, 3, 4) are omitted since they are not crucial in the

following discussion.
Computing the Jacobi matrix at equilibrium point E = (0, 0, 0, 0), we get

J(zi=0) =


0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −2

. (8)

Based on the center manifold theory, we can see that the local dynamic behaviors
of the symmetric system (2) are determined by critical variables z1 and z2. The bifurca-
tion solutions for the noncritical variables z3 and z4 can be obtained from (7c) and (7d)
as follows,

z3 =
3
4
(δ1 − δ2)z1 +

1
2
(δ1 − δ2)z2 + Ng3

3, (9a)

z4 =
1
2
(δ2 − δ1)z1 +

1
4
(δ2 − δ1)z2 + Ng3

4, (9b)
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where the nonlinear terms Ng3
i (i = 3, 4) are omitted. We need only study the equations (10),

to investigate the stability and bifurcation behaviors of the system (9) near-equilibrium point.

.
z1 =

(
−3

2
δ1 +

1
2

δ2 +
1
8

δ2
1 +

1
8

δ2
2 −

1
4

δ1δ2

)
z1 + (δ2 − δ1)z2 + Ng3

1, (10a)

.
z2 = (δ1 − δ2)z1 +

(
1
2

δ1 −
3
2

δ2 +
1
8

δ2
1 +

1
8

δ2
2 −

1
4

δ1δ2

)
z2 + Ng3

2, (10b)

where Ng3
i (i = 1, 2) are also omitted.

The stability conditions of the equilibrium point (z1, z2) = (0, 0) are determined by
the following Jacobi matrix,

J =
[
− 3

2 δ1 +
1
2 δ2 +

1
8 δ2

1 +
1
8 δ2

2 −
1
4 δ1δ2 δ2 − δ1

δ1 − δ2
1
2 δ1 − 3

2 δ2 +
1
8 δ2

1 +
1
8 δ2

2 −
1
4 δ1δ2

]
, (11)

The characteristic polynomial is

f (λ) = λ2 + (δ1 + δ2 −
1
4
(δ1 − δ2)

2)λ + [
1
8
(δ1 − δ2)

2 − 1
2
(δ1 + δ2)]

2
, (12)

So the stability conditions for the equilibrium point (z1, z2) = (0, 0) are:

δ1 + δ2 −
1
4
(δ1 − δ2)

2 > 0, [
1
8
(δ1 − δ2)

2 − 1
2
(δ1 + δ2)]

2
> 0. (13)

As we all know, [ 1
8 (δ1 − δ2)

2 − 1
2 (δ1 + δ2)]

2
> 0 is satisfied unless (δ1, δ2) = 0. Thus,

the initial equilibrium solution is stable if δ1 + δ2− 1
4 (δ1 − δ2)

2 > 0. Therefore, the transition
curve L1 is derived,

L1 : δ1 + δ2 −
1
4
(δ1 − δ2)

2 = 0. (14)

The transition curve is shown in Figure 2. When the point (δ1, δ2) lies in the region
I in Figure 2, the initial equilibrium solution is stable. In addition, the initial equilibrium
solution is unstable when the point (δ1, δ2) lies in the region II.
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Since the study here is focused on the local dynamic behaviors in the vicinity of a
critical point, the parameter values (δ1, δ2) should be chosen near the point (δ1, δ2) = (0, 0).
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According to the above criterion, choosing the parameter values (δ1, δ2) from the stable
region for the initial equilibrium solution, such as (δ1, δ2) = (0.1, 0.1), the numerical
solution starting from (x1, x2, x3, x4) = (3, 1, 3, 1) converges to the origin, implying the
initial equilibrium solution is stable, and the behaviors are shown in Figure 3.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

solution starting from (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) = (3,1,3,1) converges to the origin, implying the in-
itial equilibrium solution is stable, and the behaviors are shown in Figure 3. 

  
(a)  (b) 

  
(c) (d) 

 
(e) 

Figure 3. Trajectory projection starting from (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) = (3,1,3,1) converges to E.S. when (𝛿ଵ, 𝛿ଶ) = (0.1,0.1). Diagrams (a,c) are, respectively, the trajectory projection converging to the 
origin on the planes (𝑥ଵ, 𝑥ଶ) and (𝑥ଷ, 𝑥ସ). Diagrams (b,d) are the wave forms on the planes (𝑡, 𝑥ଵ) 
and (𝑡, 𝑥ଷ), and diagram (e) represents the trajectory projection converging to the origin in the 
space (𝑥ଵ, 𝑥ଶ, 𝑥ଷ). 

3.2. Case of a Simple Zero and a Pair of Pure Imaginary Eigenvalu3 
Taking parameters as 𝜇ଵ = 1, 𝜇ଶ = 𝜇ଷ = 𝜇ସ = 0,Ω = 1, 𝜎ଵ = 𝜎ଶ = 1, 𝛼ଵ = √2, 𝛼ଶ =1, 𝛼ଷ = 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0 , which implies that 𝑏ଵ = 𝑏ଷ = 2, 𝑏ଶ = 1, 𝑏ସ = 0  and the Jacobi 

matrix (5) has the eigenvalues 𝜆ଵ = 0, 𝜆ଶ,ଷ = േ𝑖, 𝜆ସ = −2. 
We consider parameters 𝜇ଵ and 𝜇ଷ as perturbation parameters. Using the parame-

ter transformations 𝜇ଵ = 1 + 𝛿ଵ, 𝜇ଷ = 𝛿ଶ and the state variable transformations: 

-4 -2 0 2 4
x1

-2

0

2

4

0 50 100 150 200
t

-4

-2

0

2

4

-4 -2 0 2 4
x3

-4

-2

0

2

4

0 50 100 150 200
t

-4

-2

0

2

4

Figure 3. Trajectory projection starting from (x1, x2, x3, x4) = (3, 1, 3, 1) converges to E.S. when
(δ1, δ2) = (0.1, 0.1). Diagrams (a,c) are, respectively, the trajectory projection converging to the origin
on the planes (x1, x2) and (x3, x4). Diagrams (b,d) are the wave forms on the planes (t, x1) and
(t, x3), and diagram (e) represents the trajectory projection converging to the origin in the space
(x1, x2, x3).

3.2. Case of a Simple Zero and a Pair of Pure Imaginary Eigenvalu3

Taking parameters as µ1 = 1, µ2 = µ3 = µ4 = 0, Ω0 = 1, σ1 = σ2 = 1, α1 =
√

2,
α2 = 1, α3 = β1 = β2 = β3 = 0, which implies that b1 = b3 = 2, b2 = 1, b4 = 0 and the
Jacobi matrix (5) has the eigenvalues λ1 = 0, λ2,3 = ±i, λ4 = −2.
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We consider parameters µ1 and µ3 as perturbation parameters. Using the parameter
transformations µ1 = 1 + δ1, µ3 = δ2 and the state variable transformations:

x1
x2
x3
x4

 =


−1−

√
2 2

√
2+2
5

−
√

2−1
5 1−

√
2

1
√

2−1
5

2
√

2−2
5 1

0 1 0 0
0 0 1 0




z1
z2
z3
z4

. (15)

into (3) yields

.
z1 = −δ1z1 +

1
2
(δ1 − δ2)z2 +

√
2− 1
2

(δ2 − δ1)z3 + Ng4
1, (16a)

.
z2 = −δ2z2 + z3 + Ng4

2, (16b)
.
z3 = −z2 − δ2z3 + Ng4

3, (16c)

.
z4 =

2
√

2 + 3
10

(δ2 − δ1)z2 +

√
2− 1
10

(δ1 − δ2)z3 + (−2− δ1)z4 + Ng4
4, (16d)

where Ng4
i (i = 1, 2, 3, 4) denote the nonlinear functions and they are omitted since they are

not significant in the following analysis.
The Jacobi matrix of system (16) evaluated at the initial equilibrium solution

(x1, x2, x3, x4) = (0, 0, 0, 0) at critical point δ1 = δ2 = 0 is in the following canonical form,

J(zi=0) =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −2

. (17)

Based on the center manifold theory, we know that the local dynamic behaviors of the
system (16) are determined by critical variables z1, z2 and z3. Introducing a near identity
nonlinear transform zi = yi + gi

(
yj
)

(which are omitted since they are not significant
in the following analysis) and a cylindrical coordinate transform z1 = y, z2 = rcosθ,
z3 = rsinθ, z4 = z4, we get the normal form of system (16) as follows,

.
y = y(−δ1 + (

14
5

+
8
5

√
2)r2 + (4 + 2

√
2)y2), (18a)

.
r = r(−δ2 + (− 8

25
− 4

25

√
2)r2 + (−6

5
− 6

5

√
2)y2), (18b)

and
.
θ = −1 +

(
46
25

+
28
25

√
2
)

r2 + (
42
5

+
32
5

√
2)y2. (19)

We now discuss steady-state solutions and their stability basis of (20). It is worth
noting that the characteristics of the steady-state solutions can be validated by calculating
the Jacobian of the system (18). The discussion can be divided into four categories, and the
Jacobi matrix of (20) is as follows:

J =

 −δ1 +
(

14
5 + 8

5

√
2
)

r2 + 6
(

2 +
√

2
)

y2
(

28
5 + 16

5

√
2
)

yr(
− 12

5 −
12
5

√
2
)

yr −δ2 − 12
25

(
2 +
√

2
)

r2 − 6
5

(
1 +
√

2
)

y2

. (20)

(I) The initial equilibrium solution (E.S.)

y = r = 0. (21)
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The Jacobi matrix of system (18) is as follows,

J =
[
−δ1 0

0 −δ2

]
. (22)

Thus, the stability conditions for the E.S. at the initial equilibrium solution are δ1 > 0
and δ2 > 0, or the initial E.S. is unstable. So, the transition curves which define the stability
boundaries of the E.S. are L2 : δ2 = 0(δ1 > 0) and L2 : δ2 = 0(δ1 > 0).

(II) The static bifurcation solution (S.B.):

y2 =
2−
√

2
4

δ1, r = 0. (23)

It is obvious that there exists an S.B. solution when δ1 > 0. The Jacobi matrix of (20) is
as follows

J =

[
2δ1 0
0 − 3

√
2

10 δ1 − δ2

]
. (24)

Thus, the stability conditions for the S.B. solution are δ1 < 0 and − 3
√

2
10 δ1 − δ2 < 0.

So the S.B. solution is unstable when δ1 > 0. In addition, we can get a transition curve
L4 : δ2 +

3
√

2
10 δ1 = 0(δ1 < 0).

(III) The incipient Hopf bifurcation solution (H.B.(I)):

y = 0, r2 = − 25
8 + 4

√
2

δ2. (25)

The incipient H.B. solution exists when δ2 < 0. The Jacobi matrix of (20) is as follows,

J =

[
−δ1 − 5

√
2+30
4 δ2 0

0 2δ2

]
. (26)

Thus, the stability conditions for the H.B.(I) solution are −δ1 − 5
√

2+30
4 δ2 < 0 and

δ2 < 0. Therefore, the transition curves which define the stability boundaries of the H.B.(I)
solution are L2 : δ2 = 0(δ1 > 0) and L5 : δ1 +

5
√

2+30
4 δ2 = 0(δ2 < 0).

(IV) The secondary solution H.B.(II):

y2 =
−2
(

6−
√

2
)

δ1 − 85δ2

86
√

2 + 62
, r2 =

75
√

2δ1 + 50δ2

32 + 34
√

2
. (27)

The secondary H.B. solution exists when δ1 +
5
√

2+30
4 δ2 < 0, 3δ1 +

√
2δ2 > 0. The

Jacobi matrix of (20) is as follows,

J =

 4
(

2 +
√

2
)

y2 4(7+4
√

2)
5 yr

− 12(1+
√

2)
5 yr − 8(2+

√
2)

25 r2

. (28)

Thus, the stability conditions for the H.B.(II) solution are

Tr =
−2(358

√
2+640)δ1−2(1617

√
2+1484)δ2

236
√

2+743
< 0 and Det =

16(25
√

2+33)
25 y2r2 > 0. When the

H.B.(II) solution exists, the condition Det =
16(25

√
2+33)

25 y2r2 > 0 must be met. So

δ1 + 5
√

2+30
4 δ2< 0, 3δ1 +

√
2δ2 >0,

(
358
√

2 + 640
)

δ1 +
(

1617
√

2 + 1484
)

δ2 > 0, H.B.(II)
solution is stable and exists. Therefore, the transition curves which define the stabil-
ity boundaries of the H.B.(II) solution are L5 : δ1 +

5
√

2+30
4 δ2 = 0(δ2 < 0) and L6 :(

358
√

2 + 640
)

δ1 +
(

1617
√

2 + 1484
)

δ2 = 0(δ1 +
5
√

2+30
4 δ2 < 0).
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As a result, we can conclude: The incipient H.B. solution first bifurcates from the initial
E.S. along the transition curve L2; when the parameters cross the transition curve L5, the
incipient H.B. solution loses its stability and bifurcates into a family of limit cycle (H.B.(II));
and finally, the H.B.(II) solution loses its stability and bifurcates into a two-dimensional
torus along the transition curve L6. The transition curves are illustrated in Figure 4.
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Figure 4. Transition curves for the case of a simple zero and a pair of pure imaginary eigenvalues.

Now, we select different parameter values in different areas of Figure 4 to prove the
analysis results. First, choosing (δ1, δ2) = (0.1, 0.1) which is located in the stable region for
the E.S., the trajectory starting from (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1) converges to the ori-
gin shown in Figure 5. Second, choosing (δ1, δ2) = (0.1,−0.001) which is located in the sta-
ble region for H.B.(I) solution, the trajectory starting from (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1)
yields a stable limit cycle shown in Figure 6. Finally, choosing (δ1, δ2) = (0.1,−0.011)
which is located in the stable region for H.B.(II) solution, the trajectory starting from
(x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1) yields a stable limit cycle shown in Figure 7.
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Figure 5. Trajectory projection starting from (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1) converges to the E.S.
when (δ1, δ2) = (0.1, 0.1). Diagrams (a,c) are, respectively, the trajectory projection converging to E.S.
on the planes (x1, x2) and (x3, x4). Diagrams (b,d) are the wave forms on the planes (t, x1) and
(t, x3), and diagram (e) shows the trajectory projection converging to E.S. in the space (x1, x2, x3).
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Figure 6. Trajectory projection starting from (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1) yields a stable limit
cycle when (δ1, δ2) = (0.1,−0.001). Diagrams (a,c) are, respectively, the trajectory projection converg-
ing to H.B.(I) on the planes (x1, x2) and (x3, x4). Diagrams (b,d) are the wave forms on the planes
(t, x1) and (t, x3), and diagram (e) shows the trajectory projection converging to H.B.(I) in the space
(x1, x2, x3).
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Figure 7. Trajectory projection starting from (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1) yields a stable limit
cycle when (δ1, δ2) = (0.1,−0.011). Diagrams (a,c) are, respectively, the trajectory projection converg-
ing to H.B.(II) on the planes (x1, x2) and (x3, x4). Diagrams (b,d) are the wave forms on the planes
(t, x1) and (t, x3), and diagram (e) indicates the trajectory projection converging to H.B.( II) in the
space (x1, x2, x3).

3.3. Case of Two Different Pairs of Pure Imaginary Eigenvalues

Taking parameters as µ1 = µ3 = 0, µ2 = 2, µ4 = 3, Ω0 = 1, σ1 = −1, σ2 = 4,
α1 = α2 = α3 = β1 = β2 = β3 = 0, which implies that b1 = b3 = 0, b2 = 5, b4 = 4 and the
Jacobi matrix (5) has the eigenvalues λ1,2 = ±i, λ3,4 = ±2i.

We consider parameters µ1 and µ3 as perturbation parameters. Using the parameter
transformations µ1 = δ1, µ3 = δ2 and the state variable transformations:

x1
x2
x3
x4

 =


0 1 0 2

3
−1 0 − 2

3 0
1 0 1 0
0 1 0 1




z1
z2
z3
z4

. (29)

into (2) yields
.
z1 = (−3δ1 + 2δ2)z1 + z2 + (−2δ1 + 2δ2)z3 + Ng5

1, (30a)
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.
z2 = −z1 + (−3δ1 + 2δ2)z2 + (−2δ1 + 2δ2)z4 + Ng5

2, (30b)
.
z3 = (3δ1 − 3δ2)z1 + (2δ1 − 3δ2)z3 + 2z4 + Ng5

3, (30c)
.
z4 = (3δ1 − 3δ2)z2 − 2z3 + (2δ1 − 3δ2)z4 + Ng5

4, (30d)

where Ng5
i (i = 1, 2, 3, 4) denote the nonlinear functions and they are omitted since they are

not significant in the following analysis.
The Jacobi matrix of symmetric system (30) evaluated at the initial E.S. (x1, x2, x3, x4) =

(0, 0, 0, 0) at critical point δ1 = δ2 = 0 is in the following canonical form,

J(zi=0) =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

. (31)

We use a near identity nonlinear transform zi = yi + gi
(
yj
)

(which are omitted
since they are not significant in the following analysis) and a polar coordinate transform
y1 = r1cosθ1, y2 = r1sinθ1, y3 = r2cosθ2, y4 = r2sinθ2, we get the normal form of symmetric
system (30) as follows,

.
r1 = r1

(
−3δ1 + 2δ2 − 5r1

2 − 70
9

r2
2
)

, (32a)

.
r2 = r2

(
2δ1 − 3δ2 + 10r1

2 +
35
9

r2
2
)

, (32b)

and
.

θ1 = 1 + r1
2 +

1
9

r2
2, (33a)

.
θ2 = 2 + 4r1

2 +
19
9

r2
2. (33b)

We now discuss the bifurcation and stability behaviors of the symmetric system (30).
Note that the characters of the steady-state solutions can be verified by evaluating the
Jacobian of the system (32). The discussion can fall into four categories and the Jacobi
matrix of (34) is as follows,

J =
[
−3δ1 + 2δ2 − 15r1

2 − 70
9 r2

2 − 140
9 r1r2

20r1r2 2δ1 − 3δ2 + 10r1
2 + 35

3 r2
2

]
. (34)

(I) The initial E.S.:
r1 = r2 = 0. (35)

The Jacobi matrix of (34) is as follows,

J =
[
−3δ1 + 2δ2 0

0 2δ1 − 3δ2

]
. (36)

Thus, the stability conditions for the E.S. at the initial equilibrium solution are 3δ1 − 2δ2 > 0
and 2δ1 − 3δ2 < 0, or the initial E.S. is unstable. So the transition curves which de-
fine the stability boundaries of the E.S. are L7 : 3δ1 − 2δ2 = 0(2δ1 − 3δ2 < 0) and
L8 : 2δ1 − 3δ2 = 0(3δ1 − 2δ2 > 0).

(II) The incipient H.B. solution (I):

r1
2 =
−3δ1 + 2δ2

5
, r2 = 0. (37)
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It is obvious that there exists H.B.(I) solution when 3δ1 − 2δ2 < 0. The Jacobi matrix of
(34) is as follows,

J =
[

2(3δ1 − 2δ2) 0
0 −4δ1 + δ2

]
. (38)

Thus, the stability conditions for the H.B.(I) solution are 3δ1− 2δ2 < 0 and 4δ1 − δ2 > 0.
So we can get two transition curves L7 : 3δ1 − 2δ2 = 0(2δ1 − 3δ2 < 0) and
L9 : 4δ1 − δ2 = 0(3δ1 − 2δ2 < 0).

(III) The secondary H.B. solution (II):

r1 = 0, r2
2 = − 9

35
(2δ1 − 3δ2). (39)

H.B.(II) solution exists when 2δ1 − 3δ2 < 0. The Jacobi matrix of (34) is as follows,

J =
[

δ1 − 4δ2 0
0 2(3δ2 − 2δ1)

]
. (40)

Thus, the stability conditions for the H.B.(II) solution are δ1 − 4δ2 < 0 and 2δ1 − 3δ2 > 0.
So, the H.B.(II) solution is unstable when 2δ1 − 3δ2 < 0. Therefore, the transition curves which
define the stability boundaries of the H.B.(II) solution are L8 : 2δ1 − 3δ2 = 0(3δ1 − 2δ2 > 0)
and L10 : δ1 − 4δ2 = 0(2δ1 − 3δ2 > 0).

(IV) Quasi-periodic solution (2-D torus):

r1
2 =

1
15

(4δ2 − δ1), r2
2 =

3
35

(−4δ1 + δ2). (41)

The Quasi-periodic solution exists when δ1 − 4δ2 < 0, 4δ1 − δ2 < 0. The Jacobi matrix
of (34) is as follows,

J =
[
−10r1

2 − 140
9 r1r2

20r1r2
70
9 r2

2

]
. (42)

Thus, the stability conditions for the Quasi-periodic solution are Tr = −2(δ1 + δ2) < 0
and Det = 700

3 r1
2r2

2 > 0. When the Quasi-periodic solution exists, the condition
Det = 700

3 r1
2r2

2 > 0 must be met. So, when δ1 − 4δ2 < 0, 4δ1 − δ2< 0, δ1 + δ2 >0, Quasi-
periodic solution is stable and exists. Therefore, the transition curves which define the
stability boundaries of the Quasi-periodic solution are L9 : 4δ1 − δ2 = 0(3δ1 − 2δ2 < 0) and
L11 : δ1 + δ2 = 0 (4δ1 − δ2 < 0).

As a result, we can draw the following conclusions: The initial E.S. occurs first when
the parameters are in the region between L7 and L8; then, the incipient H.B. solution
bifurcates from the initial E.S. along the transition curve L7; and finally, when the parameters
pass-through L9 from L7, the incipient H.B. solution loses its stability and bifurcates into a
two-dimensional torus along the transition curve L9. The transition curves are illustrated
in Figure 8.

Now we select different parameter values in different areas of Figure 8 to prove
the analysis results. First, choosing (δ1, δ2) = (0.1, 0.1) which is located in the stable
region for the E.S., the trajectory starting from (x1, x2, x3, x4) = (0.01,−0.01, 0.01, 0.01)
converges to the origin shown in Figure 9. Second, choosing (δ1, δ2) = (0.03, 0.05) which is
located in the stable region for H.B.(I) solution, the trajectory starting from (x1, x2, x3, x4) =
(0.001,−0.001, 0.001, 0.001) yields a stable limit cycle shown in Figure 10. Finally, choosing
(δ1, δ2) = (0.01, 0.06) which is located in the stable region for Quasi-periodic solution, the
trajectory starting from (x1, x2, x3, x4) = (0.1,−0.1, 0.1, 0.1) yields a stable 2-D torus shown
in Figure 11.
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Figure 9. Trajectory projection starting from (x1, x2, x3, x4) = (0.01,−0.01, 0.01, 0.01) converges to the
E.S. when (δ1, δ2) = (0.1, 0.1). Diagrams (a,c) are, respectively, the trajectory projection converging
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Figure 11. Trajectory projection starting from (x1, x2, x3, x4) = (0.1,−0.1, 0.1, 0.1) yields a stable
2-D torus when (δ1, δ2) = (0.01, 0.06). Diagrams (a,c) are, respectively, the trajectory projection
converging to 2-D torus on the planes (x1, x2) and (x3, x4). Diagrams (b,d) are the wave forms on
the planes (t, x1) and (t, x3), and diagram (e) shows the trajectory projection converging to 2-D torus
in the space (x1, x2, x3).

4. Conclusions

In this paper, the dynamic behavior of the bifurcation equations near the three critical
points of the symmetric FGM rotating cantilever plate system in the case of the 1:1 internal
resonance is studied. The three types of degenerate equilibrium points are analyzed using
the central manifold theory, normal form theory, bifurcation theory, and stability theory,
and the stability conditions and transition curves leading to S.B., H.B., and bifurcation of
the two-dimensional torus are obtained. We use the fourth-order Runge–Kutta method to
solve the numerical solution, and the results show that the numerical results are consistent
with the analytical results.

From the above analysis, we can obtain that the calculation of the normal form of
nonlinear system brings great convenience to simplify the engineering model and study
the bifurcation and stability behaviors of the nonlinear dynamic system. As we all know,
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the nonlinear system may have different qualitative structures under different disturbance
conditions, the type of singularity may change, and the qualitative structure and topology
of the trajectory near the singularity will also be affected. In engineering, many special
nonlinear dynamic behaviors, such as wing instability and automatic rotation, are closely
related to bifurcation behavior. Therefore, it is necessary to use the bifurcation and stability
theory to analyze and simulate the dynamic mechanism of the FGM plate.
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