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Abstract: Graph representation learning has become a mainstream method for processing network
structured data, and most graph representation learning methods rely heavily on labeling information
for downstream tasks. Since labeled information is rare in the real world, adopting self-supervised
learning to solve the graph neural network problem is a significant challenge. Currently, existing
graph neural network approaches attempt to maximize mutual information for self-supervised
learning, which leads to a large amount of redundant information in the graph representation and
thus affects the performance of downstream tasks. Therefore, the self-supervised graph information
bottleneck (SGIB) proposed in this paper uses the symmetry and asymmetry of graphs to establish
comparative learning and introduces the information bottleneck theory as a loss training model.
This model extracts the common features of both views and the independent features of each view
by maximizing the mutual information estimation between the local high-level representation of
one view and the global summary vector of the other view. It also removes redundant information
not relevant to the target task by minimizing the mutual information between the local high-level
representations of the two views. Based on the extensive experimental results of three public datasets
and two large-scale datasets, it has been shown that the SGIB model can learn higher quality node
representations and that several classical network analysis experiments such as node classification
and node clustering can be improved compared to existing models in an unsupervised environment.
In addition, an in-depth network experiment is designed for in-depth analysis, and the results show
that the SGIB model can also alleviate the over-smoothing problem to a certain extent. Therefore, we
can infer from different network analysis experiments that it would be an effective improvement of
the performance of downstream tasks through introducing information bottleneck theory to remove
redundant information.

Keywords: graph neural network; graph representation learning; self-supervised learning;
information bottleneck; mutual information estimation; node classification; node clustering

1. Introduction

A graph is a kind of data structure that models a set of nodes and the edges between
them, where the node represents a specific class of entity and the edge represents the con-
nection between them. As many learning tasks require processing information that contains
large numbers of objects and their relationships, graph-structured data have received in-
creasing attention. Graph-structured data can be utilized in a variety of applications in the
real world, including analysis of social networks, modeling of physical systems, learning of
molecular fingerprints, prediction of protein interfaces, and classification of diseases. To
better study graph-structured data, a model is needed to learn vector representations from
the input graphs.
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Driven by recent advances in deep learning [1], the paradigm of graph learning has
shifted from structural pattern discovery to graph representation learning [2,3] in the
past few years. Specifically, graph representation learning converts graph vertices, edges,
or subgraphs into low-dimensional embeddings [4–6], thus preserving the important
structural information of the graph. Studying graph representations can be used for
many downstream tasks, such as node classification [7,8], graph classification [9,10], link
prediction [11,12], etc. Most of the existing graph neural network models are built in a
supervised manner, which requires a large amount of labeled input for training. However,
labeling graph data turns out to be impractically time-/resources-consuming in many
applications, for example, with the possibly prolonged and expensive issues that exist in
in vivo animal experiments required for the pharmacological effects produced by graph-
represented drug molecules. Therefore, recent research has focused on developing self-
supervised learning in graph neural networks that require only limited or even no labeling.

However, the current graph neural network still has some obstacles to overcome. One
of the most intractable problems is that the features of neighboring nodes may contain
redundant information, which may negatively affect the prediction of the current node.
In addition, the over-reliance on edge messages during training makes the trained model
more vulnerable to noise and adversarial attacks on the input graph structure. There is
limited research on how to solve the problem of containing redundant information in the
input graph. In this paper, we believe that the key to clearing out redundant information is
to employ the information bottleneck theory. The information bottleneck theory requires
that the encoder contains information as little as possible while completing the downstream
task. The encoder learned from the information bottleneck is expected to be more robust
for redundant information removed.

A self-supervised graph representation learning via information bottleneck (SGIB)
is proposed in this paper. The model uses the symmetry and asymmetry of the graph to
introduce comparative learning and employs the information bottleneck as a loss training
model to achieve the purpose of self-supervised learning. For the nodes in the network, all
of their feature information and topological information do not necessarily play a positive
role for the downstream tasks, and some pieces of information even may have a negative
impact. Ideally, the encoded node vector contains all the information necessary for the
downstream task, so in the process of training the model, the encoded node vector is
required to contain as little redundant information as possible.

Specifically, the SGIB model trains the encoder by maximizing the mutual information
between the node-level representation of one view and the graph-level representation
of the other view, while minimizing the mutual information between the node-level rep-
resentations of the two views. Such a strategy enables the optimized model to process
the downstream task by extracting the common features of both views and independent
features of each view, while removing redundant information that is irrelevant to the
target task. Therefore, the graph representations learned by SGIB will be more robust
and distinguishable. In summary, the main contributions of this study are summarized
as follows:

1. Introducing information bottleneck into contrast learning, thus achieving the purpose
of self-supervised learning.

2. Considering the neglect of redundant data in past studies, this paper proposes the use
of the information bottleneck as the objective function of the optimization model. The
information bottleneck was applied by maximizing the mutual information between
one view node level representation and another view graph level representation, while
minimizing the mutual information between two view node level representations.

3. A variety of network analysis experiments, including node classification and node
clustering, were conducted on three public datasets as well as two large-scale datasets.
Numerous experiments show that the method outperforms the best existing methods.
In addition, an in-depth analysis of the model is conducted, and the experimental
results show that SGIB can alleviate the over-smoothing problem to a certain extent.
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2. Related Work

In recent years, many researchers have investigated the problem of how to build
unsupervised learning through consistency. The most representative solution is the deep
graph infomax (DGI) [13], which first embeds an input graph, then summarizes the input
graph into a vector by a readout function, and finally maximizes the mutual information
between the vector representation of the input graph nodes and the vector representation
at the graph level. Following DGI, graph representation learning via graphical mutual
information maximization (GMI) [14] proposes a node-level objective comparison, which
maximizes the node representation with the input attribute features while maximizing
the mutual information between the node representation and the topological information.
Contrastive multi-view representation learning on graphs (MVGRL) [15] proposes a graph
diffusion method to expand another input graph, constructs subgraphs by uniform sam-
pling, and then compares the node representation with the global embedding of the two
views to obtain the vector representation of the graph. Deep graph contrastive represen-
tation learning (GRACE) [16] extends the idea of maximizing graph mutual information
across nodes and subgraphs, generates two associated graphs by random destruction,
and uses the contrast loss function to maximize the node representation in the two views.
Graph contrastive learning with adaptive augmentation (GCA) [17] learns the graph rep-
resentation by creating new data with reasonable transformations and maximizing the
mutual information under different expansions using feature consistency. Heterogeneous
graph information bottleneck (HGIB) [18] utilizes information bottleneck to implement the
consensus hypothesis between different meta-paths in an unsupervised manner. Subgraph
information bottleneck (SIB) [19] recognize subgraphs by removing redundancy and noise
from information bottleneck in the field of graph classification. Variational graph informa-
tion bottleneck (VGIB) [20] introduces the noise injection method to recognize subgraphs
based on graph information bottleneck.

Common among methods that do not apply information bottleneck is the reliance on
maximizing mutual information between whole and part, part and part, and different views
originating from the same network to perform unsupervised training. However, none of
the above works using a consistent problem-solving strategy can handle the redundant
data contained in the input data. The method of information bottleneck theory cannot
solve the node-level task of the homogeneous graph. To address these problems, this paper
proposes a self-supervised graph representation learning method based on an information
bottleneck, which can extract both the common features of two views and independent
features of each view, while removing redundant information irrelevant to the target task,
resulting in a node representation of higher quality.

3. Preliminaries
3.1. Homogeneous Graph

Given an undirected graph G = (V, E), V represents the set of nodes and E represents
the set of edges. Information about the relationship between nodes is provided in the form
of an adjacency matrix, A ∈ RN×N . X = {→x 1,

→
x 2, · · · ,

→
x N} denotes a set of node features

of the input data, N represents the number of nodes in the graph, and
→
x i ∈ RF, represents

the features of node i. In all experiments of this paper, it is assumed that the edges between
nodes are unweighted; i.e., if there are edges i→ j in the graph, then Aij = 1, otherwise
Aij = 0.

3.2. Mutual Information Estimation

Mutual information (MI) is a Shannon entropy-based measure of the degree of inter-
dependence among random variables. Unlike the common similarity measures, mutual
information can capture the nonlinear correlation between variables, so it can be considered
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as a measure of the true dependence between variables. For two random variables X and Y,
the mutual information between them is shown as follows:

I(X; Y) = H(X)− H(X|Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

H(X) is the entropy of information for X, while H(X|Y) means under the condition
of a known random variable Y, the conditional entropy of a random variable X. From
the perspective of probability, mutual information is derived from the joint probability
distribution p(x,y) and the marginal probability distribution p(x),p(y) of random variables X
and Y.

However, since the mutual information can be computed only in the discrete case
and in the continuous case with a finite number of known distributions, its lower bound
is usually estimated using some known algorithms. A neural network-based mutual
information estimation model, mutual information neural estimator (MINE) [21], uses
a Donsker-Varadhan estimator based on KL divergence to derive a lower bound on the
mutual information, where the function T is usually the neural network:

I(X; Y) ≥ sup
T∈F

EPXY [T]− log
(
EPX⊗PY

[
eT
])

. (2)

In this paper, the mutual information estimation is applied to the local vector repre-
sentation and global vector representation of nodes to achieve the self-supervised learning
of the network.

3.3. Information Bottleneck

The core principle of information bottleneck (IB) theory is that the optimal graph
representation should contain the minimum and sufficient information to complete the
downstream prediction task [22]. In other words, the amount of information about the task
does not change due to the encoding process, as shown in Equation (3):

I(x; y) = I(h; y), (3)

where x is the input data, h is the obtained graph representation, and y is the label. In order
to make the graph representation robust, the information bottleneck principle [23] tries to
discard all information from the input as the input information is not helpful for the task of
predicting the labels. The information bottleneck requires the graph representation to pro-
vide the maximum amount of information about the target to make the prediction accurate,
while also preventing the graph representation from obtaining redundant information from
the data that is not relevant to the prediction. Therefore, the information bottleneck [24]
minimizes the mutual information between the data x and its representation h, while maxi-
mizing the mutual information between the representation h and the label y. The objective
function is shown in Equation (4):

RIB(θ) = I(y; h)− βIθ(x; h), (4)

where θ is denoted as the parameter of the neural network and β is the hyperparameter of
the control weights. The second part can be split into two parts according to the chain rule
of mutual information, as shown in Equation (5):

I(x; h) = I(x; h|y) + I(y; h), (5)

where the second term does not vary according to h, because the representation h contains
the minimum and sufficient information that can accomplish the target task, as shown by
Equation (3). The first term represents the information that is not useful for the target task,
i.e., redundant information. Therefore, minimizing mutual information I(x;h) is equivalent
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to minimizing redundant information I(x;h|y) [25], and rewriting Equation (4) gives the
formula for the information bottleneck, as shown in Equation (6):

RIB(θ) = I(y; h)− βI(x; h|y). (6)

However, this paper focuses on training neural networks that can remove redundant
information when the labels of downstream tasks are not available. This part will be
elaborated on in Section 4.

4. Self-Supervised Graph Representation Learning via Information Bottleneck

SGIB is a self-supervised graph representation learning model based on information
bottleneck, and the model framework is shown in Figure 1. The SGIB model is divided
into three modules. Firstly, two random Dropedge [26] operations are performed to obtain
two subgraphs different from the original image, and contrast learning is used to extend
the information bottleneck to self-supervised learning. Secondly, to extract the common
features of the two subgraphs and independent features of each view, SGIB compares
the mutual information between the graphical encoding from the first-order neighbor
and the graph-level representation of the other subgraph, respectively. In addition, to
remove redundant information irrelevant to the target task, SGIB also compares the mutual
information between the first-order graphical encodings of the two subgraphs. Finally, the
information bottleneck is used as the loss function of the model to complete the training
and optimization of the objective function.
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4.1. Self-Supervised Information Bottleneck

In order to train a neural network that can remove redundant information and obtain
high-quality node representations without downstream task labeling as agnostic, we use
the contrast learning method in self-supervised learning. Contrast learning is used to learn
the feature representation by comparing the data with positive and negative samples in
the feature space. In order to obtain information bottleneck without labeling information,
we apply the contrast learning method so that the two perspectives are “labeled” with
each other:

RIB(θ) = Iθ(h(2); h(1))− βIθ(x; h(1)), (7)

where h(1) and h(2) are vector representations of the generalized perspective one and
perspective two, respectively. Maximizing the RIB requires maximizing the first term
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while minimizing the second term. The second term can be split into two representations
according to the mutual information chain rule:

I(x; h(1)) = I(x; h(1)|h(2)) + I(h(2); h(1)). (8)

The first term in Equation (7) represents the specific information from the input feature
x in the vector representation h(1) of viewpoint one, and this term should be minimized,
while maximizing the information of the vector representation of viewpoint one and
viewpoint two in the second term. The joint action of these two steps reaches the maximum,
so rewrite Equation (6) to obtain the generalized self-supervised information bottleneck:

RIB(θ) = Iθ(h(2); h(1))− βIθ(x; h(1)|h(2)). (9)

The difficulty of contrast learning is constructing positive and negative example
samples. In this study, Dropedge is used to expand two different subgraphs so that they
are each other’s positive samples, and the graph obtained after random row perturbation
of the original adjacency matrix is used as a negative sample. The Dropedge algorithm is a
process that expands the original data. In order to obtain two different output graphs G1
and G2, the edges in the original graph are randomly discarded, which is carried out by
forcing some of the non-zero elements in the adjacency matrix A to zero at each training
cycle with drop rates of p1 and p2, respectively (p1 and p2 can be equal). In this paper, the
adjacency matrix after Dropedge is denoted as Adrop, and then, the adjacency matrices
corresponding to graphs G1 and G2 are denoted as Adrop1 and Adrop2, which are related to
the initial adjacency matrix A as follows:

Adrop1 = A− A′1, (10)

Adrop2 = A− A′2, (11)

where A′i is a sparse matrix with a size equal to the initial adjacency matrix. Each epoch in
the training process performs an independent Dropedge for data augmentation, so that
a different Adrop is generated each time, and the data change can be avoided as much as
possible. In addition, since the over-smoothing phenomenon is severe in unsupervised
learning, the SGIB model uses Dropedge to expand the original data, which can better
alleviate the problem of over-smoothing and overfitting in deep networks.

4.2. Encoders

In this paper, the commonly used graph convolutional neural network (GCN) is
chosen as the base encoder. As shown in the top and bottom views of Figure 1, we set up
separate encoders gθ(•) and gω(•) for each subgraph. The two subgraphs are propagated
and mapped by one layer of GCN to obtain their respective node representations as follows:

Z(1) = σ

((
D̃(1)

)− 1
2 Ã(1)

(
D̃(1)

)− 1
2 Xθ

)
, (12)

Z(2) = σ

((
D̃(2)

)− 1
2 Ã(2)

(
D̃(2)

)− 1
2 Xω

)
(13)

where Ã = A + I represents the adjacency matrix with self-loop and D̃ denotes the degree
matrix Ã with the diagonal elements as the degrees of the nodes. θ and ω are the two
different learnable parameters corresponding to encoders gθ(•) and gω(•), respectively. σ is
the nonlinear rectification function PRelu or Relu. The node-level vector representations z(1)

and z(2) are clustered into graph-level vector representations employing a readout function
ϕ(·) : Rn×d → Rd . Finally, the aggregated graph-level vector representations are mapped
between 0 and 1 to obtain the final graph-level vector representations c(1) and c(2) that can
be trained and optimized.
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Since the SGIB model uses the contrast learning method in self-supervised learning,
it requires the selection of positive and negative example samples. We choose the graph-
level vector representation c(2) as the positive example sample of the node-level vector
representation z(1), and similarly choose the graph-level vector representation c(1) as the
positive example sample of the node-level vector representation z(2). The negative example
sample is the graph after transforming the original graph node positions. Specifically, a
random row transformation of the original graph adjacency matrix is denoted as Ashuf.
The perturbed adjacency matrix Ashuf is encoded by the neural network gθ(•) to obtain the
representation z’(1) as the negative sample of the representation z(1) (the negative sample of
viewpoint two is obtained after encoding by the neural network gω(•)). Finally, z(1) + z(2) is
returned to the downstream task.

4.3. Training and Optimization

The essence of the information bottleneck is to retain the valuable information to the
prediction label while discarding the information redundant to the prediction label, and the
information bottleneck in the case of multiple inputs is shown in Figure 2. A and B stand
for two inputs, Y stands for the target task (label), 1 stands for the independent features
required for the target task in input A but not in input B, 2 stands for the common features
required for the target task in input A and B, 3 stands for the independent features required
for the target task in input B but not in input A, and 4stands for the information related to
the target task in neither input A nor B, i.e., redundant information.
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In order to train the encoder end-to-end and learn node representations for agnostic
downstream tasks, we use mutual information to measure the dependencies between these
three, following the theory of information bottleneck in the multi-input case. The encoder
is trained by maximizing the common and independent features of the two subgraphs (i.e.,
parts 1, 2, and 3) while minimizing the redundant information of the two subgraphs that
is irrelevant to the target task (i.e., part 4). For the two input subgraphs, the information
bottleneck formula can be reformulated as follows:

R(1)
IB (θ) = Iθ

(
z(1); c(2)

)
− βIθ

(
z(2); z(1)| c(2)

)
, (14)

R(2)
IB (ω) = Iω

(
z(2); c(1)

)
− β2 Iω

(
z(1); z(2)| c(1)

)
(15)

θ and ω are the learnable parameters in the two GCNs, respectively. The loss function
of the SGIB model is expressed as the average of R(1) and R(2), as shown in Equation (16),
β1 and β2 are two hyperparameters:

Lloss(θ, ω, β1, β2) =
Iθ(z(1);c(2))+Iω(z(2);c(1))

2 − β1 Iθ(z(2);z(1)|c(2))+β2 Iω(z(1);z(2)|c(1))
2 , (16)
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where Iθ(z(1); c(2)) can be transformed as follows to obtain its lower bound:

Iθ

(
z(1); c(2)

)
= Iθω

(
c(2); c(1)z(1)

)
− Iθω

(
c(2); c(1)

∣∣∣z(1))
= Iθω

(
c(2); c(1)z(1)

)
= Iθω

(
c(2); c(1)

)
+ Iθω

(
c(2); z(1)

∣∣∣c(1))
≥ Iθω

(
c(2); c(1)

)
.

(17)

When the graph representations c1 and c2 do not contain redundant information, i.e.,
Iθω(c(2);z(1)|c(1)) = 0, the above inequality equation holds. Similarly, the lower bound of
Iω(z(2);c(1)) can be deduced:

Iω(z(2); c(1)) ≥ Iθω(c(1); c(2)). (18)

The second term in Equation (16), where Iθ(z(2);z(1)|c(2)) can be transformed to obtain
the upper bound, is as follows:

Iθ(z(2); z(1)|c(2)) = Iθω(z(2); z(1))− Iθω(z(2); z(1); c(2)) ≤ Iθω

(
z(2); z(1)

)
. (19)

Similarly, the upper bound of Iω(z(1);z(2)|c(1)) can be deduced:

Iθ(z(1); z(2)|c(1)) ≤ Iθω(z(1); z(2)). (20)

In summary, the loss bounds of the two parts are obtained. The loss function of the
model is obtained after adding the balance of weight parameters, as shown in Equation (21):

Lloss(θ, ω, α, β) ≥ Iθω(c(1); c(2)) + βIθω(z(1); z(2)). (21)

From Section 3.2, it is clear that the mutual information cannot be calculated precisely,
so its lower bound is usually estimated using some known algorithms. In this paper,
the goal of optimization is not to obtain a specific value but to maximize the mutual
information, so there are other choices of non-KL divergence, such as the Jensen-Shannon
mutual information estimator (JSD) [27] and the noise-contrast estimator (infoNCE) [28].
We chose the JSD estimator because the noise contrast estimator is more sensitive to the
number of negative samples. Specifically, the effect of infoNCE decreases as the number of
negative samples decreases. The JSD equation is as follows:

Î(JSD)
v (hi; c) = EP[−sp(−Dv(hi; c))]−EP̃

[
−sp

(
Dv

(
h̃i; c

))]
. (22)

In the above equation, Dv is the discriminator, v is the discriminator parameter, P̃ is
the negative sample distribution, and sp(z) = ln(1 + ez) is the softplus activation function.

5. Experimental Analysis and Results

To demonstrate the effectiveness of the SGIB model, a variety of network analysis
experiments, including node classification and node clustering, are performed on three
widely used citation networks as well as two large-scale datasets. Numerous experiments
show that SGIB outperforms the best available methods. In addition, an in-depth analysis
of the model is performed, and the experimental results show that the method can also
alleviate the over-smoothing problem to some extent.

The experimental design and results analysis in this section will be carried out in
three parts. The first part applies the SGIB model to five public data sets to verify whether
the network performance is improved after applying the information bottleneck theory
to remove redundant information. The second part verifies whether the over-smoothing
problem can be effectively mitigated in the SGIB model with the Dropedge algorithm. The



Symmetry 2022, 14, 657 9 of 16

third part verifies whether the improvement in the SGIB model is consistent for different
label ratios.

5.1. Datasets and Implementation Details

Datasets: The statistics of the datasets used for node-level tasks are shown in Table 1.
Citation Networks. A network consisting of papers and their relationships. Edges are
the relationships between papers that include citation relationships, common authors, etc.
Nodes are also the number of papers in the dataset, and features are the characteristics of
each paper. Coauthor Networks. Coauthor-CS and Coauthor-Phy are two collaborative
author networks based on the Microsoft Academic Graph for the KDD Cup 2016 Challenge.
In these networks, nodes represent authors who are connected by an edge and if they have
co-authored a paper. The node features represent the paper keywords of each author’s
paper, and the class labels indicate the most active research areas of each author.

Table 1. Statistics of the datasets used in experiments.

Datasets Nodes Edges Features Classes Train/Val/Test Nodes

Cora 2708 5429 1433 7 140/500/1000
Citeseer 3327 4732 3703 6 120/500/1000
Pubmed 19,717 44,338 500 3 60/500/1000

Coauthor-CS 18,333 81,894 6805 15 450/450/17,433
Coauthor-Phy 34,493 247,962 8415 5 150/150/34,193

Implementation Details: SGIB follows the experimental setup of previous state-of-the-
art methods, and for the node classification task, the experimental setup of DGI is followed,
and the average classification accuracy and standard deviation of the test nodes are obtained
by a linear classification model after 50 training sessions. For the node clustering task,
the learned node representations are clustered using the K-means algorithm and the F1
score (F1), the average normalization (NMI), and the tuning index (ARI) are obtained for
an average of 50 runs. SGIB is trained using a one-layer message-passing network with
an Adam optimizer and an initial learning rate of 0.001. In addition, early stopping with
a patience of 30 is also utilized. The original map sampling probability is chosen from
{0.8, 0.9}. Graph representation dimension is chosen from {256, 512}. Local overall mutual
information weights and local and local mutual information weights are chosen from
{0.5, 0.9, 1.0}. The software and hardware information involved in this experiment is as
follows: Operating system: Ubuntu 7.5.0-3Ubuntu1-18.04 CPU: Intel(R) Xeon(R) Gold
5218 CPU @ 2.30 ghz; graphics card: NVIDIA Quadro RTX 5000 16 GB, CUDA 10.2,
Pytorch 1.7.0.

5.2. Node Classification

The citation network uses a standard node division ratio. The co-author network
selects 30 nodes per class as the training set, 30 nodes per class as the validation set, and
the remaining nodes as the test set. Table 2 reports the mean node classification accuracy
of our method and other baselines. The supervised models include MLP, LogReg, label
propagation (LP) [29], Chebyshev [30], GCN, graph attention networks (GAT), and mixed
model networks (MoNet) [31]. The unsupervised models include DGI, GMI, GRACE, GCA,
Graph InfoClust (GIC) [32], MVGRL.

Table 2 shows that compared to the six state-of-the-art unsupervised methods, the
SGIB model improves in all five datasets and achieves the best results in four of them.
The improvement is 0.5 percentage points on Cora, 0.8 percentage points on Pubmed,
0.9 percentage points on Coauthor-CS, and 0.6 percentage points on Coauthor-Phy. The
most representative unsupervised model DGI and SGIB were selected to compare the
distribution of experimental results. For each model, 20 experimental results are taken for
analysis, as shown in Figure 3. As can be seen from the figure, SGIB generally improves
the experimental results, which is consistent with DGI. In this study, we believe that the
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main reason for the performance improvement is the minimization of mutual information
between the node-level vector representations of view 1 and view 2. Therefore, the node
representation maximizes the extraction of the most important universal and unique
information in the graph, while eliminating redundant information.

Table 2. Accuracies in percent on node classification.

Methods Input Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy

Supervised

MLP X,Y 58.2 ± 2.1 59.1 ± 2.3 70.0 ± 2.1 88.3 ± 0.7 88.9 ± 1.1
LogReg X,A,Y 57.1 ± 2.3 61.0 ± 2.2 64.1 ± 3.1 86.4 ± 0.9 86.7 ± 1.5

LP A,Y 68.0 ± 0.2 45.3 ± 0.2 63.0 ± 0.5 74.3 ± 0.0 90.2 ± 0.5
Chebyshev X,A,Y 81.2 ± 0.5 69.8 ± 0.5 74.4 ± 0.3 91.5 ± 0.0 92.1 ± 0.3

GCN X,A,Y 81.5 ± 0.2 70.3 ± 0.3 79.0 ± 0.4 91.8 ± 0.1 92.6 ± 0.7
GAT X,A,Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 90.5 ± 0.7 91.3 ± 0.6

MoNet X,A,Y 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3 90.8 ± 0.6 92.5 ± 0.9

Unsupervised

DGI X,A 81.7 ± 0.6 71.5 ± 0.7 77.3 ± 0.6 90.0 ± 0.3 91.3 ± 0.4
GMI X,A 80.7 ± 0.7 71.1 ± 0.2 78.0 ± 1.0 91.0 ± 0.0 OOM

GRACE X,A 80.0 ± 0.4 71.7 ± 0.6 79.5 ± 1.1 90.1 ± 0.8 92.3 ± 0.6
GCA X,A 80.5 ± 0.5 71.3 ± 0.4 78.6 ± 0.6 91.3 ± 0.4 93.1 ± 0.3
GIC X,A 81.7 ± 1.5 71.9 ± 1.4 77.3 ± 1.9 89.4 ± 0.4 93.1 ± 0.7

MVGRL X,A 82.8 ± 1.0 72.7 ± 0.5 79.6 ± 0.8 91.0 ± 0.6 93.2 ± 1.0
SGIB X,A 83.3 ± 0.7 71.7 ± 0.8 80.4 ± 0.6 92.2 ± 0.5 93.8 ± 0.8
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According to the experimental results, the SGIB model works better on large data
sets, which may be because large data sets contain more data diversity and more dispersed
features, so that more redundant information is generated in the encoding process. Thus,
the model proposed in this paper shows stronger competitiveness when it can remove the
task-irrelevant information from the data.

Compared with SGIB, unsupervised learning models such as DGI, GMI, and MVGRL
only use mutual information to maximize learning graph representations, i.e., only the most
dominant information in the graph is learned, so they are slightly weaker than SGIB models
in terms of classification performance. Moreover, in the case of no label information, the
proposed method in this study can still show experimental results that rival or even slightly
outperform supervised learning models such as GAT and GCN, which is because the high
quality and rich information in the graph learned by the SGIB model is sufficient to support
the classification task, which will guarantee the performance in the downstream task.
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5.3. Node Clustering

For the node clustering task, in addition to the four unsupervised methods mentioned
in Section 5.2, seven models were selected for comparison, including K-means, spectral
clustering, deep representation for graph Ccustering (DNGR) [33], relational topic models
(RTM) [34], robust multi-view spectral clustering (RMSC) [35], text-associated DeepWalk
(TADW) [36], and variational graph auto-encoders (VGAE) [37]. The clustering results of
Cora, Citeseer, and Pubmed are shown in Table 3.

Table 3. Node clustering result in Micro F1, NMI and ARI.

Methods
Cora Citeseer Pubmed

F1 NMI ARI F1 NMI ARI F1 NMI ARI

K-means 0.368 0.321 0.230 0.409 0.305 0.279 0.195 0.001 0.002
Spectral 0.318 0.127 0.031 0.299 0.056 0.010 0.271 0.042 0.002

DeepWalk 0.392 0.327 0.243 0.270 0.088 0.092 0.670 0.279 0.299
DNGR 0.340 0.318 0.142 0.300 0.180 0.044 0.467 0.155 0.054
RTM 0.307 0.230 0.169 0.342 0.239 0.203 0.444 0.194 0.148

RMSC 0.331 0.255 0.090 0.320 0.139 0.049 0.421 0.255 0.222
TADW 0.481 0.441 0.332 0.414 0.291 0.228 0.335 0.001 0.001
GAE 0.595 0.429 0.347 0.327 0.176 0.124 0.660 0.277 0.279

VGAE 0.609 0.436 0.346 0.308 0.156 0.093 0.634 0.229 0.213
DGI 0.707 0.544 0.472 0.714 0.479 0.485 0.667 0.307 0.277
GMI 0.701 0.542 0.495 0.667 0.419 0.418 0.644 0.239 0.225
SGIB 0.714 0.546 0.505 0.716 0.487 0.487 0.673 0.307 0.279

From the perspective of quantitative analysis, the performance of the SGIB model
outperforms the other models in almost all metrics. Moreover, from the perspective of
qualitative analysis, as shown in Figure 4 based on the visualized t-SNE plots on the
three datasets, the SGIB model shows more discernible clusters, and the separability and
tightness of its clustering results are more evident. The feasibility and rationality of the
SGIB model can be seen from both qualitative and quantitative perspectives.

5.4. Ablation Experiment

In order to verify the role played by information bottleneck in the SGIB model, ablation
experiments are also conducted in this paper. The experiments are conducted to remove the
effect of the Dropedge algorithm by performing random edge deletion operations on two
other unsupervised models, and verifying whether a higher quality vector representation
is possible after removing redundant information. This study selected the extant classical
unsupervised model DGI, GMI was combined with the Dropedge algorithm for the experi-
ments, and the setup of the ablation experiments followed that of DGI. The experimental
results are shown in Table 4.

Table 4. Ablation experiments.

Methods Cora Citeseer Pubmed

DGI 82.3 71.8 76.8
DGI + Dropedge 82.9 72.0 79.5

GMI 80.7 71.1 78.0
GMI + Dropedge 81.9 69.7 78.2

SGIB 83.3 71.7 80.4

From the above experimental results, we can see that the SGIB model still shows
competitiveness after removing the effect of Dropedge. For example, after combining the
DGI model with the Dropedge algorithm on the Pubmed dataset, there is a significant
performance improvement of 2.7 percentage points for the node classification task, and
it can be inferred that the random deletion of edges in the network can remove some
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redundant information to a certain extent, which makes the model performance improve.
The SGIB model also has a nearly 1 percentage point improvement compared to the DGI +
Dropedge model, which is entirely due to the application of information bottleneck and
proved to be effective in removing redundant information from the representation of the
data, thus improving the performance of the model. Moreover, the experimental results
on the large-scale dataset Pubmed show more significant improvement than the other two
small-scale datasets, for the larger the dataset and the more redundant information exists,
the more significant the performance improvement of the SGIB model.
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5.5. Node Classification with Various Depths

In this subsection, the performance of the SGIB model with other mainstream unsuper-
vised models for node classification is mainly verified when the model depth is gradually
increased. Compared with the DGI, GMI, and MVGRL models, the SGIB model is more
useful for mitigating network over-smoothing. To ensure the fairness of the experiments,
the same set of hyperparameters and the same discard rate p are applied, and the network
depth is from layer 1 to layer 32. The experimental results are shown in Table 5.
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Table 5. Node classification AC with various depths.

Data Methods
Depths

1 2 4 8 16 32

Cora

DGI 82.30 79.36 73.10 21.87 20.01 16.43
DGI + D 82.90 79.00 72.60 36.48 21.60 16.05

GMI — 80.70 74.06 37.81 16.22 16.06
GMI + D — 81.95 77.07 38.01 15.75 16.15
MVGRL 82.80 81.74 78.20 28.38 22.04 16.82

SGIB 83.32 80.80 79.07 65.54 23.80 20.86

Citeseer

DGI 71.80 70.24 62.34 28.18 20.39 17.10
DGI + D 72.02 70.51 64.85 32.59 21.25 17.07

GMI — 71.10 58.80 38.18 20.70 17.06
GMI + D — 69.70 54.76 39.60 24.41 19.83
MVGRL 72.70 69.28 60.29 52.96 33.02 18.32

SGIB 71.73 71.29 67.50 58.11 35.51 20.11

Pubmed

DGI 76.80 73.80 65.23 50.56 45.21 34.97
DGI + D 79.48 71.83 64.94 51.20 41.84 34.89

GMI — 78.00 75.50 61.41 44.36 34.67
GMI + D — 78.18 74.62 61.32 36.39 34.81
MVGRL 79.60 75.30 67.78 36.28 34.40 34.12

SGIB 80.44 80.10 75.50 61.58 45.60 43.66

The experimental comparison revealed that for the two-layer network Cora and
Citeseer datasets generally did not work as well as the GMI model, which may be due
to the original setting of the GMI model as a two-layer network. As the depth of the
model network increases, the SGIB model presents optimal results for all results from 4
to 32 layers. In particular, it has a significant performance improvement of 9.5 percentage
points on the Pubmed dataset, from which it is inferred that the SGIB model may be better
at mitigating over-smoothing on large datasets.

5.6. Limited Labeled Training

This section focuses on the performance comparison of the SGIB model with other
mainstream graph neural network models (GCN, GAT, DGI, MVGRL) on node classification
tasks at low labeling rates. Thus, the improvement of SGIB model performance is verified
to be consistent under different labeling rates. The labeling rates were set to 1%, 2%, and
3% on the Cora and Citeseer datasets, and 0.03%, 0.05%, and 0.1% on the Pubmed dataset.

From the above experimental results, as shown in Figure 5, it can be concluded that
the SGIB model can achieve excellent results in the case of different labeling rates as well,
and the improvement is consistent in the face of different labeling rates. In all three data
sets, the lower the labeling rate, the more obvious the improvement effect is. For example,
on the Cora dataset with a 1% labeling rate, there is a 4.3 percentage point improvement,
which indicates that the SGIB model relies more on the self-supervised approach to obtain
information about the nodes themselves.
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6. Conclusions 
In this paper, we propose a graph network representation model based on infor-

mation bottleneck to address the problem that the neighboring node features in the input 
graph may contain useless information, and we implement the self-supervised SGIB algo-
rithm using the contrast learning method. The SGIB algorithm introduces the information 
bottleneck theory so that the vector representation learned by the encoder from the graph 
structure data contains minimum and sufficient input information. In this study, experi-
ments were conducted on five datasets, and the experimental results show that (1) the 
SGIB algorithm removes redundant information based on the extraction of common and 
independent features of multiple inputs, making the encoder less susceptible to noisy 
data; (2) the Dropedge algorithm for contrast learning can alleviate the overfitting prob-
lem to a certain extent; (3) the performance improvement of the SGIB algorithm compared 
with the state-of-the-art supervised learning algorithm and an unsupervised learning al-
gorithm is verified in a large number of experiments, and it is found that the SGIB algo-
rithm performs better on large-scale data sets. 
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6. Conclusions

In this paper, we propose a graph network representation model based on information
bottleneck to address the problem that the neighboring node features in the input graph may
contain useless information, and we implement the self-supervised SGIB algorithm using
the contrast learning method. The SGIB algorithm introduces the information bottleneck
theory so that the vector representation learned by the encoder from the graph structure
data contains minimum and sufficient input information. In this study, experiments were
conducted on five datasets, and the experimental results show that (1) the SGIB algorithm
removes redundant information based on the extraction of common and independent
features of multiple inputs, making the encoder less susceptible to noisy data; (2) the
Dropedge algorithm for contrast learning can alleviate the overfitting problem to a certain
extent; (3) the performance improvement of the SGIB algorithm compared with the state-of-
the-art supervised learning algorithm and an unsupervised learning algorithm is verified
in a large number of experiments, and it is found that the SGIB algorithm performs better
on large-scale data sets.
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