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Abstract: Data envelopment analysis (DEA) is a non-parametric method for measuring the efficiencies
of decision-making units (DMUs) by using a set of inputs and a set of outputs. However, traditional
DEA models always assume that the inputs or outputs are independent of each other, which is
unrealistic in practical problems. To reflect the interactions between inputs or outputs, the Choquet
integral is employed in DEA models. The traditional DEA models are usually used to find some
specific input and output weights of DMUs to optimize the efficiency score of DMUs, but the
corresponding input and output weights for the optimal efficiency score of a DMU may not be
distributed symmetrically, that is to say, the space of weights may be different for different DMUs.
Instead of finding the self-efficiency score and the cross-efficiency score of a DMU in traditional
DEA models based on some specific input and output weights, stochastic multicriteria acceptability
analysis is used to explore the input or output evaluation space and weight space to calculate
the Choquet-integral-based acceptability indices of DMUs. The proposed method considers the
interactions between inputs or outputs, which can make more DMUs efficient and can also measure
the acceptability of a DMU to become an efficient one by exploring the supporting information space.
Examples are given to illustrate the proposed method.

Keywords: data envelopment analysis; stochastic multicriteria acceptability analysis; Choquet inte-
gral; interactions between variables

1. Introduction

Data envelopment analysis (DEA) [1] is a non-parametric method for measuring the
efficiencies of decision-making units (DMUs) by finding the most favorable inputs and
outputs for them. Such a self-evaluation can classify all the DMUs into efficient ones
and inefficient ones, but efficient DMUs are not further discriminated [2,3]. To enhance
the discrimination power of the original DEA, the cross-efficiency evaluation was then
developed to calculate the cross-efficiency scores of DMUs linked to all DMUs [4]. However,
the cross-efficiency evaluations obtained from the original DEA are generally not unique
due to the optimal solution to the DEA linear program not being unique. Sexton et al. [4]
and Doyle and Green [5] proposed the secondary goals (the aggressive and benevolent
formulations) to deal with this issue. Several authors [6,7] extended Doyle and Green’s
model by introducing a number of different secondary objective functions.

The above DEA models are focused on the calculation of the self-efficiency scores
or cross-efficiency scores of DMUs, which are based on some specific weight informa-
tion. However, the weight information space or the evaluation information space that
makes a DMU efficient is not distributed symmetrically. For two efficient DMUs, the corre-
sponding weight information space or evaluation information space is different, and the
efficient DMU with a bigger information space should be better than the one with a smaller
information space [8–10]. Therefore, the corresponding information space distributed
symmetrically can be used to discriminate efficient DMUs, which is not considered in the
classical DEA models. Stochastic multicriteria acceptability analysis (SMAA) [9] is used to
find the information space that supports each alternative for the best ranking. Lahdelma
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and Salminen [8] introduced the SMAA-2 method, which extends SMAA by considering
all the rankings in the analysis.

However, these methods are not suitable to deal with DEA problems. Lahdelma
and Salminen [10] presented the SMAA-DEA method, which is a combination of DEA
and SMAA-2 and is intended for evaluating the efficiencies of DMUs by exploring the
corresponding weight spaces, according to which, clearly efficient and barely efficient
DMUs can be identified. Yang et al. [11] considered all possible weights in the weight
space when computing the cross-efficiency, and each DMU was given an interval cross-
efficiency. By using the SMAA-2 method, all DMUs in the interval cross-efficiency matrix
could be fully ranked according to acceptability indices. However, in Lahdelma and
Salminen’s method [10] and Yang et al.’s method [11], the inputs and outputs of DMUs
were assumed to be independent of each other. By considering the interactions between
criteria, Angilella et al. [12,13] applied the Choquet integral [14] to the SMAA-2 method.

In most of the existing DEA methods, the inputs and outputs are assumed independent.
Actually, there exist interactions between inputs or outputs in many practical problems [15–17].
Recently, Ji et al. [18] and Xia and Chen [19] gave the efficiency evaluation model with
interactive inputs and outputs, in which the Choquet integral was used to aggregate
the multiple inputs and outputs into a single efficiency index. Pereira et al. [20] used a
Choquet-integral-based approach for incorporating decision-maker’s preference judgments
in DEA. Ji et al.’s [18] method and Xia and Chen’s [19] method were based on the CCR
model [1], while Pereira et al.’s [20] method was based on the value-based ADD model [21].
However, their method also has multiple solutions, and the calculated self-efficiency and
cross-efficiency scores of DMUs were also based on some specific input and output weight
vectors. Their method can identify the efficient and inefficient DMUs, but cannot further
identify which is better in the efficient DMUs. In addition, their method can only deal
with the DMUs with determined input and output evaluations, which is not common in
practical problems, because there always exists uncertainty, fuzziness, or randomness in
the process of estimating input and output evaluations due to its inherent stochastic nature
or specification errors [22,23].

Based on the above analysis, we can find that the DEA models taking into account the
interactive variables do not consider the information space when calculating the efficiency
scores of DMUs, while the DEA models taking into account the information space do not
consider the interactions between inputs and outputs. This paper fills this gap by using
the SMAA-2 method to deal with DEA models with interactive variables to explore the
information space that is favorable for a DMU at any ranking. In the process, the Choquet
integral is employed to reflect the interactions between inputs or outputs. The contributions
of this paper are given as follows:

(1) The proposed method gives a combined method, which not only considers the inter-
actions between inputs and outputs, but also can discriminate the efficient DMUs by
exploring the corresponding supported information space;

(2) Compared to the DEA models with interactive variables, the proposed method can
explore the information space that supports each DMU, which not only can discrimi-
nate the efficient DMUs, but also can give a ranking of efficient DMUs according to
the supported information space;

(3) Compared to the DEA models with interactive variables, the proposed method not
only can deal with the DEA problem with determined input and output evaluations,
but also can deal with the DEA problem, in which the weight vector and evaluations
of the input and output are stochastic;

(4) Compared to the DEA models with dependent input and output evaluations, the
proposed method can deal with the DEA problems in which the inputs and outputs
are interactive.

The remainder of this paper is constructed as follows: Section 2 introduces the Choquet-
based DEA models; Section 3 gives the CH-SMAA-DEA method to measure DMUs in
terms of rank acceptability indices, central weights, and confidence factors. Examples are
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given in Section 4 to compare the proposed method with the existing ones. Section 5 gives
the conclusions.

2. DEA Models Based on the Choquet Integral

Suppose there are m decision-making units (DMUs) with h inputs and s outputs. Let
xgi(g = 1, 2, · · · , h) and xri(r = h + 1, h + 2, · · · , h + s) be the input and output values of
DMUi, respectively. Let w̄g > 0(g = 1, 2, · · · , h) and w̄r > 0(r = h + 1, h + 2, · · · , h + s)
be the input and output weights, respectively. Then, the efficiency Ēi of DMUi can be
calculated by the ratio of its weighted score for the output criteria to its weighted score for
the input criteria:

Ēi(xi, w̄) =

h+s
∑

r=h+1
w̄rxri

h
∑

g=1
w̄gxgi

, i = 1, 2, · · · , m (1)

For convenience, let W̄ = {w̄ = (w̄1, w̄2, · · · , w̄h+s)|w̄j > 0, j = 1, 2, · · · , h + s}
be the set of input and output weight information and X = {(x1, x2, · · · , xm)T|xji >
0, i = 1, · · · , 2, m, j = 1, 2, · · · , h + s} be the set of all input and output evaluations with
xi = (x1i, x2i, · · · , x(h+s)i) being the evaluation vector corresponding to DMUi.

The DEA model aims to maximize each DMU’s self-efficiency score by finding the
most favorable weights, then the maximum efficiency score of DMUd can be calculated by
the following CCR model [1]:

( MOD 1) max Ēd = Ēd(x, w̄)

s.t. Ēi(xi, w̄) 6 1, i = 1, 2, · · · , m
w̄ ∈ W̄, xi ∈ X

Based on Equation (1), (MOD 1) can be written as the following linear programming
model:

(MOD 2) max
h+s

∑
r=h+1

w̄rxrd

s.t.
h
∑

g=1
w̄gxgd = 1

h+s
∑

r=h+1
w̄rxri 6

h
∑

g=1
w̄gxgi, i = 1, 2, · · · , m

w̄ ∈ W̄, xi ∈ X

Suppose the optimal value of (MOD 2) is denoted by Ē
′
d. If Ē

′
d = 1, then DMUi is

efficient in the CCR model [1]. (MOD 2) is a self-efficiency model, which can identify
the efficient DMUs, but cannot further discriminate between efficient DMUs. The cross-
efficiency is defined by considering all the DMUs. For DMUd(d = 1, 2, · · · , n), a group of
optimal weights w̄∗gd, g = 1, 2, · · · , h and w̄∗rd, r = h + 1, h + 2, · · · , h + s can be obtained by
solving (MOD 1), and its cross-efficiency of DMUi to DMUd, namely Ēdi, can be calculated
by using the weights of DMUd.

Ēdi =

h+s
∑

r=h+1
w̄∗rdxri

h
∑

g=1
w̄∗gdxgi

, d, i = 1, 2, · · · , m (2)
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Then, the average of all Ēdi(d = 1, 2, · · · , n) can be calculated as:

CEi =
1
m

m

∑
d=1

Ēdi, (i = 1, 2, · · · , m) (3)

which is called the cross-efficiency score of DMUi.
It is noticed that (MOD 1) may have multiple optimal solutions, and the cross-efficiency

calculated by Equation (3) is referred to as an arbitrary strategy. To resolve this problem,
one remedy suggested by Sexton et al. [4] is to introduce a secondary goal to choose the
one from multiple optimal solutions while keeping the self-efficiency obtained by (MOD 2)
unchanged. Many other strategies [5,6,24,25] have also been developed about the secondary
goal. However, when different strategies are used, different results may be obtained.

It is noted that the classical DEA models assume that the inputs and outputs are
independent. However, many authors [13,18] showed that there are interactions between
inputs or outputs. The Choquet integral [14] is the generally used technique to reflect
the interactions between criteria. Before introducing the concept of the Choquet integral,
several definitions are given first:

Definition 1 ([26]). A fuzzy measure µ on Y = {y1, y2, · · · , yn} is a function µ: P(Y)→ [0, 1],
satisfying the axioms: (i) µ(ϕ) = 0; (ii) A ⊂ B ⊂ Y implies µ(A) 6 µ(B).

Definition 2 ([14]). Let f be a positive real-valued function on Y = {y1, y2, · · · , yn} and µ be a
fuzzy measure on Y. The discrete Choquet integral of a function f : Y → R+ with respect to µ is
defined by:

cµ =
n
∑

i=1
(µ(A(i))− µ(A(i+1))) f (y(i))

where (i) indicates that the indices have been permuted so that 0 6 f (y(1)) 6 · · · 6 f (y(n)), and
A(i) = {y(i), · · · , y(n)} is the set of y(k), k = i, · · · , n, and let A(n+1) = ϕ here.

As the Choquet integral takes into account the interactions between criteria, Ji et al. [18]
utilized it to aggregate the input and output evaluations of DMUi:

Ei(xi, µ) =

h+s
∑

r=h+1
(µ(Bρ(r))− µ(Bρ(r+1)))xρ(r)i

h
∑

g=1
(µ(Aσ(g))− µ(Aσ(g+1)))xσ(g)i

(4)

where σ(r) indicates that the indices have been permuted so that 0 6 xσ(1)i 6 · · · 6 xσ(h)i,
Aσ(i) = {yσ(i), · · · , yσ(h)} is the set of yσ(k), k = i, · · · , h and A(h+1) = ϕ and ρ(r) indicates
that the indices have been permuted so that 0 6 xρ(h+1)i 6 · · · 6 xρ(h+s)i and Bρ(i) =
{yρ(i), · · · , yρ(h+s)} is the set of yρ(k), k = i, · · · , h + s and B(h+s+1) = ϕ.

For DMU 1 and DMU 20 in Example 2 (see Table A5), we have:

E1(x1, µ) = 181(µ(y4,y5)−µ(y5))+231µ(y5)
236(µ(y1,y2,y3)−µ(y2,y3))+266(µ(y2,y3)−µ(y3))+302µ(y3)

and:

E20(x20, µ) = 191(µ(y5,y4)−µ(y4))+232µ(y4)
269(µ(y2,y1,y3)−µ(y1,y3))+298(µ(y1,y3)−µ(y3))+338µ(y3)

However, it is noted that the input and output evaluations of DMUs should be ordered
before being aggregated. Therefore, it is not convenient when there are many input and
output evaluations to be ordered. Especially when the input and output evaluations are not
expressed exactly, it is hard to give an exact order. In addition, if there are two DMUs and
the orders of their input and output evaluations are not the same, then the corresponding
weight vectors associated with these two DMUs are not the same. This means that we have
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to determine the corresponding weight vector for each DMU, which makes it difficult in
modeling and calculation, especially when the fuzzy measures are unknown and should
be determined from the known information.

To deal with such issues, another form of the Choquet integral can be defined in the
following.

Definition 3 ([27–29]). The Möbius transform of µ is a function on Y = {y1, y2, · · · , yn} defined
as η(A) = ∑

B⊂A
(−1)|A\B|µ(B), ∀A ⊂ Y; A\B is the set of elements in A excluding the elements

in B; |A\B| is the cardinality of A\B.

In terms of Möbius representation, (i) and (ii) can be represented by [27,28]: (iii)
η(ϕ) = 0; (iv) ∀i ∈ Y and ∀S ⊆ Y\{i}, ∑

T⊆S
η(T ∪ {i}) > 0, where S is the subset of Y

excluding i and T is the subset of S.
The Choquet integral can be redefined in terms of the Möbius representation, without

reordering the aggregated values [27,28,30]:

Definition 4 ([27,28,30]). With respect to the Möbius representation, the Choquet integral defined
in Definition 2 can be rewritten as:

cm = ∑
T⊆N

η(T)min
i∈T
{ f (yi)} (5)

where η(ϕ) = 0, ∑
T⊆N

η(T) = 1, ∀i ∈ N, ∀S ⊆ N\{i}, ∑
T⊆S

η(T ∪ {i}) > 0, and N =

{1, 2, · · · , n}.

Different from Definition 2, Definition 4 does not have to reorder the aggregated
arguments, and the weight vector is associated with the aggregated arguments, but not the
position, and therefore would be easy to use. In Definition 4, for any two alternatives, the
corresponding weight vectors are the same, which provides much convenience in deriving
the unknown weight vector.

Let H = {1, 2, · · · , h}, S = {h + 1, h + 2, · · · , h + s}, wT = η(T), T ⊆ NorS and W ′ be
the set of input and output weight information with interactions, then:

W ′ =

{
w = {wG, G ⊆ H, wR, R ⊆ S}|wϕ = 0, ∑

G⊆H′
wG∪{i} > 0, ∀i ∈ H, ∀H

′ ⊆ H\{i};

∑
R⊆S′

wR∪{i} > 0, ∀i ∈ S, ∀S
′ ⊆ S\{i}

}

where W ′ includes the input weights and output weights with interactions between each
other, respectively.

By considering the interactions between inputs or between outputs, the efficiency of
DMUi can be written as [19]

Ei(xi, w) =

∑
R⊆S

wR min
r∈R
{xri}

∑
G⊆H

wG min
g∈G
{xgi}

(6)

In Example 2, take DMU 1 and DMU 20 as an example (see Table A5); we have:

E1(x1, w) =
181w4+232w5+181w{4,5}

236w1+266w2+302w3+236w{1,2}+236w{1,3}+266w{2,3}+236w{1,2,3}

E20(x20, w) =
232w4+191w5+191w{4,5}

298w1+269w2+338w3+269w{1,2}+298w{1,3}+269w{2,3}+269w{1,2,3}
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It is noted that, when calculating the efficiency scores of DMUs, we do not have
to reorder the aggregated input and output evaluations, and the corresponding input
and output weight vectors will not change as the DMU changes, which provides much
convenience in modeling and calculation.

The difference between Equation (6) and Equation (1) is that the former considers
the interactions between inputs or outputs, but the latter does not. Especially, if the
interactions between inputs or outputs are not considered, that is wT = 0, t > 2, where t
is the cardinality of the coalition T and t = |T|, then Equation (6) reduces to Equation (1).
Comparing Equation (6) with Equation (4) given by [18], both of them are based on the
Choquet integral and can be converted between each other; this is because Definition
2 and Definition 4 can be converted between each other. However, they are based on
different forms of the Choquet integral: Ji et al.’s model [18] is based on Definition 2, while
Equation (6) is based on Definition 4. The most important is that Equation (6) does not
have to reorder the input or output evaluations and the corresponding input and output
weight vectors will not change as the DMUs change, which provides much convenience in
the process of deriving the efficiency scores of DMUs.

Based on Equation (3) and (MOD 2), the DEA model considering interactions between
inputs and outputs can be established as [19]:

(MOD 3) max ∑
R⊆S

wR min
r∈R
{xrd}

s.t. ∑
G⊆H

wG min
g∈G
{xgd} = 1

∑
R⊆S

wR min
r∈R
{xri} 6 ∑

G⊆H
wG min

g∈G
{xgi}, i = 1, 2, · · · , m

w ∈W ′, xi ∈ X

where w = {wG, G ⊆ H, wR, R ⊆ S} ∈ W ′ is the Choquet integral input and output
weights associated with DMUd. Since x is determined, (MOD 3) is linear. Similar to (MOD
2), the solution of (MOD 3) may not be unique. By solving (MOD 3) using Lingo 14, we
obtain a set of optimal input and output interactive weights w∗d ∈ W ′ for each DMUd.
In (MOD 3), each DMU is self-evaluated and termed efficient if and only if the optimal
objective function is equal to 1. The cross-efficiency of DMUi using the weights of DMUd,
namely Edi, can be calculated as:

Edi =

∑
R⊆S

w∗Rd min
r∈R
{xri}

∑
G⊆H

w∗Gd min
g∈G
{xgi}

, d, i = 1, 2, · · · , m (7)

For DMUi, the average of all Edi, namely CEi, can be considered as the cross-efficiency
score of DMUi:

CEi =
1
m

m

∑
d=1

Edi, i = 1, 2, · · · , m (8)

Suppose the optimal value of (MOD 3) is denoted by E
′
i . By comparing (MOD 2) and

(MOD 3), it is noted that all the feasible solutions of (MOD 2) are also those of (MOD 3),
which indicates that the feasible region of (MOD 3) is not smaller than that of (MOD 2).
Therefore, the optimal solution of (MOD 3), E

′
i , is not smaller than that of (MOD 2), Ē

′
i , that

is E
′
i > Ē

′
i . That is because (MOD 3) takes into account the interactions between inputs and

outputs, while (MOD 2) does not. Especially, if wT = 0, t > 2, then (MOD 3) reduces to
(MOD 2), and Equation (8) reduces to Equation (3).

It has been proven that Definitions 2 and 4 can be transformed between each other;
therefore, Xia and Chen’s model [19] based on Definition 4 is equivalent to the one given
by Ji et al. [18], which is based on Definition 2. The only difference is that Xia and Chen’s
model [19] does not have to reorder the input and output evaluations when aggregating
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them, and the corresponding input and output weight vectors will remain unchanged with
different DMUs. We denote the Choquet-integral-based DEA model as CH-DEA hereafter.

However, the disadvantage of (MOD 2) and (MOD 3) is that they can only discriminate
efficient DMUs from inefficient ones, but cannot further identify between efficient ones.
Although the cross-efficiency scores calculated by Equations (3) and (8) can give a ranking of
DMUs, different results may be obtained when the input and output weights are calculated
by using different strategies. Actually, self-efficiency scores and cross-efficiency scores
are all based on some specific weight vectors and do not consider the whole set of the
information space. In addition, neither of them can provide the acceptability of an efficient
DMU. For two efficient DMUs, one may correspond to a large space of weight information,
and the other may correspond to a smaller one, which indicates the former should be better
than the latter. Therefore, these two efficient DMUs should be discriminated, which will be
discussed in the following section.

3. SMAA-DEA Based on the Choquet Integral

By exploring the corresponding information spaces of DMUs, Lahdelma and Salmi-
nen [10] presented the SMAA-DEA method, in which the DMUs are evaluated by using
several indices including the acceptability index, the central weight vector, the confidence
factor, the maximum efficiency, the central efficiency, and the average efficiency. However,
their method does not consider the interactions between inputs or outputs. In this section,
the Choquet-integral-based SMAA-DEA method (CH-SMAA-DEA) is proposed to explore
the information space of each DMU by taking into account the interactions between inputs
or outputs.

In DEA models, suppose the input and output evaluations of DMUi are represented by
the stochastic variables ξ ji(j = 1, 2, · · · , h, h+ 1, · · · , h+ s) with the probability distribution
f (ξ) over the space X ⊆ Rm×(h+s). Similarly, the decision-makers’ unknown or partially
known preference about the input and output weights is represented by a stochastic weight
vector w with joint density function f (w) in the feasible input and output weight space W.
f (w) can be given by the decision-makers; we assumed that it is an independent uniform
distribution in this paper. In the SMAA-DEA method, the input and output weights
are normalized to give a finite information space for simple computation. Similarly, the
Choquet-based input and output weights in space W are also normalized, respectively, as:

W =

{
w = {wG, G ⊆ H, wR, R ⊆ S}|wϕ = 0, ∑

R⊆S
wR = 1, ∑

R⊆S′
wR∪{i} > 0, ∀i ∈ S, ∀S

′ ⊆ S\{i};

∑
G⊆H

wG = 1, ∑
G⊆H′

wG∪{i} > 0, ∀i ∈ H, ∀H
′ ⊆ H\{i}

}

For each ξ in X and each w in W, the efficient score u′(i, ξ, w) of DMUi can be denoted
by the following formula:

u
′
(i, ξ, w) =

∑
R⊆S

wR min
r∈R

ξri

∑
G⊆H

wG min
g∈G

ξgi
(9)

One difference between Equations (6) and (9) is that the input and output evaluations
are determined in Equation (6), while they are stochastic in Equation (9). When the input
and output evaluations are determined in Equation (9), the difference between Equations (6)
and (9) is that the input and output weights are respectively normalized in Equation (9), but
are not in Equation (6). For a DMU, the biggest efficiency score derived from Equation (6)
is 1, but may not be 1 in Equation (9). To deal with such a situation, we first normalize the
values of u

′
(i, ξ, w) into the interval [0, 1], that is:

u(i, ξ, w) = u
′
(i, ξ, w)/ max

k=1,2,··· ,m
{u′(k, ξ, w)}
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For each ξ in X and each w in W, u(i, ξ, w) provides a complete ranking of alternatives,
then the rank of DMUi is denoted by:

rank(i, ξ, w) = 1 + ∑
k 6=i

ρ(u(k, ξ, w) > u(i, ξ, w)) (10)

where ρ(true) = 1 and ρ( f alse) = 0.
For each ξ ∈ X, suppose DMUi ranks rth; we can compute the set of the possible input

and output weight space based on SMAA-2 [8]:

Wr
i (ξ) = {w ∈W, rank(i, ξ, w) = r} (11)

which is called the favorable weights of DMUi ranking rth. Wr
i (ξ) contains all the input

and output weights that make DMUi rank rth. It is noted that Wr
i (ξ) is distributed asym-

metrically. If Wr
i (ξ) 6= 0, then it is possible that DMUi ranks rth, and the bigger the space

Wr
i (ξ), the bigger the likelihood that DMUi ranks rth for ξ ∈ X. Considering all the ξ in X,

an index can be given to measure the acceptability of DMUi ranking rth.
On the basis of the favorable weight information space Wr

i (ξ) and all input and output
evaluations ξ ∈ X, the Choquet-integral-based acceptability index for DMUi ranking rth is
given as:

br
i =

∫
ξ∈X

fX(ξ)
∫

w∈Wr
i (ξ)

fW(w)dwdξ (12)

which is described by the shared information space that supports DMUi ranking rth over
all the information space; in particular, b1

i measures the shared information space making
DMUi the most preferred one. If b1

i 6= 0, then DMUi is efficient according to the CCR model;
otherwise, DMUi is not. The bigger the b1

i , the more efficient DMUi is. Therefore, b1
i can not

only discriminate the efficient DMUs, but also can measure the acceptability of efficiency.
For efficient DMUs, to describe which weight vector supports DMUi ranking first, the

Choquet-integral-based central weight vector can be defined as:

wc
i =

1
b1

i

∫
ξ∈X

fX(ξ)
∫

w∈W1
i (ξ)

fW(w)wdwdξ (13)

The Choquet-integral-based central weight vector describes the preference of a typical
weight vector that makes DMUi the most preferred one, which can help decision-makers
understand which weights support which alternative. For inefficient DMUs, we have
b1

i = 0; suppose their Choquet-integral-based central weight vector is that which makes
them attain their maximum efficiency or attain their best rank r∗i , that is:

wc
i =

1

b
r∗i
i

∫
ξ∈X

fX(ξ)
∫

w∈W
r∗i
i (ξ)

fW(w)wdwdξ (14)

Based on the Choquet-integral-based central weight vector, the Choquet-integral-based
confidence factor is defined as:

pc
i =

∫
ξ∈X:w∈W1

i (ξ)
f (ξ)dξ

which measures the likelihood of DMUi becoming the best one when the Choquet-integral-
based central weight vector is used.

It is noted that the above measures are all based on the calculation of the information
space for supporting DMUs. Except for the above indices, the following stochastic efficiency
measures can be defined to reflect the efficiencies of DMUs from different views.

The Choquet-integral-based maximum efficiency Emax
i is the best efficiency score for

DMUi and can be calculated by maximizing the efficiency score over all the stochastic
evaluation values and weight values.

Emax
i = max

ξ∈X
max
w∈W

u(ξi, ξ, w)
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The process to calculate the Choquet-integral-based maximum efficiency is to find the
most favorable evaluations and weights for a DMU.

The Choquet-integral-based central efficiency Ec
i is the expected efficiency score of

DMUi when the Choquet-integral-based central weight vector is used:

Ec
i =

∫
ξ∈X f (ξ)u(ξi, ξ, wc

i )dξ

which can estimate the average performance of a DMU when the most favorable weight
vector is used.

The Choquet-integral-based average efficiency Eave
i is the Choquet-integral-based

expected efficiency score of DMUi over all the stochastic evaluation values and weights:

Eave
i =

∫
ξ∈X f (ξ)

∫
w∈W f (w)u(ξi, ξ, w)dwdξ

According to Eave
i , the average performance of DMUi can be estimated when all

possible evaluations and weights are considered. The flowchart of the proposed method is
illustrated in Figure A1 in Appendix A.

Ji et al. [18] calculated the self-efficiencies and cross-efficiencies of DMUs considering
the interactions between inputs and outputs. However, their method has multiple solutions,
and the calculated self-efficiency and cross-efficiency scores of DMUs are based on some
specific input and output weight vectors. Their method can identify the efficient and
inefficient DMUs, but cannot provide the acceptability of efficient DMUs. Although the
cross-efficiencies of DMUs can distinguish efficient DMUs, different optimal input and
output weights will produce different cross-efficiencies of DMUs, which will produce
different results in distinguishing efficient DMUs. In addition, their method can only deal
with the DMUs with determined input and output evaluations and will be invalid when
the input and output evaluations are uncertain.

Lahdelma and Salminen [10] developed the SMAA-DEA method to derive the accept-
ability indices of DMUs by exploring the information space that supports the ranking of
DMUs, but they did not consider the interactions between inputs or outputs. Especially, if
the interactions between inputs or outputs are not considered, that is wT = 0, t > 2, then
the proposed method reduces to Lahdelma and Salminen’s method [10] and the proposed
indices reduce to the ones defined by Lahdelma and Salminen [10].

4. Examples

In this section, two examples are given to compare the proposed methods with the
ones given by Lahdelma and Salminen [10] and Ji et al. [18].

Example 1 ([10]). Consider eight DMUs A, B, C, D, E, F, G, and H with one input and two
outputs as listed in Table A1.

Lahdelma and Salminen [10] assumed that there was no interaction between inputs
and outputs. As discussed in the Introduction, it is reasonable to assume that the there
exist interactions between inputs and outputs, which is also the assumption in this paper.

First, we treat the problem as deterministic. SMAA-DEA [10] and CH-SMAA-DEA
were implemented by Monte Carlo simulation in the MATLAB environment. The results
obtained by the classical DEA model [1], the SMAA-DEA [10], the CH-DEA [18], and the
CH-SMAA-DEA are given in Table A2. Based on the optimal weights (w̄ and w) and the
efficiency scores (Ē

′
i and E

′
i) obtained by the DEA and CH-DEA methods, we can find that

A, B, C, and D are all efficient DMUs, but the DEA and CH-DEA method cannot further
describe which is better. Based on the acceptability indices (ai) and the confidence factors
(pc

i ) obtained by the SMAA-DEA and CH-SMAA-DEA methods, it is shown that SMAA-
DEA identified A, B, and C as efficient DMUs with 100% confidence and acceptability
indices 33%, 38%, and 29%, correspondingly, while CH-SMAA-DEA identified A, B, and
C as efficient DMUs with 100% confidence and acceptability indices 13%, 77%, and 10%,
correspondingly. It is obvious that the deviation of the acceptability indices between the
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efficient DMUs (A, B, and C) obtained by CH-SMAA-DEA was bigger than that obtained by
SMAA-DEA, which indicates that the CH-SMAA-DEA method has better discriminability
than the SMAA-DEA method. It was found that B has the highest acceptability both in
the SMAA-DEA and the CH-SMAA-DEA method. Further, the values of the maximum,
central, and average efficiencies (Emax

i , Ec
i , and Eave

i ) obtained by CH-SMAA-DEA were not
smaller than those obtained by SMAA-DEA, that is because CH-SMAA-DEA considers the
interactions between inputs or outputs and can provide better results.

Next, we introduce uncertainty to the problem in Example 1. The inputs are accurate,
but the outputs follow an independent uniform distribution f (ξij) in the range [xij −
∆xij, xij + ∆xij] with ∆xij = 0.5. Ji et al.’s method [18] will be invalid in this situation,
because their method is only used for the DEA problems with determined input and
output values. The rank acceptability indices obtained by SMAA-DEA and CH-SMAA-
DEA are illustrated in Table A3; here, ai = b1

i . We can find that A, B, C, D, and E are
classified as efficient DMUs by both SMAA-DEA and CH-SMAA-DEA, and B has the
highest acceptability, while F has the lowest one. However, the ranking acceptability indices
are different by using SMAA-DEA and CH-SMAA-DEA; for example, the acceptability of B
is 36% by SMAA-DEA, which is slightly bigger that of A with 33%, while the acceptability
of B is 74% by CH-SMAA-DEA, which is much bigger than other ones. The acceptability of
F is 0.05% by SMAA-DEA and 0.00015% by CH-SMAA-DEA, which shows that CH-SMAA-
DEA can discriminate the efficient DMUs better than SMAA-DEA.

The central weight vector (wc
i ), confidence factors (pc

i ), and maximum, central, and
average efficiencies (Emax

i , Ec
i , Eave

i ) obtained by SMAA-DEA and CH-SMAA-DEA are
listed in Table A4, from which it was found that most of the values of the maximum, central,
and average efficiencies obtained by CH-SMAA-DEA are not smaller than those obtained
by SMAA-DEA. This is because CH-SMAA-DEA considers the interactions between inputs
and outputs, which can enlarge the information space.

Example 2 ([18]). The Community Health Center (DMU) of Hebei Province in China was eval-
uated. The evaluated input indices were the public expenditure (CNY 10,000 Yuan), the number
of medical staff, and the fixed assets (CNY 10,000); the output indices were the number of medical
services (thousands) (including inpatient service and childhood immunization) and the number of
managed of chronic diseases (thousands). The data are shown in Table A5.

Ji et al. [18] assumed that there exist low the interactions (correlations) between the
input (output) variables, but they did not give the evidence to show that the interactions
between input (output) variables are low. It is usually known that there exist interactions
between inputs and outputs, but it is not easy to give exactly the interactions between them.
Therefore, we assumed that there exist interactions between inputs and outputs, but we do
not know whether the interactions are low or high.

The results obtained by the CCR, CH-CCR, SMAA-DEA, and CH-SMAA-DEA meth-
ods are listed in Table A6, from which we can find that DMUs 2, 3, 6, 9, 10, 12, 16, 18, 19, and
20 were classified as efficient DMUs by the CCR, CH-CCR, SMAA-DEA, and CH-SMAA-
DEA methods. DMU 18 was efficient by CCR and CH-CCR methods and was almost
efficient by the SMAA-DEA and CH-SMAA-DEA methods with maximum efficiency scores
of 0.9997 and 0.9963, respectively. This may be because CCR and CH-CCR calculate the
efficiency scores of DMUs based on the optimization programming with the whole feasible
region, while SMAA-DEA and CH-SMAA-DEA derive the maximum efficiency scores
of DMUs based on Monte Carlo simulation, which is a sampling analysis. SMAA-DEA
and CH-SMAA-DEA can measure DMUs from different views, such as confidence factors,
maximum efficiencies, confidence efficiencies, and average efficiencies, while CCR and
CH-CCR measure DMUs based on self-efficiency scores and cross-efficiency scores. Most
of the results obtained by CH-CCR were not smaller than those obtained by CCR, and most
of the values of pc

i , Emax
i , Ec

i , and Eave
i obtained by CH-SMAA-DEA were not smaller than

those obtained by SMAA-DEA.
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It was found that the measures in Table A6, i.e., Ei, Emax
i , and Ec

i , can classify DMUs
into efficient and inefficient ones, but cannot further discriminate between efficient ones,
and the measures CEi and Eave

i can give a ranking of DMUs, but cannot identify which
DMU is efficient. All of the measures in Table A6 cannot give the acceptability of an efficient
DMU. Then, the rank acceptability indices of DMUs were calculated by CH-SMAA-DEA
and SMAA-DEA, and are listed in Tables A7 and A8 and Figures A2 and A3, and the central
weight vectors are listed in Table A9. From the data, we can find that DMUs 2, 3, 6, 9, 10, 12,
16, 18, 19, and 20 are efficient DMUs with different rank acceptability indices; DMU 10 had
the biggest acceptability 62% by CH-SMAA-DEA and 48% by SMAA-DEA; DMU 3 had the
smallest acceptability 0.001% by CH-SMAA-DEA; DMU 9 had the smallest acceptability
0.003% by SMAA-DEA. The results showed that CH-SMAA-DEA can discriminate the
efficient DMUs better than SMAA-DEA. In other rankings, the acceptability indices of
DMUs obtained by CH-SMAA-DEA and SMAA-DEA were different. For example, DMU
14 had the highest acceptability with 18% for ranking sixth by CH-SMAA-DEA, but DMU 1
had the highest acceptability with 35% for ranking sixth by SMAA-DEA.

5. Conclusions

This paper investigated DEA with interactive inputs and outputs by SMAA. The
CH-DEA model was introduced to reflect the interactions between inputs or outputs. To
discriminate efficient DMUs, the SMAA method was used to explore the information space
that supports the ranking of DMUs. To give a further analysis, several indices were defined
to compare different DMUs, such as the Choquet-integral-based acceptability index, the
Choquet-integral-based confidence factor, and the Choquet-integral-based central weight
vector, which describe the DMUs based on the statistic analysis, the Choquet-integral-based
maximum efficiency score, the Choquet-integral-based confidence efficiency score, and the
Choquet-integral-based average efficiency score, which describe the DMUs based on the
optimal analysis. Examples were given to compare the proposed method with the existing
ones. Compared to the SMAA-DEA method, the CH-SMAA-DEA method can better
discriminate DMUs by considering the interactions between inputs or outputs. Compared
to the CH-DEA method, the proposed method can deal with the stochastic situation and
propose the acceptability indices of efficient DMUs by exploring the information space
supporting each of them. The disadvantage of the proposed method is that it may need
more computation, but it can provide more information for the decision-makers. In the
future, we will investigate the algorithms for CH-SMAA-DEA to reduce the computation
and improve the accuracy.

Funding: This paper was supported by the National Social Science Foundation of China (No.
18ZDA086) and the Beijing Natural Science Foundation (Nos. M21025 and 7192107).

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. DMUs and their inputs and outputs.

DMU Input 1 Output 1 Output 2

A 1 3 9
B 1 7 7
C 1 9 2
D 1 9 1
E 1 7 6
F 1 3 8
G 1 8 1
H 1 5 6
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Table A2. Different measure indices obtained by DEA and CH-SMAA-DEA.

DEA SMAA-DEA CH-DEA CH-SMAA-DEA

w̄1 w̄2 w̄3 Ē
′
i ai pc

i Emax
i Ec

i Eave
i w1 w2 w3 w23 E

′
i ai pc

i Emax
i Ec

i Eave
i

A 1 0.05 0.10 1 33 100 1 1 0.79 1 0.0001 0.11 0 1 13 100 1 1 0.80
B 1 0.05 0.10 1 38 100 1 1 0.93 1 0.0001 0.0001 0.14 1 77 100 1 1 0.93
C 1 0.10 0.04 1 29 100 1 1 0.73 1 0.11 0.0001 0 1 10 100 1 1 0.76
D 1 0.11 0.0001 1.00 0 0 1.00 1.00 0.66 1 0.11 0.04 0 1 0 0 1 1 0.69
E 1 0.10 0.04 0.96 0 0 0.96 0.96 0.86 1 0.1 0.0001 0.04 0.96 0 0 0.96 0.96 0.86
F 1 0.05 0.10 0.90 0 0 0.90 0.90 0.73 1 0.0001 0.1 0.05 0.90 0 0 0.90 0.90 0.74
G 1 0.11 0.0001 0.89 0 0 0.89 0.89 0.60 1 0.11 0.0001 0 0.89 0 0 0.89 0.89 0.62
H 1 0.05 0.10 0.81 0 0 0.81 0.81 0.73 1 0.0001 0.1 0.05 0.81 0 0 0.81 0.81 0.73

Table A3. Rank acceptability obtained by SMAA-DEA and CH-SMAA-DEA.

SMAA-DEA CH-SMAA-DEA

b1 b2 b3 b4 b5 b6 b7 b8 b1 b2 b3 b4 b5 b6 b7 b8

A 33 9 10 3 3 3 26 12 14 10 18 20 11 8 13 6
B 36 19 28 10 7 0 0 0 74 10 8 4 2 1 0 0
C 19 14 12 5 2 48 1 0 6 6 16 15 9 49 1 0
D 10 16 5 12 2 3 40 12 3 5 3 10 11 7 47 14
E 2 23 18 40 18 0 0 0 3 64 12 14 5 2 1 0
F 0.05 20 14 14 4 3 15 30 0.00015 5 7 17 29 11 13 17
G 0 0 13 5 19 3 15 46 0 0 3 2 8 10 20 56
H 0 0 0 11 44 40 3 0 0 0 32 19 25 12 5 7

Note: The numbers in bold indicate the biggest acceptability indices.

Table A4. The central weights, confidence factors, maximum efficiency, central efficiency, and average
efficiency of DMUs.

SMAA-DEA CH-SMAA-DEA

w̄1 w̄2 w̄3 pc
i Emax

i Ec
i Eave

i w1 w2 w3 w23 pc
i Emax

i Ec
i Eave

i

A 1 0.17 0.83 99.8 1 0.99999 0.79 1 0.4235 0.8391 −0.2626 99.4907 1 1.0000 0.7881
B 1 0.52 0.48 95 1 0.999 0.92 1 0.3531 0.3405 0.3064 98.4421 1 0.9998 0.9326
C 1 0.84 0.16 67 1 0.99 0.72 1 0.8507 0.4194 −0.2702 68.6795 1 0.9912 0.7205
D 1 0.88 0.12 38 1 0.97 0.66 1 0.8909 0.4403 −0.3312 36.2799 1 0.9733 0.6521
E 1 0.61 0.39 10 1 0.94 0.86 1 0.5719 0.2800 0.1481 6.8233 1 0.9366 0.8651
F 1 0.25 0.75 0.3 1 0.90 0.72 1 0.3464 0.7756 −0.1219 0.3187 1 0.8998 0.7236
G 1 0.9991 0.0009 0 0.99 0.87 0.59 1 0.9812 0.2856 −0.2668 0 0.9936 0.8703 0.5875
H 1 0.33 0.67 0 0.92 0.80 0.72 1 0.1975 0.6271 0.1754 0 0.9293 0.8002 0.7316

Table A5. DMUs and their inputs and outputs.

DMU Input 1 Input 2 Input 3 Output 1 Output 2

1 236 266 302 181 231
2 254 229 269 164 239
3 379 213 268 179 176
4 308 306 366 221 222
5 312 260 332 188 221
6 298 398 279 211 311
7 286 329 368 231 267
8 279 306 399 198 243
9 305 332 297 238 275

10 288 309 308 243 292
11 246 336 332 190 242
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Table A5. Cont.

DMU Input 1 Input 2 Input 3 Output 1 Output 2

12 214 320 309 188 283
13 269 303 298 209 204
14 288 296 336 194 268
15 332 380 312 203 235
16 268 288 359 239 206
17 256 269 378 216 173
18 299 271 319 228 188
19 245 332 277 231 219
20 298 269 338 232 191

Table A6. Results obtained by different models.

DMU CCR CH-CCR SMAA-DEA CH-SMAA-DEA

1 0.92449 0.79411 (8) 0.92491 0.84765 (8) 0 0.9231 0.9231 0.8448 (7) 0 0.9261 0.9261 0.8547 (7)
2 1 0.81906 (5) 1 0.87617 (5) 100 1.0000 1.0000 0.8818 (5) 100 1.0000 1.0000 0.8894 (5)
3 1 0.82673 (4) 1 0.88293 (4) 100 1.0000 1.0000 0.6964 (20) 100 1.0000 1.0000 0.7022 (20)
4 0.87827 0.72672 (16) 0.91799 0.80108 (16) 0 0.8777 0.8777 0.7489 (16) 0 0.9111 0.9111 0.7616 (15)
5 0.87934 0.72156 (17) 0.91372 0.79985 (17) 0 0.9098 0.9098 0.7490 (15) 0 0.9065 0.9065 0.7529 (17)
6 1 0.76411 (13) 1 0.82717 (13) 100 1.0000 1.0000 0.8835 (4) 100 1.0000 1.0000 0.9004 (4)
7 0.93242 0.79292 (9) 0.942698 0.84666 (9) 0 0.9302 0.9302 0.8367 (8) 0 0.9344 0.9344 0.8455 (8)
8 0.84351 0.71915 (18) 0.842796 0.78986 (18) 0 0.8426 0.8426 0.7417 (17) 0 0.8433 0.8433 0.7546 (16)
9 1 0.82856 (3) 1 0.88653 (3) 100 1.0000 1.0000 0.9066 (3) 100 1.0000 1.0000 0.9186 (3)

10 1 0.90077 (1) 1 0.96356 (1) 100 1.0000 1.0000 0.9744 (1) 100 1.0000 1.0000 0.9833 (1)
11 0.86797 0.71865 (19) 0.87946 0.75164 (19) 0 0.8659 0.8659 0.7799 (12) 0 0.8745 0.8745 0.7812 (12)
12 1 0.83276 (2) 1 0.91485 (2) 100 1.0000 1.0000 0.9207 (2) 100 1.0000 1.0000 0.9209 (2)
13 0.89589 0.74091 (14) 0.90078 0.81457 (14) 0 0.8937 0.8937 0.7856 (11) 0 0.8981 0.8981 0.7919 (11)
14 0.91996 0.76867 (11) 0.83342 0.83461 (11) 0 0.9186 0.9186 0.8262 (9) 0 0.9527 0.9527 0.8384 (9)
15 0.81219 0.63864 (20) 0.81226 0.71519 (20) 0 0.8105 0.8105 0.7066 (19) 0 0.8099 0.8099 0.7163 (19)
16 1 0.80526 (7) 1 0.86374 (7) 100 1.0000 1.0000 0.8091 (10) 100 1.0000 1.0000 0.8200 (10)
17 0.96309 0.73989 (15) 0.9676 0.80638 (15) 0 0.9612 0.9612 0.7204 (18) 0 0.9648 0.9648 0.7324 (18)
18 1 0.76761 (12) 1 0.8305 (12) 0 0.9997 0.9997 0.7784 (13) 0 0.9963 0.9963 0.7824 (14)
19 1 0.8085 (6) 1 0.86891 (6) 100 1.0000 1.0000 0.8743 (6) 100 1.0000 1.0000 0.8856 (6)
20 1 0.77637 (10) 1 0.8385 (10) 100 1.0000 1.0000 0.7782 (14) 100 1.0000 1.0000 0.7837 (13)

Note: The numbers in parentheses indicate the rankings of DMUs.

Table A7. Rank acceptability indices obtained by CH-SMAA-DEA.

DMU b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

1 0 0 0.158 1.957 8.238 15.069 35.229 16.185 6.230 5.812 5.827 3.751 1.075 0.263 0.028 0 0 0 0 0
2 1.850 9.248 16.215 19.305 12.069 10.175 4.201 4.922 4.885 3.930 3.657 3.393 2.821 1.908 0.962 0.419 0.298 0.024 0 0
3 0.001 0.074 0.103 0.407 0.442 0.513 0.726 0.865 1.036 1.585 1.867 2.319 3.244 3.851 4.277 5.049 6.216 7.850 15.735 43.600
4 0 0 0.002 0.030 0.158 0.527 0.802 1.202 2.232 3.263 4.998 7.127 8.995 13.195 14.633 12.458 13.452 11.463 4.956 0.604
5 0 0 0 0 0.006 0.007 0.027 0.139 1.022 2.512 4.599 6.504 8.703 9.753 14.436 14.675 14.416 15.768 6.420 1.171
6 11.130 11.688 13.617 16.532 10.294 4.821 4.886 4.539 3.483 2.829 2.069 2.596 2.370 1.953 1.873 1.837 1.511 1.174 0.638 0
7 0 0 0.192 2.090 7.737 10.019 11.161 30.579 27.326 6.843 2.355 1.494 0.222 0.019 0.003 0 0 0 0 0
8 0 0 0 0 0 0 0 0.019 1.507 3.223 9.043 8.797 7.644 8.227 8.615 12.058 12.855 12.781 10.629 4.816
9 0.011 20.420 26.072 20.666 22.989 5.972 3.407 0.486 0.255 0.059 0 0 0 0 0 0 0 0 0 0
10 61.576 28.282 9.356 0.773 0.010 0.002 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0.004 0.073 0.408 0.478 1.911 7.363 18.437 10.127 6.638 6.547 8.410 7.338 6.914 8.141 7.995 6.428 2.559
12 19.098 15.656 13.748 12.843 11.109 5.740 2.805 2.372 2.703 2.126 1.940 2.032 1.840 1.762 1.639 1.162 0.790 0.290 0.024 0
13 0 0 0.002 1.788 2.386 2.762 4.574 4.545 5.395 8.446 12.962 10.938 13.611 10.825 7.457 6.969 4.224 2.676 0.730 0.066
14 0 0 0.235 2.246 4.540 18.420 12.837 8.664 9.531 8.573 5.313 5.739 6.785 6.310 5.164 3.207 1.329 0.396 0.086 0
15 0 0 0 0 0 0 0 0.003 0.009 0.132 0.926 1.979 2.449 3.201 5.212 8.508 9.181 15.255 29.832 23.309
16 0.351 2.648 3.642 7.818 5.397 5.517 4.789 5.371 7.753 13.785 12.989 11.999 6.905 4.744 3.345 2.083 0.719 0.101 0 0
17 0 0.001 0.114 0.307 0.674 0.853 1.769 1.243 1.484 1.667 2.556 3.293 5.637 5.323 7.244 7.028 7.855 9.767 19.539 23.674
18 0 0.050 0.240 1.870 2.842 4.110 3.961 3.029 3.293 4.834 7.705 10.456 10.321 8.873 8.828 8.306 10.323 7.747 2.910 0.201
19 5.940 11.758 15.571 10.146 7.135 11.105 5.010 10.635 10.923 7.133 2.260 1.462 0.691 0.498 0.264 0.122 0.056 0.006 0 0
20 0.043 0.175 0.733 1.218 3.901 3.980 3.336 3.291 3.570 4.811 8.807 9.483 10.140 10.885 8.682 9.205 8.634 6.707 2.073 0

Note: The numbers in bold indicate the biggest acceptability indices.
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Table A8. Rank acceptability indices obtained by SMAA-DEA.

DMU b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

1 0 0 0.782 6.410 11.356 12.578 25.890 12.238 4.721 6.241 8.948 5.662 3.465 2.002 0.074 0 0 0 0 0
2 6.356 11.412 11.670 11.615 12.608 11.415 3.846 4.563 4.806 3.725 4.265 4.514 3.288 2.389 2.035 0.782 1.298 0 0 0
3 0.013 0.198 0.857 1.215 1.148 1.366 2.308 2.203 2.350 3.946 2.525 2.935 3.924 5.258 3.016 3.650 3.776 5.888 14.254 38.827
4 0 0 0 0 0 0 0.002 0.035 0.271 1.003 1.666 4.443 7.154 16.766 25.558 27.040 11.686 4.209 0.006 0
5 0 0 0 0.003 0.028 0.206 1.051 1.919 5.524 3.522 6.390 6.115 10.425 10.431 9.899 7.745 10.469 18.835 7.922 0
6 10.656 9.319 12.502 14.548 8.015 4.208 4.625 5.325 3.257 3.139 1.973 2.653 2.694 2.483 1.886 1.329 3.665 4.279 3.083 0.003
7 0 0 0 0.419 2.549 8.829 14.413 33.352 25.440 10.391 3.750 0.865 0.108 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0.010 1.448 4.369 11.617 7.921 7.663 7.048 6.893 6.954 13.423 10.397 11.590 10.625
9 0.004 10.354 24.047 21.556 20.182 11.106 8.368 2.721 1.297 0.079 0 0 0 0 0 0 0 0 0 0

10 47.991 40.076 11.236 0.805 0.166 0.019 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0.066 0.795 0.978 1.131 3.151 10.910 19.220 9.047 7.065 5.232 6.060 4.398 6.571 5.827 9.723 9.871 0.053
12 22.938 11.774 15.939 12.025 11.350 3.104 1.735 1.617 3.059 2.840 1.974 2.437 1.846 1.036 1.194 2.750 1.841 0 0 0
13 0 0 0 0 0.544 2.743 6.430 4.523 5.843 8.970 14.278 16.686 16.230 7.684 5.641 3.494 3.709 3.022 0.098 0
14 0 0 1.014 4.688 4.589 15.475 12.369 7.291 7.632 7.301 4.532 4.261 5.506 7.260 9.389 7.088 1.388 0.156 0 0
15 0 0 0 0 0 0 0.027 0.240 0.843 1.193 4.831 4.762 4.173 5.293 5.690 7.237 5.689 11.531 24.092 24.546
16 1.502 4.672 5.208 7.894 4.832 5.828 3.493 5.231 4.254 6.149 7.930 12.550 8.829 6.802 4.938 4.505 2.869 1.952 0 0
17 0 0.007 0.051 0.853 2.513 1.548 3.029 2.234 2.208 2.407 2.768 3.267 3.224 4.242 4.574 4.537 7.554 8.834 20.365 25.946
18 0 0.911 1.917 6.350 6.670 5.378 2.969 2.716 2.671 4.124 5.455 5.803 7.250 6.261 6.216 5.267 17.145 10.214 2.750 0
19 9.287 8.994 11.505 8.588 7.298 10.529 4.830 7.371 9.033 7.724 3.773 3.027 2.540 1.491 0.987 1.441 0.936 0.389 0.040 0
20 1.253 2.283 3.272 2.965 5.357 4.690 3.484 3.260 4.433 3.657 4.278 5.034 6.449 7.494 7.612 9.610 8.725 10.571 5.929 0

Note: The numbers in bold indicate the biggest acceptability indices.

Table A9. The central weights obtained by SMAA-DEA and CH-SMAA-DEA.

DMU SMAA-DEA CH-SMAA-DEA

w̄1 w̄2 w̄3 w̄4 w̄5 w1 w2 w3 w12 w13 w23 w123 w4 w5 w45

1 0.3824 0.6127 0.0049 0.2387 0.7613 0.6090 0.7660 0.0072 −0.4909 0.3417 0.0203 −0.2532 0.2317 0.9810 −0.2127
2 0.1198 0.7245 0.1557 0.1611 0.8389 0.2010 0.4717 0.1391 0.0827 0.0540 0.2546 −0.2031 0.5091 0.8770 −0.3861
3 0.0048 0.9699 0.0253 0.7861 0.2139 0.0100 0.4229 0.0389 0.2755 0.0202 0.4294 −0.1969 0.3154 0.0464 0.6382
4 0.1629 0.8363 0.0008 0.8335 0.1665 0.0210 0.3010 0.0011 0.1304 0.3594 0.6329 −0.4459 0.0280 0.0004 0.9716
5 0.0028 0.9908 0.0064 0.6752 0.3248 0.0210 0.2351 0.0040 0.5242 0.0158 0.7300 −0.5301 0.0527 0.3558 0.5914
6 0.1827 0.1115 0.7057 0.2555 0.7445 0.2593 0.0997 0.3365 0.2216 0.1154 0.3822 −0.4147 0.5011 0.7739 −0.2750
7 0.7268 0.2706 0.0026 0.8236 0.1764 0.4069 0.2585 0.0109 −0.0212 0.5657 −0.0040 −0.2166 0.1438 0.0147 0.8415
8 0.3852 0.6138 0.0009 0.2791 0.7209 0.2292 0.4964 0.0002 0.0882 0.2233 0.0086 −0.0460 0.3687 0.5577 0.0735
9 0.0150 0.0251 0.9599 0.7924 0.2076 0.0582 0.0144 0.3592 0.1016 0.3525 0.5819 −0.4679 0.1606 0.0651 0.7743
10 0.2374 0.4186 0.3439 0.5960 0.4040 0.3143 0.3694 0.3275 0.0493 0.0802 0.0702 −0.2109 0.4837 0.4063 0.1100
11 0.7637 0.2169 0.0194 0.8029 0.1971 0.1263 0.1092 0.0887 0.2556 0.3966 −0.0773 0.1009 0.0314 0.0962 0.8724
12 0.6077 0.2030 0.1893 0.2919 0.7081 0.2820 0.2191 0.2119 0.1841 0.1813 0.0168 −0.0951 0.4968 0.7353 −0.2322
13 0.3267 0.3888 0.2846 0.9997 0.0003 0.2096 0.4402 0.2622 0.1665 0.3581 −0.2117 −0.2249 0.9931 0.0062 0.0007
14 0.3688 0.6265 0.0047 0.1999 0.8001 0.2093 0.5564 0.0038 0.1629 0.7254 0.4282 −1.0860 0.9839 0.9804 −0.9642
15 0.0110 0.0178 0.9712 0.7891 0.2109 0.0834 0.0097 0.2056 0.0143 0.6752 0.7097 −0.6979 0.1647 0.0517 0.7835
16 0.4388 0.4981 0.0631 0.9438 0.0562 0.3190 0.4148 0.0504 −0.0088 0.3261 0.2701 −0.3715 0.9081 0.0689 0.0230
17 0.2576 0.7378 0.0046 0.9935 0.0065 0.1539 0.2304 0.0011 0.1887 0.7439 0.7556 −1.0735 0.9612 0.0565 −0.0178
18 0.0308 0.6399 0.3293 0.9937 0.0063 0.1718 0.4313 0.2516 0.0772 −0.1624 0.2031 0.0275 0.9927 0.0656 −0.0583
19 0.4727 0.1135 0.4138 0.8955 0.1045 0.2744 0.0938 0.2530 0.2780 0.1519 0.2172 −0.2683 0.6543 0.0989 0.2468
20 0.0858 0.8077 0.1064 0.9360 0.0640 0.1145 0.3961 0.0814 0.1243 0.0032 0.3914 −0.1108 0.9228 0.0895 −0.0123

Figure A1. The flowchart of the proposed method.
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Figure A2. Rank acceptability indices with CH-SMAA-DEA.

Figure A3. Rank acceptability indices with SMAA-DEA.
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