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Abstract: The paper settles two major liabilities and asymmetries of the theory of automatic control to
the design of simple system controllers. It shows the most frequently used series proportional integral
(PI) controllers as disturbance reconstruction and compensation-based structures and solves their
designs using two types of linear system models. Beginning with the example of a simple integrator
controlled by a P controller, it shows that constant input disturbances can be reconstructed by evaluat-
ing steady state values of the controller output. Thereby, the nearly steady state controller output can
be simply achieved by using a low-pass filter with a time constant significantly longer than the time
constant of stabilized processes. This disturbance observer (DOB) functionality can be demonstrated
as being kept by series PI controllers designed by the pole assignment method. The DOB design can
also be extended to first-order systems with internal feedback. However, there, the reconstructed
disturbances depend both on the controller and the plant output steady state values. Because this
feature is missing in industrial PI controllers, it indicates their connections with simpler, ultra-local
(integral) linear system models. The interpretation of PI controllers as DOB-based structures allows a
systematic consistent classification of all existing disturbance compensation structures and simplifies
their comparisons with other modern and postmodern DOB-based alternatives. Given the breadth of
use, improved understanding of PI control functionality also represents an important step to their
optimal implementation and to research of innovative modifications, as illustrated by facilitating
the flexible use of the new functional capabilities offered by embedded controls. By enhancing “the
birth” of new solutions, it is then possible to better satisfy the permanently growing requirements
of practice.

Keywords: PI control; ultra-local integral model; disturbance observer; digitalization; Industry 4.0

1. Introduction

Automatic control can be found everywhere around us, but there are many reasons to
believe that it remains in a position of hidden technology. For example, a brief look at the
definitions on the web shows that automatic control deals with the application of control
theory to the regulation of processes without direct human intervention. Then, in addition
to introducing several useful items in automatic control terminology (such as the concept
of disturbances or negative feedback), the first of the web-provided definitions made such
misleading claims as “designing a system with features of automatic control generally
requires the feeding of electrical or mechanical energy to enhance the dynamic features of an
otherwise sluggish or variant, even errant system”. This is misleading in the sense that the
substitution of human intervention for the regulation of processes is far from being linked
only to electrical or mechanical energy. For many decades, automatic control was important
in many other areas, such as chemistry, biology, medicine, etc. However, there was no
mention that one of the main goals of automatic control was to achieve and maintain system
stability. The concept of stability means the ability to remain functioning in the vicinity of a
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required state (working point) even under the influence of external disturbances. In the
case of automatic control of a simple dynamic system, framed frequently as a proportional
integral derivative (PID) control, it is mainly a matter of system stabilization augmented by
reconstruction and compensation of acting disturbances.

The article begins with providing a brief examination of developments in the design
of PID control and discusses its importance in a broader social context. It shows that,
despite the apparent simplicity and apparent exhaustion of related research topics, there
are a number of new stimuli that can only be successfully resolved by overcoming the
stereotypes of previous developments. New solutions do not only have to come thanks to
sophisticated breathtaking mathematical constructions, but can also be obtained by a new
combination and interpretation of simple well-known approaches and facts. Incentives for
such development include the development of the technological basis of automatic control
(progress in embedded control, materials, sensors, actuators, communications, etc.) as well
as new requirements, mainly from unstable and strongly nonlinear systems with delays
encountered in automotive mechatronics, robotics, electromobility, chemistry, and biology
(e.g., in connection with epidemics).

Although in the past, various mechanical devices have played an important role, real
use of automatic control has long outgrown these limitations. Episodic applications of
automatic control can be traced back to ancient Greece [1]. However, the increase in its
importance came much later. The advent of the industrial revolution has already indicated
something. Automatic control was used to be associated with Watt’s steam engine, in which
the centrifugal speed controller, created by borrowing an older solution used to regulate
wind and water mills, played an important role. Its task was to ensure a constant speed
of rotation even with a variable load or operating parameters of the boiler. The controller
existed in numerous modifications and already here it would be possible to find some
features of PID control. Properties of the obtained regulation, especially its stability, were
dealt with by a number of important researchers of the 19th century, such as W. Siemens
(1823–1883), J. C. Maxwell (1831–1879), or E. J. Routh (1831–1907). However, the centrifugal
speed governor was still a device that was an integral part of the steam engine, not a
universal device also applicable to control numerous other processes. It was similar with
the controllers used to control steam turbines, made famous by the founder of automation
in German-speaking countries, A.B. Stodola (1859–1942). With A. Hurwitz (1859–1919),
they also contribute to the stability analysis.

1.1. A Brief Look at the Beginnings of the PID Control and the Need for Abstraction

Controllers representing a self-traded industrial commodity that could be used to
control multiple processes began to be used more widely in the early 20th century. Around
1910, they were limited mainly to simple on–off (relay) control, whether they were imple-
mented as electromagnetic relays or on the basis of pneumatic a flapper–nozzle (sometimes
called as baffle–nozzle system, Figure 1a) and/or membrane amplifier. However, on–off
controls, in which steady states of the plant output were maintained in the form of steady
state oscillations, did not always meet practical requirements and the following decades
brought a rapid development of knowledge related to amplifiers for automatic control
(see e.g., [2–4]). Moreover, it was no longer just about machine control, but also about
other areas with an important role for dynamic systems; for example, transatlantic com-
munications, the political economy, the fight against the tuberculosis pandemic (by milk
pasteurization), etc.

Today, there are still several reasons to look for the simplest controllers. One reason is
to ensure that the content of introductory courses in the field of automatic control meets
the requirements of practice, taking into account the dynamics of their development and
delays in the educational process itself. In connection with the survey of these needs,
several articles were published in recent years (see, for example [5–8]). However, the
dynamics of research in the field must also be paid attention to. Because the range of
basic knowledge needed to understand automatic control is constantly growing, and
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the scope for covering it in university education is declining, basic ideas and principles
must inevitably be abstracted, as an appropriate abstraction represents the only effective
tool for compressing the ever-growing scope of the knowledge, and keeping it sizable to
the scope of the curriculum, often a single course in the field of automatic control. The
problem is that many of the findings from the early period have remained secret in the
competitive struggle of companies, and today, when needing to adapt older solutions to
new technological requirements, we are often approaching their interpretations in roles
similar to archaeologists, who are only left with the material remnants of existing cultures.

Figure 1. Pneumatic flapper–nozzle (sometimes called as baffle–nozzle) system (a) used for signal
conversion from mechanical position xe, or x f to pressure Po and vice-versa, and the pneumatic
P controller (b) with a bellows internal pressure Po equal to the output pressure; the negative feedback
xb increases the proportional band of the conversion (i.e., xb acting against pressure changes due to
variations of x f caused by the input signal xe increases the proportional band).

Changes in core technologies bring, from time-to-time, the need to re-evaluate existing
solutions and adapt them to new conditions [9]. Today, such a wave is coming again,
caused by the widespread need to digitize and automate processes as part of the Industry
4.0 campaign, or the building of the Internet of Things (IoT). The stimuli of the current
wave of innovations also include the development of the technological basis of automatic
control (progress in embedded control, materials, sensors, communications, etc.), and
new requirements, mainly from the control of unstable and strongly nonlinear systems
with delays, encountered in automotive mechatronics, robotics, electromobility, transport
(driving autonomous vehicles, and entire platoon), and many other applications, or in
connection with epidemics, such as COVID-19. While the design of process control has
been tied to a “not very diverse” traditional hardware of existing facilities and has mainly
focused on controlling stable systems, in the new applications field, where the development
of the technological base is much faster, unstable processes are common. As was the case
with the birth of mechatronics around 1990, in these new areas, the simplest possible control
algorithms are required, which can also be implemented in low-cost platforms, while at the
same time achieve the required performance, robustness, and accuracy of control. Their
basic common feature is the systemic flexible approach, which, when applied consistently,
often leads to surprising findings. On a daily basis, in the context of the fight against
the COVID-19 pandemic, we can see that many people have difficulty understanding the
specifics of unstable dynamic processes with large time delays. A reassessment of older
solutions may show that not all of the results of previous historical developments have
been understood correctly in the past, but also that the essence of some already discovered
solutions has been forgotten.

1.2. Signals, Systems, and Feedback

At the beginning of the development of PID control, achieving smoother control
signals of the pneumatic controllers (i.e., by increasing their proportional bands) was made
possible by introducing negative feedback from the controller output (approximately 1928,
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Figure 1b). The resulting signal amplifier permitted the adjustment of the controller gain
over a wide range and was denoted as a proportional (P) controller.

Analogous development of electronic amplifiers was not so simple—the electromag-
netic relay has been replaced by a completely new element—a vacuum tube. It represented
a serious obstacle to the further development, known well from the history of transatlantic
telephony. The electronic amplifiers used around 1920 introduced strong signal distortions,
which significantly limited their repeated applications. In 1927, H. S. Black (1898–1983)
showed that the distortion of a high-gain amplifier could reasonably be reduced by feeding
back part of the output signal. Subsequently, his Bell Lab colleague, H. Nyquist (1889–1976),
published in “Regeneration Theory” (1932), foundations of the so-called Nyquist analysis in
the frequency domain, providing a practical guide for designing negative feedback-based
amplifier systems using experimental data of the measured frequency response.

Contemporaneously, the pneumatic negative feedback amplifier was developed by
C.E. Mason [10] of the Foxboro Company. The flapper–nozzle amplifier (as in Figure 1a) is
based on the pressure drop along the pneumatic resistance created by the narrowing of the
orifice in the supply pipe when the air flow changes. By means of the negative feedback
generated by the insertion of the bellows with the elasticity constant Kb, which expanded
or contracted when the pressure Po changed (thus reducing the impact of opening the
nozzle X by the oppositely oriented movement of the baffle), the dependence of Po on
the input control error e was linearized. In 1931, the Foxboro Company began selling
pneumatic controllers that incorporated both adjustable linear amplifications (based on
such a negative feedback principle) and integral action (called as automatic reset, Figure 2).
The rate of this “positive” feedback (acting against the bellows used to linearize the flapper–
nozzle amplifier) depended on the volume of the upper bellows and the magnitude of the
pneumatic resistance Ri. This caused an automatic reset with a delay specified by a time
constant Ti.

Even before the beginning of the Second World War, this controller was extended by
a derivative action (denoted originally as “pre-act”) achieved by including an additional
pneumatic resistor Rd (with a similar role as Ri in the integral action) at the input of the
lower bellows. Due to this, the negative feedback was accomplished by a delay. The
modular set of proportional integral derivative (PID) controllers created in this way had a
revolutionary impact on a number of industries; for example, more PID controllers were
used to develop the atomic bomb than was ever produced.

The instructions for the use of new types of controllers provided by the manufacturers
were supplemented by a more research-tuned publication by Ziegler and Nichols [11],
which is the most cited, but still not always sufficiently understood work in the field
of automatic control design [12]. Cheap, reliable, and robust pneumatic controllers were
supplemented in the 1950s by a new generation of controllers based on transistor amplifiers,
which soon complemented controllers based on operational amplifiers, copying a proven
high-gain amplifier scheme supplemented by delayed negative and positive feedback to
set the required gain and derivative, or integral action.

Based on these facts, it might seem that the story of PID controllers was an example of
a perfectly managed scenario. Paradoxically, first, problems arose where simplifications
and progress were expected—in the design of the digital controllers. These problems are
best known as unwanted integration, leading to output overshooting or even instability—
abbreviated as integrator windup. Windup also relates to the insufficient distinction
between series and parallel PID controllers and to their roles in disturbance reconstruction
and compensation. The relationship to other alternative methods used for disturbance
reconstruction and compensation have also been insufficiently declared.

Over time, the range of open problems has grown, and even today, the design of PID
controllers is a part of living scientific research [13–20]. The research focuses on the impacts
of transport and communication delays, nonlinearities, intelligent approaches (as fuzzy
control), on–off actuators and pulse-width-modulated (PWM) control, compensation of
periodic and composite disturbances, etc.
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Figure 2. Modular system of a pneumatic PI controller based on a flapper–nozzle high-gain amplifier
in combination with a negative and a positive feedback—adding a pneumatic resistor to the input of
the lower bellows, realizing the negative feedback creates a PID controller.

1.3. Intelligent, Model-Based, or Fractional-Order PID Control?

The majority of early controllers were constructed on what could be denoted as
“intelligent control”; that is, heuristic control based on the observation of the human
operator [3]. The inventors had an intuitive understanding of adequate control achieved
by observation of the actions of human operators involved in control activities. Such an
approach is still popular and has resulted in the so-called “fuzzy” PID control [17,21].
Paradoxically, despite the extraordinary success of the feedback structures of series PI and
PID controllers and the detailed mappings of their historical development [2,3], little is
known about the impulses leading their inventors to design these structures. In one of the
best-known textbooks on PID control [22], one can read about the automatic resetting of
the output of a simple P controller, which aimed to eliminate the permanent control error
in the event of constant disturbances, as a result of which, the “automatic reset” (today
denoted as integral action) controller was created. However, one will not learn about the
arguments that gave birth to this solution.

Of course, from the beginning, an analytical approach to the problem emerged, from
which a model-based approach later evolved. By observing a helmsman steering activity,
in 1922, N. Minorsky (1885–1970) [23] presented a ship control analysis formulated as a
three-term or proportional integral derivative (PID) control. The approach of Minorsky
strongly influenced further developments based on a three-term control.

Without clearly defining the role of disturbance reconstruction and compensation in
PID control, this problem was later analyzed in great detail in state-space control (SSC) meth-
ods of the “modern control” theory [24–27] and in numerous “post-modern” approaches: in
internal model control (IMC) [28], disturbance observer based control (DOBC) [29–33], ac-
tive disturbance rejection control (ADRC) [34], model-free control (MFC) [35], or fractional-
order PID (FO-PID) control [36]. At the time of formulating these approaches, their authors
emphasized the differences between these approaches and PID control. However, in order
to further develop automatic control methods, including streamlining their teaching, it
is equally important to analyze their context and define areas for their effective use. In
order to clarify the structures of PI and PID controllers in the same way, it needs to be
explained more precisely, when the same interpretation of reconstruction and disturbance
compensation is possible [33].

The aims of this paper was to introduce PI control as a stabilizing P control extended
by a disturbance observer based disturbance reconstruction and compensation. Another
important factor involves how to adjust the individual structures in the case of control
systems approximated by the first-order models, which represent a big part of all real
control loops and can be used to approximate more complex inertial plants [37]. Another
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extremely important aspect is to stress the roles and impacts of control signal constraints
and the roles of two possible linear models of the plants to be controlled.

The rest of the paper is structured as follows. Section 2 shows the series PI control as
a modified P control augmented by disturbance feedforward based on an integral plant
model, with input disturbance estimate given by the steady state control signal value.
Section 3 compares, in several examples, the optimal settings of controllers without and
with the I-action method of multiple dominant real poles and shows that the integral
component is always significantly slower than the time constant of the dominant dynamics.
Section 4 deals with a state-space approach to reconstruction and compensation of input
disturbances based on the extended state observer concept. The results achieved are
discussed in Section 5, followed by comments related to future research (Section 6) and a
summarization in the conclusions.

2. From P Controller with Manual Offset to Automatic Reset Control

In the search for interpretations of the pioneering designs of pneumatic PI controllers
(from the beginning of the last century), we can help, today, with a large amount of research
devoted to the control of simple systems.

We know that, for example, in effort to stabilize all of the stable, integral, and unstable
first-order systems, a proportional (P) controller should be used.

Then, in order to track precisely the required setpoint value w [8], for time-invariant
first-order plants (1) with a 6= 0 it is necessary to add the static feedforward control uw
(Figure 3) with the gain a/Ks based on estimates of the parameters a and Ks. The presence
of saturation nonlinearity ur = sat(u) causes the controller to reduce the high control error
caused for admissible initial states and by admissible input variables by the limit control
values [38]. In the proportional zone of control (when ur = u) and with piece-wise constant
inputs (reference setpoint variable w = const and input disturbance di = const) it can be
shown that for the plant differential equation

ẏ = Ks[ur + di]−ay (1)

and the tracking error defined as
e = w− y (2)

it fulfills requirement of an exponential decrease specified by an exponent λ according to

ė = λe; λ < 0, (3)

if the control signal u is calculated by means of a P controller

u = Kp(w− y)+aw/Ks − di
Kp = −(λ+a)/Ks = (1/Tp − a)/Ks

(4)

Thereby, λ denotes the closed loop pole and Tp = −1/λ the closed loop time constant.
With respect to (4), the stability condition λ < 0 may also be expressed as

KsKp + a > 0 (5)

The achieved input–output behavior is specified by the transfer functions

Fwy(s) =
Y(s)
W(s)

=
1

Tps + 1
; Fiy(s) =

Y(s)
Di(s)

=
Ks

Tps + 1
(6)

In the time domain the setpoint-to-output transfer function Fwy(s) corresponds to unit
setpoint step responses

hp(t) = 1− e−t/Tp (7)
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Using the time constant Tp, we can easily express the length of transients of control pro-
cesses. For its evaluation, we often use the term “settling time”.

Figure 3. P controller with a static feedforward a/Ks and compensation of input disturbance di by
means of an offset uo f f = −d̂i based on the total disturbance estimate d̂i.

Definition 1 (Settling time). Settling time Tst is often used to quantify the duration of exponential
transients, which is defined by the decrease of the tracking error expressed in the unit step response (7)
by the term e−t/Tp below a certain percentage of the maximum value:

• When considering settling time Tst = 3Tp, the error of approaching the plant output to the
steady state setpoint value is less than 5%.

• When considering Tst = 4Tp, it is only 1.8%.
• With Tst = 5Tc, the tracking error is below 0.7% of the initial value for t ≥ Tst.

Remark 1 (Distinguishing model and plant parameters.). It should be noted that plant param-
eters a and Ks in (1) are an “abstraction” and we never know them exactly. When it is necessary to
stress that the parameters to be used in the control algorithm (4), which are based on some plant
identification and can be different from the not known a and Ks, symbols a and Ks will be used.

Remark 2 (Use of stabilizing controller.). The stabilizing controller is used, not only to stabilize
the state of unstable systems, but also to reduce fluctuations in the properties of transients when
controlling possibly stable, and time-variable systems with uncertainties and operating disturbances,
or to accelerate transients.

Remark 3 (Equivalent total input disturbance.). We note that the parameter uncertainties,
together with unmodeled dynamics, are combined with various external disturbances (forces) that
enter into the plant at various points, to form the “equivalent total input disturbance”. The concept
of “total disturbance” was first coined by Han [39] and explained by Gao [34] so that any output
changes not caused by the control input are traced back to an equivalent input disturbance, to be
reconstructed and compensated by the controller. The term “total” indicates that di in Figure 3
includes, in totality, both internal disturbances (unknown and uncertain dynamics of the plant
manifested by a 6= a, or Ks 6= Ks) and external disturbances represented by di. For example, if we
simplify the controller design by considering a = 0, which corresponds to integral plant model, the
equivalent “total” input disturbance of such an integrator changes to di = di − aw/Ks for y = w.

Because the approximation of the parameter a plays an important role in the design of the
control structures considered in the article, for better orientation, we will highlight it in red.

Disturbance Reconstruction and Compensation—Integral Plants

Any input disturbance di with the estimated value di had to be compensated by
the opposite offset signal uo f f = −di at the controller output; without an appropriate
disturbance compensation, a steady state control error occurs.

For the sake of simplicity, we will first focus on the control of integral plants with
a = a = 0, uw = 0. Furthermore, if we are able to find a stable Kp (4) without knowing the
parameter a, by assuming a = 0 we can also avoid to use the static feedforward uw. To keep
the loop properties, such an approach formally leads to shifting the omitted controller term
uw into the “equivalent total input disturbance”
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de = di − uw. (8)

In the time of the early pneumatic P controllers developed after 1914 [2,3], a manually
controlled offset uo f f (added to the P controller output) was used to compensate for
constant disturbances, manifested without a compensation by a permanent control error.
The operator had to monitor the process, which led to increased costs. Or, in case of an
irresponsible approach of the operator, it led to a reduced control performance, which also
provided an incentive to replace the operator with an automatic device.

According to Figure 3, considered with a = 0, to keep a steady state of the integral
systems, a zero summary plant (integrator) input value

ur0 + di = 0 (9)

must be achieved. Thus, assuming the output of the controller from the interval of admissi-
ble (unconstrained) values, when ur0 = u0, the estimate of the input disturbance can be
calculated from the steady state loop parameters according to

d̂i = −u0 (10)

Next, for a constant acting disturbance value di = const, the compensating offset

uo f f = −d̂i = u0 (11)

must be applied.

Definition 2 (Steady state-based disturbance observer (DOB) for integral plants). For
integral plants with a = 0, the input disturbance estimate d̂i can be achieved by measuring the
steady state values of the non-saturated controller output u0 = ur0 (11) for some t ≥ Tst.

Then, by applying the control algorithm according to Figure 3 with the value uo f f = u0,
determined according to Definition 2 (and depending on the settling time definition), we
would get transient responses with a (near) zero permanent tracking error in the next
course of the control.

The reconstruction of disturbances by evaluating steady state control signal values was
first mentioned in [40]. The above analysis shows that the operator of a process stabilized
by a P controller should:

• Wait firstly for a steady state (it means, for some chosen Tst, up to t ≥ Tst);
• Look at the steady state value of the control action u0; and
• Reset the offset of the controller to that value uo f f = u0.

Definition 3 (Steady state-based DOB for static plants with a 6= 0). As it directly follows from
(1) with dy/dt = 0, for static plants with a feedback estimate a 6= 0, an estimate of a constant input
disturbance around an output y0 is

d̂i = −u0 + ay0/Ks (12)

An exact calculation of input disturbance requires to measure both the steady state
values of the (non-saturated) controller output u0 (11) and of the plant output y0. We will
show that such a DOB cannot directly correspond to series PI or PID control.

Remark 4 (Automatic reset for first-order plants.). When implementing “automatic reset” of
the disturbance compensation based on the input disturbance estimate (12), according to the scheme
in Figure 3, the corresponding offset can be described as

uo f f = −d̂i = u0 − ay0/Ks (13)
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By moving static feedforward control aw/Ks from the P controller (4) into the offset, the controller
will be simplified into a pure P controller, similar to the case with a = 0. The newly established

“lumped offset” can then be described as

ulo f f = −d̂i + aw/Ks = u0 + a(w− y0)/Ks (14)

Theorem 1 (Relationship of automatic reset structures for a = 0 and a 6= 0). In a sufficiently
narrow vicinity of the desired state (with the initial output value y0 → w) and with a sufficiently
small value Tp → 0, the transients corresponding to a = 0 and a 6= 0 are indistinguishable with
limited measurement accuracy.

Proof. It can be seen that for y0 → w, the resulting DOB accomplishing (12) is approaching
in its functionality the “automatic reset” derived for a = 0 (10), when it holds

ulo f f ≈ u0 (15)

Since for sufficiently short Tp also Kp (4) corresponding to a 6= 0 converges to Kp derived
for a = 0, it can be expected that the automatic reset designed for a = 0 will provide a
satisfactory transient dynamics also for a 6= 0.

Theorem 1 suggests the possibility that the P controller with a disturbance feedforward
using a DOB derived both with respect to a 6= 0 and a = 0 can be used for reconstruction
and compensation of disturbances in loops with linear first-order systems. If we were to
appropriately limit the properties of the considered feedback, it could be extended to the
control of nonlinear systems.

3. P Controllers Extended by “Automatic Reset”

Today, due to the large time lag, we are not able to accurately reconstruct all of
the motives that, at the time of birth, influenced the assertion of today’s known form
of “automatic reset”, or the “series” PI controller, according to Figure 2. The inventors
themselves were not interested in publishing the key moments of their solution, and other
researchers did not have to do so concisely enough. Of course, today we would be able to
algorithmize the whole process of disturbance reconstruction and compensation based on
evaluation of steady states by using appropriate digital controllers. However, those in the
early period of automatic control did not yet exist.

We will further show that the “automatic reset” design can be explained by replacing
the steady state values of the controller output in uo f f = u0 (10) with the value of the
controller output u delayed with a sufficiently large time constant Ti >> Tp (see Figure 4
above). In Laplace transform, it is possible to write

D̂i(s) = −
1

1 + Tis
U(s); UI(s) = −D̂i(s). (16)

The introduced low-pass filter can also contribute to noise filtering that, due to the positive
controller feedback, becomes more critical.

Furthermore, we will also show that a seemingly more perfect reconstruction of
disturbances can be based on the relation d̂i = (ay0 − u0)/Ks (12), in which we will replace
the steady values of the outputs of the controller and the system according to

D̂i(s) =
1

1 + Tis

(
aY(s)

Ks
−U(s)

)
. (17)

However, in terms of input–output dynamics, it does not bring any significant changes.
The only difference will be that we get a reconstruction of the net input disturbance d̂i,
instead of the equivalent total disturbance (8) obtained using the series PI controller.
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In terms of the design of the overall control structure with the disturbance reconstruc-
tion and compensation and its optimal setting, based on a = 0, or a 6= 0, two levels need to
be distinguished: the first is the DOB and controller structure specification and the second
is its optimal tuning. If we limit ourselves to two options at each level (indicated by indices
0 and 1), a total of four emerging situations will need to be addressed.

Figure 4. Compensation of input disturbances by I-action uI = −di of series (above) and parallel PI
controllers (below) equivalent in the proportional zone of control according to (18); Fp(s) denotes the
pre-filter (23) and (24) used to eliminate overshooting of setpoint step responses.

3.1. Traditional “Automatic Reset” Controller

In transition from the P controller with disturbance feedforward in Figure 3 to the
“automatic reset” (i.e., PI) controller (patented around 1930 [3]), we will use the symbol Kc
to distinguish the generally different value of the proportional gain Kp from the first case.

Definition 4 (Proportional integral (PI) controller). Controller (18) established as an extension
of the P controller (4) (designed with a = 0) by a disturbance feedforward based on the disturbance
reconstruction from steady state controller output values according to (16) (derived again on an
assumption a = 0), will be denoted as (series) PI controller.

Similar to Figure 3, the fact that the pressure at the controller output could not exceed
the value of the source pressure and could not even fall below zero, we took it into account
by including the saturation block in the diagrams in Figure 4. The saturation block has
played a very important role in the development of the PID control. However, when
characterizing the basic properties of the obtained controller tuning in the proportional
band of control, we first neglected the nonlinear aspects related to the control signal
limitation by assuming ur(t) = u(t). Such linear dynamics of the controller itself can then
be expressed by the transfer function

C(s) =
U(s)
E(s)

=
Kc

1− 1
1 + Tis

= Kc
1 + Tis

Tis
= Kc

(
1 +

1
Tis

)
= Kc +

Ki
s

. (18)

It has a P action with the gain Kc and an I action with the gain Ki = Kc/Ti.

3.2. 2DoF PI Controller Tuning for Integral Plants (PI00)

In the simplest case, we use the DOB design from the integral model of the system
with a = 0 and use the same plant model to describe the overall control loop. The loops
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from Figure 4 corresponding to a = 0 and no pre-filter (Fp(s) = 1) can be described by the
transfer functions

Fwy(s) =
Y(s)
W(s)

=
KcKs(1 + Tis)

Tis2 + KcKs(1 + Tis)
; Fiy(s) =

Y(s)
Di(s)

=
sKsTi

Tis2 + KcKs(1 + Tis)
. (19)

It has the closed loop poles

λ1,2 =
−KcKsTi ±

√
(KcKsTi)2 − 4KcKsTi

2Ti
. (20)

The fastest possible non-oscillatory transients correspond to (KcKsTi)
2 − 4KcKsTi = 0, i.e., to

λ1,2 = −2/Ti for KcKsTi = 4 (21)

It means that one has to deal with the second-order order setpoint step responses with the
closed loop time constant

Tc = −1/λ1,2 = 2/(KcKs)⇒ Kc = 2/(KsTc)
Ti = 4/(KcKs) = 2Tc

(22)

Furthermore, to eliminate overshooting of the setpoint step responses resulting from zero
in the numerator of Fwy(s) (19), it is necessary to use a two-degrees-of-freedom (2DoF) PI
controller with a pre-filter

Fp(s) =
bs + 1
Tis + 1

(23)

Thereby, the weighting coefficient

b = −1/λ1,2 = Tc (24)

gives the possibility to cancel one of the closed loop poles λ1,2 of Fwy(s) (19). Then, for (21)–(24)

Fwy(s) =
1

Tcs + 1
; Fiy(s) =

sKsT2
c

(Tcs + 1)2 (25)

Remark 5 (Gains of P and 2DOF PI controllers). First, it should be noted that, at the same
values of the time constants of the setpoint step responses Tc = Tp in (4), (6), (22) and (25), the
gain of the P action of the PI controller increases to

Kc = 2Kp (26)

which will be reflected in a higher level of noise signals.

Therefore, if we do not want to increase the oscillatory character of the processes, or
noise amplification, we will often be faced with the question of whether it is better not to
tolerate a possible permanent control error, or to introduce an automatic reset in another
way, without using positive controller feedback leading to increased controller gains and
slowed-down responses.

Remark 6 (Choice of Ti for 2DOF PI controllers.). In the comparison based on the same pro-
portional gains Kc = Kp in (4), (6), (22) and (25), we see that Tc = 2Tp and, thus, the integration
time constant Ti = 2Tc, results in

Ti = 4Tp (27)

At the time moment Ti (27), the (exponential) transients of the primary circuit with P controller can
already be considered with a relatively high accuracy as finished. At the same time, Ti is sufficiently
long to filter out the control signal changes needed to stabilize the plant output at the required
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setpoint value. Thus, if we want to briefly and concisely characterize the DOB used for disturbance
reconstruction, we call it DOB with disturbance reconstruction from the steady state values of the
controller output.

3.3. 2DoF PI Controller Tuning for Plants with Internal Feedback (PI01)

Although the 2DoF PI controller (18) results from the choice of the DOB integral model
with a = 0, the overall loop dynamics can also be specified for the plant with a 6= 0. Without
a pre-filter (Fp(s) = 1) one gets from Figure 4

Fwy(s) =
KcKs(1 + Tis)

Tis2 + Tis(KcKs + a) + KcKs
; Fiy(s) =

sKsTi
Tis2 + Tis(KcKs + a) + KcKs

(28)

The corresponding closed loop poles are

λ1,2 =
−KcKsTi − aTi ±

√
(KcKs + a)2T2

i − 4KcKsTi

2Ti
(29)

The fastest possible non-oscillatory transients correspond to the double real dominant pole,
when (KcKs + a)2T2

i − 4KcKsTi = 0. Then

λ1,2 = −KcKs + a
2

for Ti =
4KcKs

(KcKs + a)2 (30)

When replacing λ1,2 (29) by the corresponding closed loop time constant Tc, we get the
controller tuning

Tc = −1/λ1,2 = 2/(KcKs + a)⇒ Kc = (2/Tc − a)/Ks
Ti = Tc(2− aTc)

(31)

Obviously, these tuning formulas correspond to (22) just for a = 0. To eliminate overshoot-
ing of the setpoint step responses resulting from zero of Fwy(s) (19), it is necessary to use a
two-degree-of-freedom (2DoF) PI controller with a pre-filter (23). The weighting coefficient
b can again be derived to cancel one of the closed loop poles λ1,2 = −1/Tc (30) as

b = Tc (32)

Formally it is again a pre-filter (23) with setting (24), but the values of b, Ti and Tc are bound
by different relationships (31).

Remark 7 (Use of 2DOF PI controller for systems with internal feedback ). When using the
controller (18) derived for a = 0 to control systems with a 6= 0, to get the fastest not oscillatory
transients, its parameters have to be specified according to (31).

3.4. 2DoF Augmented PI (API) Controller for Plants with Internal Feedback (PI11)

The input disturbances can also be reconstructed from steady states of systems with
internal feedback a 6= 0. When substituting disturbance estimate (17) into the P controller
with disturbance feedforward Equation (4) written for the nominal values a = a and
Ks = Ks, in Laplace transform (see Figure 5) we get

U(s) = Kp(W(s)−Y(s)) +
aW(s)

Ks
− 1

1 + Tis
aY(s)−U(s)

Ks
(33)

A manipulation then yields

Tis
1 + Tis

U(s) = Kp(W(s)−Y(s)) +
a(W(s)−Y(s))

Ks
+

Tis
1 + Tis

aY(s)
Ks

(34)
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and

U(s) = Kc
1 + Tis

Tis
(W(s)−Y(s)) +

aY(s)
Ks

; Kc = KP +
a

Ks
(35)

Definition 5 (Augmented PI controller (API)). Controller (35) represents and augmented
version of the traditional (series) PI controller obtained by extending the P controller (4) for a 6= 0
by the feedforward disturbance based on the relation (18) (as in Figure 5).

Figure 5. Augmented PI controller (API) established from the P controller with a disturbance feedfor-
ward (4) in Figure 3 by reconstructing the disturbance estimate according to (17) and compensating
an unwanted setpoint step overshooting by a pre-filter (23) and (24); am = a, Km = Ks.

The essence of the API controller’s benefit is that, by local positive feedback aY(s)/Ks
around the system Ks/(s + a), it nominally transforms this system into an integrator Ks/s,
to which the design from Section 3.2 can be simply applied, including the pre-filter design
to remove unwanted overshooting. With the tuning (22) and pre-filter (23) and (24), this
controller yields the closed loop transfer functions identical with (19).

Remark 8 (Equivalence of traditional and modified 2DoF PI controllers.). In terms of using
two types of process models with a = 0 and a = a 6= 0, two different decision levels need to be
considered. At the first level, by specifying a = 0, the traditional 2DOF PI controller (18), or by
specifying a = a 6= 0, the modified 2DOF PI controller (35), augmented by an additional feedback
from the plant output, can be proposed. After choosing one of these solutions at the first level, even
at the second level, when specifying the plant model parameters to set the overall loop dynamics, we
can reconsider both previous options. All of these combinations can be denoted by acronyms PI00,
PI01, P10, and PI11. Due to the choice a = 0 in the second step, the second term of controller (35)
drops out, and so on PI10 (considering in the first step a = a 6= 0) becomes identical with PI00.

However, in terms of a setting with the double real pole of the closed loop dynamics, both these
controllers become fully equivalent and the differences will be reflected only in the different settings
of individual parameters (22), or (31). In tuning the pre-filter (23), in both situations, the value (24)
has to be used.

However, for a 6= 0 and w 6= 0, the “net” external disturbance will be reconstructed just
according to (17) by the modified controller. The series 2DOF PI controller with the disturbance
reconstruction according to (16) yields the reconstruction of the equivalent total disturbance,
including the internal plant feedback contribution (8).

Remark 9 (Compactness of series controllers). The acting input disturbance can also be recon-
structed from the “steady state” output of the parallel PI controllers, but an additional filter with a
time constant selected for simplicity as Ti must be used. Furthermore, the reconstructed disturbance
will not be used by the controller—its calculation represents an additional effort. From this point of
view, the series controller is a more compact solution, which also has other advantages in terms of
control action limitations (anti-windup). The attempts to extend the PI controller with an additional
disturbance observer [41–43] may lead to unexpected problems and require special attention.
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3.5. Example 1: Integral Model-Based First-Order Plant Control with a Strict Evaluation of
Steady States

Although the idea of reconstruction of the input disturbance by evaluating the steady
value of the control signal of the system approximated by the first-order integral model
is very simple, its implementation in the MATLAB/Simulink environment is not. While
a human operator decides on the steady state by seeing a sufficiently “frozen” systems
behavior, to evaluate the same from the values of the system variables requires some
additional Simulink blocks (Figure 6).

In the simplest case, reaching the steady state is tested by monitoring the absolute
value of the output difference

|∆y| = |y(t)− y(t− Tdy)| ≤ ε2 (36)

at the output of Switch2. If this difference falls below the selected threshold value ε2 = 0.001,
the new offset value is set, based on the output of the first-order filter with a time constant Tf ,
with the current value of the control u(t) at its input. The delay value in (36) was intuitively
chosen as Tdy = Tp/10. During transient responses, when (36) does not hold, the output of
Switch 2 remains at the position, guaranteeing a hold of the previous offset value.

Figure 6. Simulink schemes of the P controller derived according to (4) with a = 0, extended by
disturbance reconstruction according to Di(s) = Ur(s)/(1 + Tf s) from steady state controller output
values, with steady states tested by evaluating the absolute value of the output difference (36).

If the absolute value of the output changes remain above the threshold value, the
offset remains at the initial value. Therefore, given the existing measurement noise, it is not
possible to choose a threshold value ε2 that is too small. Moreover, the filter time constant
Tf , used to eliminate measurement noise, cannot be chosen too small.

Switch1 is used to set the initial value of the offset to 0 and to exclude its readjustment
as soon as the simulation is started. A delay in its output is necessary to eliminate the
algebraic loop. In our case, it was equal to the numerical integration step Ts = 0.005.

In all responses, a constant input disturbance value di = 1 was applied. Thus, when
using the P controller, the output first stabilized at the steady state value y > w (Figure 7
left). After evaluating the fulfillment of the steady state condition, the first offset correction
takes place. With regard to the non-zero threshold and the used filter, small changes of
the offset will occur in the further course of transients even at the value a = 0. At the next
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change of the setpoint value w, for a = 0, the value of the lumped disturbance is already
known, the transient is almost ideal (without more significant offset corrections).

Figure 7. P controller according to Figure 6 with a disturbance feedforward based on distur-
bance reconstruction in steady states tested by means of (36) for a ∈ [−0.5, 0.5] and Tf = 0.02Tp

(left above) and Tf = 2Tp (left below) and the series 1DoF PI controller with Fp(s) = 1 and the gain
Kc = Kp = 1/(KsTp), a = am = 0; the integral time constant Ti = Tf , Tf = 0.02Tp (right above) and
Tf = 2Tp (right below); Tp = 0.15; Tdy = 0.1Tp; di = 1; Ks = Ks = 1.

With non-zero values a 6= 0, the changing contribution of the internal plant feedback
to the lumped disturbance is reflected by the changing offset values. As the value of Tf
increases from Tf = 0.02Tp to Tf = 2Tp (blue curves in Figure 7 left), the iterations of the
offset during the transients increase even at a = 0.

By omitting the evaluation of steady state conditions and continuously updating the
offset through the filter with the time constant Tf = Ti, we would get a 1DOF PI controller.
The responses in Figure 7 show that at a small value of Tf = Ti, the circuit oscillates in the
form of weakly damped oscillations. With a higher value of Tf = Ti, the input and output
responses of the system are already smooth, but with overshooting, or undershooting of
the output variable in particular steps.

4. Controller with Input Disturbance Reconstruction by ESO

The specifics of DOB contained in series PI controllers can be most clearly explained
by comparing with the solution of the task of disturbance reconstruction and compensation
developed within the state-space approach of modern theory of automatic control [25,26,44].
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There, piece-wise constant disturbances di (including possible model uncertainties) can be
modelled by a sequence of Dirac pulses δ at a non-measurable integrator input [8], which
yields an extended state-space plant model with two-inputs u and δ

ẋ =

[ −a Ks
0 0

]
x +

[
Ks
0

]
u +

[
0
1

]
δ; x =

[
y
di

]
y =

[
1 0

]
x

(37)

and with the extended state vector x consisting of the plant output y and of the external
disturbance di. For its reconstruction, an extended state observer (ESO) will be used, based
on an “identical” plant model

˙̂x =

[ −a Ks
0 0

]
x̂ +

[
Ks
0

]
u +

[
p1
p2

]
(y− ŷ)

x̂ =

[
x̂
d̂i

]
; ŷ =

[
1 0

]
x̂

(38)

In order to guarantee stable tracking of x by x̂ and of y by ŷ, it has to be augmented by
correction of the particular state variables proportional to the difference of the plant and
model outputs y - ŷ multiplied by parameters p1 and p2. Since the ESO inputs are given by
the plant output y and input u, whereas the unknown input δ producing disturbances di is
omitted, after some modification, in the nominal case with a = a and Ks = Ks, we get its
description as

˙̂x =

[ −p1−a Ks
−p2 0

]
x̂ +

[
Ks
0

]
u +

[
p1
p2

]
y

x̂ =

[
x̂
d̂i

]
; ŷ =

[
1 0

]
x̂

(39)

To minimize the number of unknown tuning coefficients, ESO state matrix

As = sI−A =

[
s + p1+a −Ks

p2 s

]
; (40)

with the characteristic polynomial

As(s) = s2 + (p1+a)s + p2Ks = (s− λ)2 = s2 − 2λs + λ2 (41)

will be specified by choosing a double pole λ < 0, or the corresponding time constant
To = −1/λ, which yields

p1 = −2λ−a = 2/To−a; p2 = λ2/Ks = 1/(T2
o Ks) (42)

With a = 0, such ESO is frequently used in (linear) active disturbance rejection control
(L)ADRC [34,45]. Possible simulation scheme of the P controller (4) augmented by distur-
bance feedforward based on ESO (39), applicable to any parameters a and Ks is in Figure 8.
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Figure 8. MATLAB/Simulink simulation scheme of a state-space approach based equivalent of PI
control, established from the P controller with disturbance feedforward in Figure 3 and reconstructing
the di estimate by ESO (39) derived in [8], with the tuning parameters (42); am = a; Km = Ks.

Example 2: Comparison of PI, API, and ESO-Based Controllers Using Both Types of Linear
First-Order Models

The second example focuses on comparing P control extended by disturbance feed-
forward using either disturbance reconstruction from steady states by means of (17), or by
ESO (39). Both of these possibilities verify for a = a and a = 0 the set of parameters

a = {0.7, 0,−0.7}; Ks = Ks = 1. (43)

Exaples of transient responses achieved with ESO-based PI from Figure 8 and by modifying
the P controller with a disturbance feedforward using disturbance reconstruction from
steady state control signal values (approximated by the output of a low-pass filter with the
time constant Ti, and by a pre-filter to the 2DoF PI, or the 2DoF API controller, see Figure 5)
for the nominal (a = a) and simplified (a = 0) tuning, are in Figure 9. In this case, the input
disturbance changed step-wise from di = 0 to di = 1 at t = 4.

Note that both PI and API evaluate non-zero disturbance values already at the initial
intervals t < 4, when di = 0. In the case of waveforms corresponding to the simplified
setting a = 0, i.e., 2DoF PI and ESO-based controller denoted usually as ADRC, for a 6= 0,
the steady state values of the reconstructed disturbance differ from the actual external
value di.
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Figure 9. (Left): responses of the loops with 2DoF API controller (from Figure 5) and the P controller
with ESO (from Figure 8) for a = am = a; (Right): 2DoF PI control and ADRC corresponding to
a = am = 0; note the differences in the initial and steady state values of reconstructed disturbances.

5. Discussion

Thus far, we have shown that series PI and API controllers can be interpreted as
stabilizing P controllers with a disturbance feedforward based on a DOB reconstructing
input disturbance related to the first-order plant models from steady state outputs of the
controller and plant.

The strict evaluation of steady state conditions, bringing some elements of discrete
event dynamical systems, can be avoided by filtering the controller and plant outputs with
first-order filters, having a time constant Ti substantially longer than the time constants Tp
of the transients stabilized by the P controller without disturbance reconstruction.

Thereby, the most interesting point is that this DOB-based interpretation of series PI
controllers was industrially exploited just for the controller structure based on ultra-local
(linear integral) process models with a = 0.

By using local (static) linear models of the controlled process with a 6= 0, more general
types of DOB can be derived, leading to API controllers in Figure 5.

In terms of the setpoint-to-output transfer functions corresponding to the double real
closed loop poles, both PI (with a = 0) and API (with a 6= 0) lead to fully equivalent results
(see Figure 9). Just the reconstructed disturbances will be different.

The specifics of DOB contained in series PI and API controllers can be most clearly
explained by comparing with the solutions using the disturbance reconstruction and
compensation developed within the state-space approach of modern theory of automatic
control [26,44]. Of course, the DOB used in PI and API controllers (see Figure 5) is much
simpler than ESO in Figure 8. However, the separability of setpoint tracking and distur-
bance reconstruction in the state-space approach brings several advantages that should be
noted when comparing both disturbance reconstruction and compensation approaches. In
addition, ESO-based disturbance reconstruction and compensation can be extended to a
much wider range of signals than just step disturbances, such as frequently considered
periodic disturbances [19].
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When interpreting responses in Figure 8, we can start with saying:
In ESO, the reconstruction time constant To can be selected independently of the time

constant Tp for control. If we neglect the effect of noise, To is not limited from below as the
integration time constant Ti. By choosing the API controller gain Kc = (2/Tp − a)/Ks, we
do not directly affect the disturbance reconstruction speed (which depends dominantly
on Ti). Ti cannot be chosen shorter than the time constant of the stabilized transients Tp,
so that the reconstruction is not significantly affected by the initial control interventions
needed for output stabilization in the vicinity of the required reference setpoint value. Thus,
even with a nominal tuning, PI and API show “phantom” disturbances even when no
external disturbances are present. The nominally set circuit with ESO does not show such
an imperfection.

The required value of the proportional gain KP = (1/Tp − a)/Ks does not depend on
whether we compensate the disturbances reconstructed by ESO or not. However, when
extending KP of the P controller to Kc in PI and API controls for disturbance reconstruc-
tion and compensation (see Remark 5), for the same dynamics of setpoint responses, the
proportional gain Kp has to be increased to Kc = (2/Tp − a)/Ks.

If the most accurate perception of external or equivalent disturbances is important,
the ESO is definitely better from this point of view. In addition, the ESO methodology
also allows the reconstruction and compensation of time-varying disturbance signals (e.g.,
periodic and composite signals) [25,30,46].

No pre-filter is required for di reconstruction with ESO. When using PI or API, omitting
Fp(s) leads to overshooting during setpoint tracking.

However, common features should also be mentioned. With the use of significantly
simpler API and ESO based on integral models with a = 0 (i.e., PI and ADRC), simplifica-
tions of the controller structure and its setting can be achieved in both approaches. From the
reconstruction of the disturbances, we then receive the equivalent total input disturbance,
which also includes contributions from the neglected internal feedback of the controlled
system (as in Figure 9 right).

Although it might seem that the accuracy of the parameter a identification influences
very little the input and output responses of the system, it should be noted that such
a conclusion applies only to systems without further time delays, when the correction
possibilities of the feedback used are practically unlimited. However, the presence of
additional time delays limits the speed of correction processes, leading to an increase in the
importance of accurate identification of a, which applies not only to PI and API, but also to
ESO-based solutions used in active disturbance rejection control (ADRC).

It should also be noted that ESO provides a reconstruction of the system output
ŷ, which can be used to control systems with a higher output measurement noise level.
The use of DOB with the inverse system model gives similar results as ESO. However, it
also makes it possible to simplify DOB against ESO by choosing low-pass filters of lower
order [8].

5.1. Parallel versus Series PI Control

In order to compare the basic approaches to the control of simple systems with com-
pensation of disturbances, in [8], we discussed several key ideas that could be extracted
from a mass of details known about the most frequently used controllers with the I-action.
Of course, with regard to the limitations of the conference paper, we did not get to answer
all the basic questions. One of them gives special attention to the interpretation of parallel
PI controllers.

It is clear that the integral (I) action uI(t) acts against the possible input disturbance
(see Figure 4) and, thus, actually compensates for its effect. However, to what degree is
such an I-action actually suitable for reconstruction of input disturbances? In other words,
to what extent is it enough to simplify a PID controller design by setting the gains of the
P, I, and D actions (satisfying to Minorsky’s three-term controller) and to what extent are
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its properties determined by the overall controller structure (as in the case of the series PI
controller), which can be more complex then the parallel PI or PID controller?

After all, already in a very simplified situation with di = 1; Ks = 1; a = 0; w(t) = 1
and with an initial output y(0) = 0, e(0) = 1 and an initial value uI(0) = 0, we can point
out the problems. Due to Figure 4, the parallel I action

duI
dt

=
Kc

Ti
e(t), (44)

with uI(t) corresponding to an integral of the control error e(t) multiplied by a positive
gain, it will not decrease from u(0) = 0 to u = −1 (i.e., to the value compensating the
disturbance), until the output y(t) exceeds the reference setpoint value w. Just then e(t)
changes its sign, uI(t) can start to decrease. Despite the fact that for a compensation of di it
should decrease from t = 0. The meaningless initial uI(t) increase and the resulting output
overshooting can be avoided by using a pre-filter. However, this still does not clarify the
role of I-action in terms of disturbance reconstruction, because it does not explain, why it
starts to fall below zero, independently from the required final value d̂i = 1 (Figure 9 right).
In this aspect, the parallel PI controller differs significantly from all other DOB-based
methods, allowing a more transparent and efficient reconstruction and compensation of di.

Improper control error integration is further prolonged by limiting the control signal,
when a longer time is required to reach the setpoint value and to change the sign of e(t).
At this point, it should be noted that, when using a 1DOF PI controller, the essence of
the windup problem is the opposite increase in uI(t), as needed to compensate for the
disturbance, which even occurs without the limitations of the control action.

5.2. Windup Problems

Today, we do not know if the inventors of series PI and PID controllers really under-
stood their role in terms of reconstruction and compensation of disturbances, or fully relied
on intuition. We can only summarize that the series PI and PID controllers, which were
among the first separately tradable industrial controllers for simple plants, represented a
modular compact solution that used disturbance reconstruction based on a steady state
control signal value. Thanks to this physically and functionally clear interpretation, they
did not find the problems with the limitations of the control action. However, when, after
the discovery of digital computers, they began to be replaced by parallel discrete-time
controllers, implementing integration by summation, the problem of redundant (unwanted)
integration emerged, which led to transients with overshooting, or even instability. It is true
that digital controllers provide a number of simple options to prevent unwanted integration,
and various anti-windup methods have been developed, applicable to continuous-time
controllers [47–51]. However, in terms of the understanding, use, and teaching of automatic
control, it is always best to avoid unwanted phenomena.

5.3. Example 3: Hybrid and Discrete-Time PI Controllers

The advantages of revealing the functionality of series PI controllers are particu-
larly shown in the design of hybrid and dual-rate controllers containing discrete-time
blocks operating with a relatively large sampling period Tsamp and continuous-, or quasi-
continuous-time blocks, operating with a relatively short sampling period, or simulated
with a short simulation step Ts.

A discrete-time reconstruction of the input disturbance and its compensation by means
of positive feedback from the controller output mitigates the adverse effects of continuous
positive feedback (requiring an increase in the stabilization gain Kc, see Remark 5) by less
frequent re-calculation of offset values repeated with the sampling period Tsamp. Between
the sampling moments, the controller dynamics is limited to the stabilizing P control,
whereas the offset signal is constant. Hence, the P controller gain can ideally remain at the
lower value Kp (4) (calculated without the continuous positive feedback). This is especially
important when controlling systems with higher levels of measurement noise.



Symmetry 2022, 14, 640 21 of 26

Described in the z-transform by means of the relations

D̂i(z) = −
1− D f

z− D f
U(z); UI(z) = −D̂i(z); D f = e−Tsamp/Ti , (45)

this solution (corresponding to (16)) allows for a sufficiently large sampling period Tsamp to
stay with the proportional gain taken from (4), without needing to consider a feedforward
setpoint, when

u = Kp(w− y); Kp = (1/Tp − a)/Ks (46)

Thus, it also avoids the need to increase the stabilizing gain to Kc = (2/Tc − a)/Ks corre-
sponding to continuous PI controller (31), when requiring to get equally fast responses
with Tc = Tp.

For the sake of simplicity, so that we do not further increase the number of parameters,
let us choose Tsamp = Tp and first examine for a = a = 0 the influence of the Ti choice
on the shapes of transients, realizing in discrete-time only the disturbance reconstruction
and compensation. We will carry out the transient responses similarly as in Example 2,
under the permanent action of the input disturbance di = 1. The continuously working
P controller with a pre-filter (23) tuned for b = Tp = 0.15 will be simulated with the
simulation step Ts = 0.001. To show impact of control constraints, the proportional band
of control will be narrowed to u ∈ [−2, 0.5]. Figure 10 demonstrates that in specifying an
appropriate value of Ti one can rely on the settling time definition (see Definition 1 and
(27)). Obviously, to get nearly-monotonic setpoint step responses, it is enough to work with
a simple tuning Ti = 4Tp.

Figure 11 shows that this setting Ti = 4Tp (27) can be successfully used together with
the P controller (46) to control both the stable and the unstable systems. Smoothing of
the control signal can be achieved by including a zero-order holder in the proportional
channel. Obviously, this simple solution causes no windup and is particularly suitable for
implementation using an embedded control. Since the disturbance reconstruction runs
with a relatively long Ti, application of a longer sampling period Tsamp = Tp does not cause
a visible slow-down of the disturbance reconstruction process.

Because the simple P controller (46) does not include a feedforward setpoint and the
feedback from the system output derived for the API (35) is used, the total equivalent
disturbance (8) is reconstructed. However, an alternative solution could similarly be
designed based on a discrete-time alternative to (17).
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Figure 10. Responses of the loops with hybrid PI controller consisting of a continuous-time P controller
(4) with a prefilter (23) tuned for a = a = 0, Tp = 0.15, b = Tp extended with a disturbance feedforward
accomplished by a discrete-time positive controller feedback working with the sampling period
Tsamp = Tp and specified by the transfer function (1− D f )/(z− D f ), D f = e−Tsamp/Ti , Ti ∈ {3, 4, 5}Tp;
Ks = 1; di = 1; Ts = 0.001;
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(4) with a prefilter (23) tuned for a = a = 0, Tp = 0.15, b = Tp extended with a disturbance feedforward
accomplished by a discrete-time positive controller feedback working with the sampling period
Tsamp = Tp and specified by the transfer function (1− D f )/(z− D f ), D f = e−Tsamp/Ti , Ti ∈ {3, 4, 5}Tp;
Ks = 1; di = 1; Ts = 0.001;

Figure 10. Responses of the loops with hybrid PI controller consisting of a continuous-time P
controller (4) with a pre-filter (23) tuned for a = a = 0, Tp = 0.15, b = Tp extended with a disturbance
feedforward accomplished by a discrete-time positive controller feedback working with the sampling
period Tsamp = Tp and specified by the transfer function (1 − D f )/(z − D f ), D f = e−Tsamp/Ti ,
Ti ∈ {3, 4, 5}Tp; Ks = 1; di = 1; Ts = 0.001.

Figure 11. Responses of the loops with hybrid (dual-rate) PI controller consisting of a continuous-
time P controller u = Kpe, Kp = (1/Tp − a)/Ks with a pre-filter (23) tuned for a = a ∈ [−0.7, 0.7],
Tp = 0.15, b = Tp and extended with a discrete-time positive feedback (1− D f )/(z− D f ) working
with the sampling period Tsamp = Tp, D f = e−Tsamp/Ti , Ti = 4Tp (dotted) and the P controller followed
by the zero-order holder with Tsamp = Tp (full curves); Ks = 1; Ts = 0.001; di = 1.
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6. Possible Future Works

The integrator plus dead-time (IPDT) and the first-order time-delay (FOTD) models are
the most often used in practice; this is known from the experiences dealing with practical
applications (see, e.g., [12]) and from the literature [37,52] dealing with the design of PI and
PID controllers.

Although the extension of the main conclusions of this article regarding P, PI, or
DOB-PI controllers applied to IPDT models can already be deduced from previous pub-
lications [53,54], the new interpretation of PI, PID, and proportional integral derivative
accelerative (PIDA) controllers and their optimal analytical design for FOTD models we
have discussed in [55]. In addition, we have also discussed the design of PD and PID
controllers based on double-integrator plus dead-time (DIPDT) models, offering numerous
interesting applications in motion control and mechatronics in [56,57]. It was the exper-
imental results of controlling the unstable magnetic levitation system [58] that were the
immediate impetus for a more detailed analysis of PD and PID controllers as stabilizing
and disturbance–counteracting solutions. The achieved results should be analyzed in a
broader context, as in [13–20]. Nevertheless, the preliminary analysis of a much wider
sample of analytical and numerical settings of PI, PID, and PIDA controllers based on IPDT,
FOTD, and DIPDT models, allows us to declare that the proposed interpretation of the DOB
functionality included in these controllers helps significantly in understanding principles
of their optimal tuning. Thus, it can be used for further modifications and optimization of
their operations, taking into account various other limitations of the controller design and
establishing a unique research and educational framework to cover symmetrically all the
existing traditional, modern and postmodern controllers.

7. Conclusions

The paper shows that the series PI controllers, which represent a frequently used
item of three-term PID controllers, can be interpreted as P controllers with disturbance
feedforward using DOB-based reconstruction of input disturbances. The essence of the
included DOB activity is the evaluation of the steady value of the controller output, which,
in the case of integral systems, is equal to the negatively taken value of the input disturbance.
It means it is related to ultra-local (integral) linear plant models. Asymmetry of this
approach can be eliminated through careful work with two types of linear models, where
the article also reveals a hitherto unnoticed alternative to series PI controllers, tentatively
called augmented PI controllers (APIs). Their design is also based on a P controller with
disturbance feedforward and a steady state-based DOB consisting of a low-pass filter with
a long time constant Ti. However, in addition to the output of the controller, the output of
the system also enters the DOB.

In series PI and API controllers, the DOB is explicitly included as a part of the positive
feedback from the controller output through a low-pass filter with a time constant Ti. In
both cases, Ti should be substantially longer than the time constant Tp of the stabilized
transients. This basic requirement for Ti also explains the impossibility to speed up the
reconstruction of the disturbances and thus the speed of their compensation when using PI
and API controllers. Due to the nature of the disturbance reconstruction from the steady
values of the controller output, it is therefore impossible to speed up the reconstruction
processes by reducing Ti, which must remain significantly longer than the time constant of
transients with stabilizing P controller.

Understanding the nature of DOBs contained in PI controllers reveals why even with
the use of state-of-the-art artificial intelligence optimization methods and their dynamic
properties cannot be further enhanced by accelerating transients. However, it is possible
to decrease the PI gains to the level of the stabilizing P controller by a discrete-time
controller implementation.

As a novel contribution of the paper, it is possible to denote the interpretation of a
century-old series PI control (originally automatic reset), but also the brief analysis of its
basic features explained in terms of loop stabilization and disturbance compensation by
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counteracting signals achieved by a very simple DOB. Advantages of the new look at the
series PI control have been briefly demonstrated by an example of a possible discrete time
controller design capable of keeping the dynamics of the continuous-time PI controller
with decreased controller gains. This controller does not explore all aspects of the discrete-
time controller design and can be continued by numerous other solutions. The proposed
controller interpretation will also be expected to facilitate the unified, symmetrical, and
consistent classification, and more specified use of all possible disturbance compensation
solutions. At the same time, it brings new impetus to deeper and symmetrical research
regarding the use of two types of linear models.
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ADRC active disturbance rejection control
API augmented proportional integral
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IPDT integrator plus dead-time
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PID proportional integral derivative
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