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Abstract: The aim of this paper is to give generating functions for parametrically generalized
polynomials that are related to the combinatorial numbers, the Bernoulli polynomials and numbers,
the Euler polynomials and numbers, the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials,
the cosine-Euler polynomials, and the sine-Euler polynomials. We investigate some properties of
these generating functions. By applying Euler’s formula to these generating functions, we derive
many new and interesting formulas and relations related to these special polynomials and numbers
mentioned as above. Some special cases of the results obtained in this article are examined. With this
special case, detailed comments and comparisons with previously available results are also provided.
Furthermore, we come up with open questions about interpolation functions for these polynomials.
The main results of this paper highlight the existing symmetry between numbers and polynomials in
a more general framework. These include Bernouilli, Euler, and Catalan polynomials.

Keywords: Bernoulli and Euler numbers and polynomials; cosine-type Bernoulli and Euler polyno-
mials; sine-type Bernoulli and Euler polynomials; Stirling numbers; generating functions; special
numbers and polynomials

MSC: 05A15; 11B68; 11B73; 11B83; 33B10

1. Motivation and Preliminaries
1.1. Motivation

For k ∈ Z\{−2} and a ∈ C, in [1], Simsek introduced the functions

FY (w, k, a) =
aw

e(k+1)w − e−(k+1)w + ew − e−w
=

∞

∑
n=0
Yn(k, a)

wn

n!
, (1)

KY (w, x, k, a) = ewxFY (w, k, a) =
∞

∑
n=0

Qn(x, k, a)
wn

n!
. (2)

Letting x = 0 in (2), we have

Qn(0, k, a) = Yn(k, a).

Another interesting example is given by

Bn(x) = 2−nQn(2x− 1,−1, 2)
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which are the well-known Bernoulli polynomials. Moreover, we have

Bn = 2−n
n

∑
v=0

(−1)v
(

n
v

)
Yn−v(−1, 2)

where Bn are the Bernoulli numbers.
Bernoulli numbers and polynomials are very important and fundamental in many

areas. Bernoulli numbers sit in the center of a number of mathematical fields. Among other
things, we can mention, for example that

- Bernoulli numbers are rational numbers;
- Their numerators are very important for differential topology via the Kervaire–Milnor

Formula;
- Their denominators are very important for homotopy theory;
- Bernoulli number are central in Number theory and are special values of zeta functions

on integers;
- Interpolation theory connects Bernoulli Numbers and of Eisenstein series, modular

forms, and complex analysis;
- Homotopy theory and number theory and the special values of zetas functions on

the integers.

For more details, see [2–22].
Thus, the Bernoulli numbers and polynomials have received much considerable

attention throughout the mathematical literature.
Because of the limited attention given to the numbers Yn(k, a) and the polynomials

Qn(x, k, a), there is no question of a standard. Among other things, in this article, we
present a systematic treatment of these polynomials and numbers. This will give new
insight into the subject.

By using (1) and (2), it is easy to see that the polynomials Qn(x, k, a) and the numbers
Yn(k, a) are linked by the following relationship:

Qn(x, k, a) =
n

∑
v=0

(
n
v

)
Yn−v(k, a)xv (3)

(cf. [1]).
We now introduce the following generating functions involving sin(yw) and cos(yw)

for the following parametrically generalized polynomials: the polynomials Q(S)
n (x, y, k, a)

and Q(C)
n (x, y, k, a), respectively:

H(w, x, y, a, k) =
exw sin(yw)aw

e(k+1)w − e−(k+1)w + ew − e−w
=

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
(4)

and

G(w, x, y, a, k) =
exw cos(yw)aw

e(k+1)w − e−(k+1)w + ew − e−w
=

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
, (5)

where k ∈ Z\{−2} and a ∈ C.
We investigate and study these generating functions. In Section 2, by using these gen-

erating functions and their functional equations, we give relations among the polynomials
Q(S)

n (x, y, k, a), the polynomials Q(C)
n (x, y, k, a), the polynomials Qn(x, k, a), the numbers

Yn−v(k, a), the Bernoulli polynomials and numbers, the Euler polynomials and numbers,
the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials, the cosine-Euler polyno-
mials, and the sine-Euler polynomials.

We now give in more detail the contents of this paper. In Section 2, by using generating
functions for parametrically generalized polynomials and numbers, we obtain interest-
ing identities and relations including the polynomials Q(S)

n (x, y, k, a), the polynomials
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Q(C)
n (x, y, k, a), the polynomials Qn(x, k, a), the numbers Yn−v(k, a), the Bernoulli polyno-

mials and numbers, the Euler polynomials and numbers, the cosine-Bernoulli polynomials,
the sine-Bernoulli polynomials, the cosine-Euler polynomials, the sine-Euler polynomials,
the numbers βn(k), and the Stirling numbers of the second kind.

In Section 3, we give open questions related to the interpolation functions for the
polynomials Qn(x, k, a), Q(C)

n (x, y, k, a), and Q(S)
n (x, y, k, a).

In Section 4, we provide a concluding statement.

1.2. Preliminaries

In order to give the results of this paper, we need the following standard notation,
definitions, and relations. Throughout this paper, we use the following notations:

N ={1, 2, . . .}, N0={0, 1, 2, . . .} = N∪ {0}.

As usual, Z, Q, Rc and C denote the set of integers, the set of rational numbers,
the set of real numbers, and the set of complex numbers, respectively. Moreover, the falling
factorial is given by

(λ)n =

{
λ(λ− 1)(λ− 2) . . . (λ− n + 1) if n ∈ N,

1 if n = 0,

where (λ)0 = 1 and λ ∈ C.
Let α ∈ R (or C). The Bernoulli numbers and polynomials of higher order are defined

by means of the following generating functions:

FB(w, α) =

(
w

ew − 1

)α

=
∞

∑
n=0

B(α)
n

wn

n!
(6)

and

GB(w, x, α) = FB(w, α)ewx =
∞

∑
n=0

B(α)
n (x)

wn

n!
, (7)

respectively (cf. [18,23,24]).
By substituting α = 1 into (6) and (7), we obtain the classical Bernoulli numbers

and polynomials
B(1)

n = Bn and B(1)
n (x) = Bn(x).

For α = 0, we have
B(0)

n (x) = xn

and

B(0)
n =

{
1 if n = 0,
0 if n > 0.

By using (6) and (7), we have

B(α)
n (x) =

n

∑
v=0

(
n
v

)
xvB(α)

n−v,

where n ∈ N0 (cf. [18,23,24]).
Let α ∈ R (or C). The Euler numbers and polynomials of a higher order are defined by

means of the following generating functions:

FE(w, α) =

(
2

ew + 1

)α

=
∞

∑
n=0

E(α)
n

wn

n!
(8)
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and

GE(w, x, α) = FE(w, α)ewx =
∞

∑
n=0

E(α)
n (x)

wn

n!
, (9)

respectively (cf. [18,23,24]).
By substituting α = 1 into (8) and (9), the classical Euler numbers and polynomials are

derived as follows:
E(1)

n = En and E(1)
n (x) = En(x).

For α = 0, we have
E(0)

n (x) = xn

and

E(0)
n =

{
1 if n = 0,
0 if n > 0.

By using (8) and (9), we have

E(α)
n (x) =

n

∑
v=0

(
n
v

)
xvE(α)

n−v,

where n ∈ N0 (cf. [18,23,24]).
By using (1), (6), and (9), we have the following identity:

Yn(k, a) =
a

2(k + 2)

n

∑
v=0

(
n
v

)
kn−v(k + 2)vBvEn−v

(
k + 1

k

)
, (10)

where n ∈ N0 (cf. [1]).
By using (1), (7), and (8), we have the following identity:

Yn(k, a) =
a

2(k + 2)

n

∑
v=0

(
n
v

)
kn−v(k + 2)vEn−vBv

(
k + 1
k + 2

)
, (11)

where n ∈ N0 (cf. [1]).
The Stirling numbers of the second kind, S2(n, k), are defined by means of the follow-

ing generating function:

FS(w, k) =
(ew − 1)k

k!
=

∞

∑
n=0

S2(n, k)
wn

n!
(12)

and

yn =
n

∑
v=0

S2(n, v)(y)v, (13)

where k ∈ N0 (cf. [18,23,24]).
By using (12), we have

S2(n, k) =
1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
jn,

where n, k ∈ N0.
By using (8) and (12), we get the following identity:

S2(n, k) =
2k−n

k!

n

∑
m=0

k

∑
j=0

(−1)k−j
(

n
m

)(
k
j

)
jmE(−k)

n−m (14)

(cf. [23]).
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The polynomials Cn(x, y) and Sn(x, y) are defined by means of the following
generating functions:

KC(w, x, y) = exw cos(yw) =
∞

∑
n=0

Cn(x, y)
wn

n!
(15)

and

KS(w, x, y) = exw sin(yw) =
∞

∑
n=0

Sn(x, y)
wn

n!
, (16)

(cf. [25–31]).
The polynomials Cn(x, y) and Sn(x, y) are computed by the following formulas

Cn(x, y) =
[ n

2 ]

∑
j=0

(−1)j
(

n
2j

)
xn−2jy2j

and

Sn(x, y) =
[ n−1

2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
xn−2j−1y2j+1,

respectively (cf. [25–31]).
The cosine-Bernoulli polynomials B(C)

n (x, y) and the sine-Bernoulli polynomials B(S)
n (x, y)

are defined by means of the following generating functions:

gC(w, x, y) =
w cos(yw)

ew − 1
exw =

∞

∑
n=0

B(C)
n (x, y)

wn

n!
(17)

and

gS(w, x, y) =
w sin(yw)

ew − 1
exw =

∞

∑
n=0

B(S)
n (x, y)

wn

n!
(18)

(cf. [30,31]; see also [26–29]).
The cosine-Euler polynomials E(C)

n (x, y) and the sine-Euler polynomials E(S)
n (x, y) are

defined by means of the following generating functions:

hC(w, x, y) =
2 cos(yw)

ew + 1
exw =

∞

∑
n=0

E(C)
n (x, y)

wn

n!
(19)

and

hS(w, x, y) =
2 sin(yw)

ew + 1
exw =

∞

∑
n=0

E(S)
n (x, y)

wn

n!
(20)

(cf. [30,31]; see also [26–29]).
Kucukoglu and Simsek [32] defined a new sequence of special numbers βn(k) by

means of the following generating function:(
1− z

2

)k
=

∞

∑
n=0

βn(k)
zn

n!
, (21)

where k ∈ N0, z ∈ C with |z| < 2.
By using (21), we have

βn(k) =
(−1)nn!

2n

(
k
n

)
, (22)

where n, k ∈ N0 (cf. [32] (Equation (4.9))).
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2. Generating Functions for New Classes of Parametric Kinds of Special Polynomials

In this section, we investigate some properties of Equations (4) and (5). By using
these generating functions, we derive some new identities and relations involving the
polynomials Q(S)

n (x, y, k, a), the polynomials Q(C)
n (x, y, k, a), the polynomials Qn(x, k, a),

the numbers Yn−v(k, a), the Bernoulli polynomials and numbers, the Euler polynomials
and numbers, the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials, the cosine-
Euler polynomials, and the sine-Euler polynomials.

By substituting y = 0 and x = 0 into the Equations (4) and (5), we have the following
identities:

Q(C)
n (x, 0, k, a) = Qn(x, k, a),

Q(C)
n (0, 0, k, a) = Yn(k, a),

and
Q(S)

n (x, 0, k, a) = 0.

In [1], using Equation (1), Simsek gave

FY (w, k, a) =
awe(k+1)w(

e(k+2)w − 1
)(

ekw + 1
) .

Combining the above equation with (7), (9), (17), (18), (19), and (20), we obtain the
following functional equations:

H(w, x, y, 2, k) =
1

k + 2
gS

(
(k + 2)w,

k + 1 + x
k + 2

,
y

k + 2

)
FE(kw, 1)

H(w, x, y, 2, k) =
1

k + 2
GB((k + 2)w, 0, 1)hS

(
kw,

k + 1 + x
k

,
y
k

)
,

and
G(w, x, y, 2, k) =

1
k + 2

gC

(
(k + 2)w,

k + 1 + x
k + 2

,
y

k + 2

)
FE(kw, 1)

G(w, x, y, 2, k) =
1

k + 2
GB((k + 2)w, 0, 1)hS

(
kw,

k + 1 + x
k

,
y
k

)
.

Using similar functional equations to the above equations, we give some novel formu-
las and relations including the polynomials Q(S)

n (x, y, k, a), the polynomials Q(C)
n (x, y, k, a),

the polynomials Qn(x, k, a), the numbers Yn−v(k, a), the Bernoulli polynomials and num-
bers, the Euler polynomials and numbers, the cosine-Bernoulli polynomials, the sine-
Bernoulli polynomials, the cosine-Euler polynomials, and the sine-Euler polynomials.

Theorem 1. Let n ∈ N0. Then, we have

Q(S)
n (x, y, k, a) =

a
2

n

∑
j=0

(
n
j

)
E(S)

j

( x
k

,
y
k

)
Bn−j

(
k + 1
k + 2

)
kj(k + 2)n−j−1.

Proof. By using (4), we obtain the following functional equation:

exw sin(yw)

ekw + 1

(
aw

e(k+2)w − 1

)
e(k+1)w =

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
.
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By combining the above equation with (7) and (20), we have

a
2(k + 2)

∞

∑
n=0

E(S)
n

( x
k

,
y
k

)
kn wn

n!

∞

∑
n=0

Bn

(
k + 1
k + 2

)
(k + 2)n wn

n!

=
∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
.

Therefore

a
2

∞

∑
n=0

n

∑
j=0

(
n
j

)
E(S)

j

( x
k

,
y
k

)
Bn−j

(
k + 1
k + 2

)
kj(k + 2)n−j−1 wn

n!

=
∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we get the
desired result.

Theorem 2. Let n ∈ N0. Then, we have

Q(C)
n (x, y, k, a) =

a
2

n

∑
j=0

(
n
j

)
E(C)

j

( x
k

,
y
k

)
Bn−j

(
k + 1
k + 2

)
kj(k + 2)n−j−1.

Proof. By using (5), we obtain the following functional equation:

exw cos(yw)

ekw + 1

(
aw

e(k+2)w − 1

)
e(k+1)w =

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
.

By combining the above equation with (7) and (19), we have

a
2(k + 2)

∞

∑
n=0

E(C)
n

( x
k

,
y
k

)
kn wn

n!

∞

∑
n=0

Bn

(
k + 1
k + 2

)
(k + 2)n wn

n!

=
∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
.

Therefore

a
2

∞

∑
n=0

n

∑
j=0

(
n
j

)
E(C)

j

( x
k

,
y
k

)
Bn−j

(
k + 1
k + 2

)
kj(k + 2)n−j−1 wn

n!

=
∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we obtain the
desired result.

Theorem 3. Let n ∈ N. Then we have

Q(S)
n (x, y, k, a) =

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
y2j+1Qn−1−2j(x, k, a).

Proof. By using (2) and (4), we obtain

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

(−1)n (yw)2n+1

(2n + 1)!

∞

∑
n=0

Qn(x, k, a)
wn

n!
.
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Therefore

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

[ n−1
2 ]

∑
j=0

(−1)j
(

n
2j + 1

)
y2jQn−1−2j(x, k, a)

wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we achieve
the desired result.

Theorem 4. Let n ∈ N0. Then, we have

Q(C)
n (x, y, k, a) =

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
y2jQn−2j(x, k, a).

Proof. By using (2) and (4), we obtain

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

(−1)n (yw)2n

(2n)!

∞

∑
n=0

Qn(x, k, a)
wn

n!
.

Therefore

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

[ n
2 ]

∑
j=0

(−1)j
(

n
2j

)
y2jQn−2j(x, k, a)

wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we achieve
the desired result.

Theorem 5. Let n ∈ N0. Then, we have

Q(S)
n (x, y, k, a) =

n

∑
j=0

(
n
j

)
Sj(x, y)Yn−j(k, a).

Proof. By using (1), (4), and (16), we obtain

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

Sn(x, y)
wn

n!

∞

∑
n=0
Yn(k, a)

wn

n!
.

Therefore

∞

∑
n=0

Q(S)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

n

∑
j=0

(
n
j

)
Sj(x, y)Yn−j(k, a)

wn

n!
.

Byy omparing the coefficients of wn

n! on both sides of the above equation, we achieve
the desired result.

Theorem 6. Let n ∈ N0. Then, we have

Q(C)
n (x, y, k, a) =

n

∑
j=0

(
n
j

)
Cj(x, y)Yn−j(k, a).

Proof. By using (1), (4), and (15), we have

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

Cn(x, y)
wn

n!

∞

∑
n=0
Yn(k, a)

wn

n!
.
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Therefore

∞

∑
n=0

Q(C)
n (x, y, k, a)

wn

n!
=

∞

∑
n=0

n

∑
j=0

(
n
j

)
Cj(x, y)Yn−j(k, a)

wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we achieve
the desired result.

Theorem 7. Let n ∈ N0. Then, we have

Qn(x + iy, k, a) = Q(C)
n (x, y, k, a) + iQ(S)

n (x, y, k, a).

Proof. By using (4) and (5), we have

∞

∑
n=0

(
Q(C)

n (x, y, k, a) + iQ(S)
n (x, y, k, a)

)wn

n!
=

exw+iywaw
e(k+1)w − e−(k+1)w + ew − e−w

.

By using the the above equation and the Euler’s formula, we obtain

∞

∑
n=0

(
Q(C)

n (x, y, k, a) + iQ(S)
n (x, y, k, a)

)wn

n!
=

∞

∑
n=0

Qn(x + iy, k, a)
wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we get the
desired result.

Theorem 8. Let n ∈ N0. Then, we have

n

∑
v=0

(
n
v

) v

∑
j=0

(
v
j

)
Q(C)

j (x, y, k, 2)Q(S)
v−j(x, y, k, 2)kn−vE(−2)

n−v

=
(k + 2)n−2

2
B(C,2)

n

(
2(k + 1 + x)

k + 2
,

2y
k + 2

)
,

where

B(C,2)
n

(
2(k + 1 + x)

k + 2
,

2y
k + 2

)
=

n

∑
v=0

(
n
v

)
B(2)

v Sn−v

(
2(k + 1 + x)

k + 2
,

2y
k + 2

)
.

Proof. By using (4) and (5), we have

∞

∑
n=0

Q(C)
n (x, y, k, 2)

wn

n!

∞

∑
n=0

Q(S)
n (x, y, k, 2)

wn

n!

=
1
2

(
w2e2(k+1+x)w sin(2yw)(

e(k+2)w − 1
)2

)(
2

ekw + 1

)2
.

By combining the above equation with (8) and (17), we obtain

∞

∑
n=0

n

∑
j=0

(
n
j

)
Q(C)

j (x, y, k, 2)Q(S)
n−j(x, y, k, 2)

wn

n!

∞

∑
n=0

E(−2)
n

(kw)n

n!

=
1

2(k + 2)2

∞

∑
n=0

B(C,2)
n

(
2(k + 1 + x)

k + 2
,

2y
k + 2

)
(k + 2)n wn

n!
.
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Therefore

∞

∑
n=0

n

∑
v=0

(
n
v

) v

∑
j=0

(
v
j

)
Q(C)

j (x, y, k, 2)Q(S)
v−j(x, y, k, 2)kn−vE(−2)

n−v
wn

n!

=
1
2

∞

∑
n=0

B(C,2)
n

(
2(k + 1 + x)

k + 2
,

2y
k + 2

)
(k + 2)n−2 wn

n!
.

By comparing the coefficients of wn

n! on both sides of the above equation, we achieve
the desired result.

In the following we state interesting identities related to the Stirling numbers, the poly-
nomials Cm(x, y) and Sm(x, y).

By combining (12) with (15) and (16), we get the following functional equations:

cos(yw)
∞

∑
n=0

(x)nFS(w, n) = KC(w, x, y) (23)

and

sin(yw)
∞

∑
n=0

(x)nFS(w, n) = KS(w, x, y). (24)

Theorem 9. Let m ∈ N0. Then we have

Cm(x, y) =
[m

2 ]

∑
j=0

(−1)jy2j
(

m
2j

) m−2j

∑
n=0

(x)nS2(m− 2j, n). (25)

Proof. By using (23), we obtain

∞

∑
m=0

(−1)m (yw)2m

(2m)!

∞

∑
m=0

m

∑
n=0

(x)nS2(m, n)
wm

m!
=

∞

∑
m=0

Cm(x, y)
wm

m!
.

Therefore

∞

∑
m=0

Cm(x, y)
wm

m!
=

∞

∑
m=0

[m
2 ]

∑
j=0

(−1)jy2j
(

m
2j

) m−2j

∑
n=0

(x)nS2(m− 2j, n)
wm

m!
.

By comparing the coefficients of wm

m! on both sides of the above equation, we obtain
the desired result.

By combining (25) with (14), we arrive at the following theorem:

Theorem 10. Let m ∈ N0. Then, we have

Cm(x, y) =
[m

2 ]

∑
j=0

(−1)jy2j
(

m
2j

) m−2j

∑
n=0

(x)n2n−m+2j

n!

×
m−2j

∑
v=0

n

∑
d=0

(−1)n−d
(

m− 2j
v

)(
n
d

)
dvE(−n)

m−2j−v.

By combining (25) with (22), we arrive at the following theorem:
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Theorem 11. Let m ∈ N0. Then, we have

Cm(x, y) =
[m

2 ]

∑
j=0

(−1)j (2y)2jβ2j(m)

(2j)!

m−2j

∑
n=0

(x)nS2(m− 2j, n).

Theorem 12. Let m ∈ N. Then, we have

Sm(x, y) =
[m−1

2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
y2j+1

m−1−2j

∑
n=0

(x)nS2(m− 1− 2j, n). (26)

Proof. By using (24), we obtain

∞

∑
m=0

Sm(x, y)
wm

m!
=

∞

∑
n=0

(−1)n (yw)2n+1

(2n + 1)!

∞

∑
m=0

m

∑
n=0

(x)nS2(m, n)
wm

m!
.

Therefore

∞

∑
m=0

Sm(x, y)
wm

m!
=

∞

∑
m=0

m
[m−1

2 ]

∑
j=0

(−1)j
(

m− 1
2j

)
y2j+1

2j + 1

×
m−1−2j

∑
n=0

(x)nS2(m− 1− 2j, n)
wm

m!
.

By comparing the coefficients of wm

m! on both sides of the above equation, we obtain
the desired result.

Remark 1. By combining (13) with (15) and (16), we also arrive at Formulas (25) and (26).
For these and similar formulas, the above formula may be used.

3. Questions

In [33], Kim, and Simsek gave interpolation functions involving the Hurwitz zeta
function and the alternating Hurwitz zeta function for the numbers Yn(k, a).

How can we define interpolation functions for the following polynomials:

Qn(x, k, a), Q(C)
n (x, y, k, a), and Q(S)

n (x, y, k, a)?

4. Conclusions

Applications of generating functions are used in a remarkably wide range of ar-
eas, and we used them to define new classes of parametric kinds of special polynomials.
By using the method of generating functions and Euler’s formula, we investigated prop-
erties of these new parametric kinds of special polynomials. We also provide new iden-
tities and relations involving these classes of special polynomials, the Bernoulli numbers
and polynomials, the Euler numbers and polynomials, the cosine-Bernoulli polynomials,
the sine-Bernoulli polynomials, the cosine-Euler polynomials, the sine-Euler polynomials,
and known special polynomials.

In the near future, with the help of the results given in this article, solutions of the
open questions put forward will be investigated.

In general, these results have the potential to be used many branches of mathematics,
probability, statistics, mathematical physics, and engineering.
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